
MAPredict: Static Analysis Driven Memory
Access Prediction Framework for Modern CPUs

No Author Given

Abstract. Application memory access patterns play a vital role in de-
ciding how much traffic is served by the cache and forwarded to the
DRAM. Moreover, prefetchers, compilers, parallel execution, and innova-
tions in manufacturer-specific micro-architectures make prediction more
difficult. This research introduces MAPredict, a static analysis-driven
framework that addresses these challenges to predict LLC-DRAM traf-
fic. By exploring and analyzing the behavior of modern Intel proces-
sors, MAPredict formulates cache-aware analytical models. MAPredict
invokes these models to predict LLC-DRAM traffic by combining the ap-
plication model, the machine model, and user-provided hints for captur-
ing dynamic information. MAPredict successfully predicts LLC-DRAM
traffic for different regular access patterns and provides the means to
combine static and empirical observations for irregular access patterns.
Evaluating 130 workloads from six applications on recent Intel micro-
architectures, MAPredict yielded average accuracy of 99% for stream-
ing, 91% for strided, and 92% for stencil patterns. By coupling static
and empirical methods, up to 97% average accuracy is obtained on dif-
ferent micro-architectures for random access patterns.

1 Introduction

Innovations in computing in recent times are shaped by the end of Dennard scal-
ing and the need to address the memory wall problem. As a result, multi-core
and many-core processors with multi-level memory hierarchies on heterogeneous
systems are becoming increasingly common [9]. With increasing hardware com-
plexity, designing analytical models becomes a non-trivial task. With the rise
of heterogeneous systems, the importance of such a modeling approach for pre-
diction has increased significantly. Because the execution of an application on
an ill-suited processor may lead to non-optimal performance [18], the runtime
system needs to make a quick decision on where to execute kernels on the fly.
Predicting a kernel’s performance and energy consumption can enable runtime
systems to make intelligent decisions. For such prediction, floating-point opera-
tions (FLOPs) and memory traffic need to be counted. While calculating FLOPs
is fairly straightforward, memory traffic prediction is complex and dynamic since
the memory access request can be served by the cache or the DRAM.

Statically predicting LLC-DRAM traffic is vital for three reasons. Firstly, a
heterogeneous runtime system can make intelligent scheduling decisions if it can
statically identify compute and memory-bound kernels based on the Roofline
model [30]. A study, Mephesto [18], demonstrated that energy-performance-
aware scheduling decisions can be made based on operational intensity (FLOPs/LLC-
DRAM Bytes) of kernels. There are tools such as Intel Advisor and NVIDIA



2 No Author Given

Nsight Compute that generate operational intensity of a kernel. However, a run-
time system needs this information before executing the kernel to make better
placement decisions. While static analysis tools can provide the FLOP count
at compile time [12], statically predicting LLC-DRAM traffic needs to be ex-
plored. Simulation frameworks can provide LLC-DRAM traffic, but they are not
fast enough to be integrated into a runtime system [20]. Secondly, developing
a framework to predict the energy and performance of modern CPUs requires
predicting LLC-DRAM memory transactions because LLC-DRAM transactions
incur a significant amount of energy and time [29]. Finally, a static approach
for predicting the LLC-DRAM traffic enables simulation-based design space ex-
ploration to determine the best memory configuration. For these reasons, this
study aims to build a framework capable of predicting the LLC-DRAM traffic
statically. However, a static analysis approach for predicting the LLC-DRAM
traffic encounters three major challenges: 1) it must keep up with the contin-
uous innovation in the processors’ memory hierarchy,2) it must deal with the
complex memory access patterns and different execution models (sequential and
parallel), and 3) it does not have access to the dynamic information necessary
to obtain high prediction accuracy.

This research presents MAPredict, a framework that predicts the LLC-DRAM
traffic for applications in modern CPUs. To the best of our knowledge, this is
the first framework that simultaneously addresses all of the challenges above. We
present systematic experimentation on different Intel micro-architectures to elicit
their memory subsystem behavior and build the analytical model for a range of
memory access patterns. Through static analysis at compile-time, MAPredict
creates Aspen [25] application models from annotated source code, captures the
dynamic information, and identifies the memory access patterns. It then couples
the application and machine model to accurately predict the LLC-DRAM traffic.

Our study reports the following contributions:

• A systematic unveiling of the behavior of Intel CPUs for read and write strate-
gies, accounting for prefetchers, and compilers, and multi-threaded executions;

• A formulation of a cache- and prefetching-aware analytical model using ap-
plication, machine, and compiler features;

• A static analysis driven framework named MAPredict to predict LLC-DRAM
traffic at compile time by source code analysis, dynamic information, and
analytical modeling; and

• An evaluation of the MAPredict using 130 workloads (summation of num-
ber of functions * input sizes) from six benchmarks in four micro-architectures
of Intel, where we achieve higher prediction accuracy for regular access pat-
terns when compared to the models from literature. MAPredict also provides
means to combine static and empirical observation for irregular access.

2 Understanding memory reads and writes in Intel
processors

This section introduces the hardware, LLC-DRAM traffic measurement strategy,
and the factors that trigger an LLC-DRAM transaction. From the application’s



Title Suppressed Due to Excessive Length 3

Table 1: Machines and micro-architectures.

Name Year Processor detail. here L3 = LLC

Broadwell 2016 Xeon E5-2683 v4, 32 cores, L2 - 256 KiB, L3 - 40 MiB
Skylake 2017 Xeon Silver 4114, 20 cores, L2 - 1 MiB, L3 - 14 MiB

Cascade Lake 2019 Xeon Gold 6248, 40 cores, 2 - 1 MiB, L3 - 28 MiB

Cooper Lake 2020 Xeon Gold 6348H, 96 cores, L2 - 1 MiB, L3 - 132 MiB

viewpoint, the memory access pattern plays a vital role. The two most com-
mon memory access patterns — sequential streaming access and strided memory
access are considered. Cache line size, page size, initialization, and prefetching
mechanism are identified as the key factors. This section also explores the effects
of the evolution of CPU micro-architectures.

(a) Cache line and page size. (b) Array initialization. (c) Prefetchers.

Fig. 1: LLC-DRAM traffic for different read and write scenarios in Intel proces-
sors. LLC-DRAM traffic is shown at Y-axis.

2.1 Description of the hardware

In this study, Intel CPUs are considered because they are the most widely
available processors in HPC facilities [1]. Table 1 depicts the four recent micro-
architectures that are a part of this study — Broadwell (BW), Skylake (SK),
Cascade Lake (CS), and Cooper Lake (CP). The introduction of the non-inclusive
victim L3 cache and the larger L2 cache (starting from the SK processors) is the
most important change concerning the memory subsystem [2].

2.2 A tool for measuring the LLC-DRAM traffic

All the LLC-DRAM traffic measurements reported in this study (all sections)
are gathered through a script-based dynamic analysis tool. The dynamic analysis
tool uses TAU [24] and PAPI [26] to measure function-wise LLC-DRAM traffic
from uncore counters (imcX::UNC M CAS COUNT) of the integrated memory
controllers (IMC). This tool provides LLC-DRAM traffic measurement in the
unit of cache line (64 bytes) and this unit is followed throughout this study.

2.3 Different read and write strategies

To investigate the application-cache interplay, a variant of vector multiplication
code that exhibits sequential streaming (stride = 1) and strided access pattern
(stride > 1) is considered. The code has three arrays (100 million 32-bit floating-
points). Since the cache line length of these Intel processors is 64 bytes, in an
ideal case, an array size of 100M (M represents million) should generate 6.25M
writes and 12.5M reads (two reads and one write per index). However, Fig. 1
tells a different story, which are discussed below.



4 No Author Given

Impact of cache line size In Fig. 1a, the read-write traffic is shown where
the read traffic is close to 12.5M for stride 1. This trend continues until stride
16 (64 bytes/size of 32bit float=16), referenced by 1 . Because a cache line is 64
bytes long, while fetching one 32-bit floating-point data, the memory subsystem
fetches 15 (60 bytes worth) additional neighboring data.After stride 16 at 1 ,
the read traffic halves every time the stride is doubled. Write traffic for stride 1
is also close to 6.25M. However, for the write traffic, it appears that the region
2 stretches up to a stride of 524,288. For a stride of one (100M access) and
a stride 524,288 (only 190 access), the same number of cache lines (6.25M) are
transferred, which is explained below.

Impact of page size In Fig. 1a, the impact of page zeroing is visible because of
uninitialized write array. The write traffic in Fig. 1a is not affected by the cache
line size. Instead, it depends on the page size. The default page size on Intel
processors is 4 KiB, i.e., a stride of 1024 for 32-bit floating-point. Because Linux
supports “transparent huge pages”, it allows larger page sizes. Intel processors
support large pages of 2 MiB and 1GiB size. Because the data structure size in
our study was 100M, a page size of 2MiB was selected. This explains why we see
a transition at 3 on a stride of 524,288.

Impact of Initialization In Fig. 1b traffic is shown when the write array is
initialized. The write traffic is close to 6.25M at stride 1, and at this point, the
impact of the cache line size is visible at 5 . Specifically, until a stride of 16, no
page zeroing takes place. After a stride of 16, the traffic is reduced by half when
the stride is doubled. However, the read traffic is close to 18.75M for stride 1,
indicating the impact of “allocating store” (the region pointed by 4 ).

Impact of hardware prefetching Intel implements aggressive prefetching,
but not all the details are openly available to the community. In the experimen-
tal results shown in Fig. 1a and Fig. 1b, prefetching is disabled(BW-Pf means
Broadwell with prefetching). Three regions in read traffic are shown in Fig. 1c.
The regions 6 (stride 1 to 16) and 8 (stride 128 and onward) show no visible
difference with prefetching enabled. Further investigation by experimenting with
a smaller stride confirms that the impact of prefetching vanishes after a stride of
80 pointed (by 8 ). The region 7 (from a stride of 32 to a stride of 128) shows
extra cache lines that are fetched. Because of Intel’s prefetchers, for a stride
of 64, each access could result in three cache lines being fetched. Moreover, the
prefetching behavior in region 7 is not the same for all micro-architectures. Read
traffic is 10% higher in BW when compared to others (SK, CS, and CP show
the same level of read traffic). This observation can potentially be attributed to
the change in the cache subsystem design following the BW micro-architecture.

Impact of compiler and multi-threaded execution The GNU compiler is
used to generate Fig. 1. However, using the Intel compiler can provide a different
result because of the default “streaming store” or “non-temporal store” for a
stride of 1. For streaming store, data is not read from the DRAM for a store miss.
Instead, the data is directly written to DRAM (bypassing the cache) through
a write-combining buffer. When experimenting with multi-threaded version, we
found no difference when one thread and 16 thread executions are compared.



Title Suppressed Due to Excessive Length 5

3 Modeling different types of access

A static analysis framework needs analytical models for different types of mem-
ory access patterns to predict the LLC-DRAM traffic. For this reason, this sec-
tion builds on the findings from §2 to formulate analytical models for different
access patterns. Three kinds of regular access patterns are discussed in this sec-
tion. First, the model is formulated for the sequential streaming access pattern
to predict LLC-DRAM cacheline transfer. Then, models are prepared for other
access patterns by using the model for streaming access patterns. In the end,
random access patterns (irregular) are discussed.

3.1 Sequential streaming access pattern

The sequential streaming access pattern (i.e., stride = 1) is one of the most
common access patterns found in applications. Prefetching does not impact the
amount of traffic transferred between LLC and DRAM for this pattern. However,
the impact of the cache line and page size needs to be considered.

Read traffic Because the LLC-DRAM read transaction is done in a unit of
cache lines, the amount of read traffic can be expressed using Eq 1. In Eq 1, a
data structure size is Elementcount and the size of each element is Elementsize
bytes. Readcount is the number of LLC-DRAM transactions for reading a data
structure. Data structure initialization has no impact on Readcount. Because
alignment is not certain, the ceiling is considered.

Readcount =

⌈
Elementcount ∗ Elementsize

Cachelinesize

⌉
(1)

Write traffic The initialization of the data structures plays an important role
for write traffic. At first, the case where the data structure is not initialized but
only memory is allocated is discussed. For such a case, the page size becomes the
deciding factor because of page zeroing (as shown in §2.3). In Eq 2, Writenot init

is the number of cache line transfers when the data structure is not initialized).
Because the machines in Table 1 support transparent huge pages by default, the
page size picked by the operating system (OS) depends on the data structure
size (We made no changes in the OS). The ceiling is considered to capture the
extra traffic from the fragmented access on the last page.

When a data structure is initialized, page zeroing does not take place, and the
cache line becomes the deciding factor and the write-allocate policy is used. So
one write operation also causes one read operation. The write traffic (Writeinit)
is shown in Eq 3. The extra read traffic (Readfor write) generated for the write
operation is shown in Eq 4.

Writenot init =

⌈
Elementcount ∗ Elementsize

Pagesize

⌉
∗ Pagesize
Cachelinesize

(2)

Writeinit =

⌈
Elementcount ∗ Elementsize

Cachelinesize

⌉
(3)

Readfor write =

{
0 if data structure is not initialized

Writeinit if data structure is initialized
(4)



6 No Author Given

Thus, total read traffic for streaming access, Readstream = Readcount +
Readfor write and total write traffic for streaming access, Writestream =Writenot init

or Writeinit based on data structure initialization. Since streaming store op-
erations do not cause extra read traffic for initialized write data structure,
Readfor write is set to zero when Intel compilers are used.

3.2 Strided access pattern

The strided access pattern is another common pattern. Based on the observation
in Fig. 1c, there are three regions. Read and write traffic formulation for each
region is presented below.

Streaming region When the (Stride ∗ Elementsize) is smaller than the Cachelinesize,
both reads and writes are the same as streaming access (region 6 in Fig. 1c). In
this region (stride 1 to 16), read and write traffic are same as streaming access
because the whole cache line is transferred. For this reason, total read and write
traffic for this region is presented by Readstream and Writestream.

No prefetching region As discussed in §2.3, the impact of prefetching van-
ishes after stride 80, and hence, this is the starting point of a “no prefetching” re-
gion which is pointed by 8 in Fig. 1c. For this reason, when (Stride ∗ Elementsize)
is larger than (5 ∗ Cachelinesize), no prefetching region is considered since
(5 ∗ Cachelinesize) = stride 80 for 32-bit floating-point.

At first, write traffic is considered. If the data structure is initialized, the
write traffic is decided by the cache line size and stride size. It also causes extra
read traffic. This case is expressed in Eq 5.

Writeinit or Readfor write = Writestream/

(
Stride ∗ Elementsize

Cachelinesize

)
(5)

If the data structure is not initialized, the write traffic is decided by the
Pagesize. If (Stride ∗ Elementsize) > Pagesize then Eq 6 expresses write traffic,
otherwise write traffic is equal to Writestream. Read traffic is expressed as Eq 7.

Writenon init = Writestream/

(
Stride ∗ Elementsize

Pagesize

)
(6)

Readcount = Readstream/

(
Stride ∗ Elementsize

Cachelinesize

)
(7)

Prefetching zone Only when (Stride ∗ Elementsize) is larger than the cache
line and smaller than five times of the cache line, the impact of prefetching be-
comes visible (denoted by region 7 which starts from stride 16 and ends at stride
80 in Fig. 1c). In this region, if prefetching is disabled, write and read traffic can
be expressed as Eq 5, Eq 6, and Eq 7. However, the main difference is observed
when prefetching is enabled, and in that case, only read traffic is impacted. Intel
prefetching suggests fetching an adjacent cache line and an additional cache line
if all MSR bits are set. For this reason, the number of data access is multiplied
by three in the prefetching zone. This is expressed in Eq 8. Since prefetching has
no impact on write traffic, the write traffic is expressed as the non-prefetching
formula given at Eq 5 and Eq 6.

Readcount = 3 ∗
(
Elementcount

Stride

)
(8)

Moreover, SK, CS, and CP show a 10% read traffic drop when compared to
BW (from Fig. 1c), which is considered in the model.



Title Suppressed Due to Excessive Length 7

3.3 Stencil access pattern

Stencil access patterns are also common in scientific applications. The write
operation in a stencil access pattern usually follows a sequential streaming pat-
tern, and hence, the equations for streaming access are followed. However, read
operations need to be considered for different dimensions.

One-dimensional stencil In a one-dimensional stencil pattern, usually con-
secutive elements are accessed in each operation. Since adjacent elements can be
served by cache, the read operations follows a sequential streaming pattern.

Two and three-dimensional stencil Like a one-dimensional stencil, if the
elements are adjacent, a streaming access pattern is followed. When the distance
is larger than cache line size, individual accesses are counted. However, if the
distance between stencil points is high for a large data set, the cache size becomes
a limiting factor by causing capacity misses. Old data may need to be brought
to the cache more frequently for a large two or three-dimensional when there are
multiple iterations.

3.4 Random access pattern and empirical factor

The random access pattern is found in applications with irregular access [20].
Moreover, modern CPUs introduce randomness in data reuse because of their
replacement policies and the cache can not retain all data for further use. There-
fore, LLC-DRAM traffic prediction for random access must consider the ran-
domness derived from applications and machines. The number of total access
in irregular cases is expressed by Accessrandom. We first discuss randomness in
applications, followed by a discussion of randomness derived from machines.

Data structure randomness In data structure randomness, the reuse be-
havior becomes uncertain because of how the data structures are accessed, e.g.,
A[B[i]] (A’s memory access can be random). In this case, the randomness is one-
dimensional since only the location of access is random, and the total number of
access, Accessrandom is known. In such cases, cache reuse is non-deterministic at
compile time because the access depends on another data structure at runtime.
Furthermore, prefetchers may fetch some extra cache lines, which adds more
uncertainty. So, machine randomness needs to be considered for this case.

Algorithmic randomness The worst case of randomness is algorithmic ran-
domness which has two dimensions, 1) randomness in the number of total access,
Accessrandom and 2) randomness in which locations are accessed. While the first
randomness depends on the data structure size, the second kind may introduce
data reuse in the cache. Complex branching usually exists in this kind of ran-
domness. An example of algorithmic randomness is searching algorithms, such
as binary search. For such cases, algorithmic complexity analysis provides an
upper-bound of memory access on a data structure and is considered to define
Accessrandom. The second dimension is captured through machine randomness.

Machine randomness and empirical factor Machine randomness depends
on cache size, replacement policies, and memory access location. In recent Intel
processors (Since SK), replacement policies are dynamically selected from a set



8 No Author Given

of policies at runtime, and the policy is chosen for a given scenario is not dis-
closed [2]. Moreover, in the cases of algorithmic and data structure randomness,
the location of access is random. So, multiple dimensions of randomness from the
machine and the application make statically determining the LLC-DRAM traffic
a complex problem. Moreover, the undisclosed mapping of dynamic replacement
policies from Intel makes it further complicated. To the best of our knowledge,
statically determining LLC-DRAM traffic in modern CPUs for irregular cases is
an unsolved problem. This study does not claim to solve this problem statically;
rather, it combines static analysis and empirical observation. At this point, an
empirically obtained Empiricalfactor is introduced to represent machine random-
ness. The Empiricalfactor is calculated from memory access obtained from the
dynamic analysis tool (§2.2) and statically obtained total access (Accessrandom)
where Empiricalfactor = measured access / statically obtained access. This ratio
captures the randomness of the application and the underlying machine.

4 MAPredict Framework

This section describes the MAPredict framework. MAPredict statically gathers
information from an application and a machine to invoke the appropriate model
presented in §3 and generates a prediction for LLC-DRAM traffic. MAPredict
depends on OpenARC compiler [13] for static analysis of the code and the COM-
PASS [12] framework for expressing an application in the Aspen [25] domain-
specific modeling language. First, an overview of OpenARC, Aspen, and COM-
PASS is presented. After, a description of MAPredict framework is provided.

4.1 Aspen, OpenARC, and COMPASS

Aspen (Abstract Scalable Performance Engineering Notation) [25] is a domain-
specific language for analytical performance modeling in a structured fashion.
Aspen’s formal language and methodology provide a way to express applications
and machines’ characteristics abstractly (e.g., Aspen application model and ma-
chine model). Aspen tools can provide various predictions, such as predicting re-
source counts (e.g., number of loads, stores, FLOPs, etc.). Open Accelerator Re-
search Compiler (OpenARC) [13] is an open-source compiler framework for var-
ious directive-based programming research. It provides source-to-source trans-
lation, a desired feature to create Aspen application models. COMPASS [12] is
an Aspen-based performance modeling and prediction framework, which is built
on OpenARC. COMPASS provides a set of Aspen directives (pragma-based)
that can be used in source code. MAPredict extends COMPASS by adding new
Aspen directives for enabling cache-aware memory access prediction.

4.2 Description of MAPredict Framework

The workflow of the MAPredict framework is shown in Fig. 2. Four phases of
MAPredict are described below.

Source code preparation phase The main idea of MAPredict is to prepare
a source in such a way that when the preparation is done, MAPredict can stat-
ically provide memory access prediction. This one-time effort of source code



Title Suppressed Due to Excessive Length 9

Fig. 2: Workflow of MAPredict framework.

preparation (i.e., phase 1) is necessary to capture the dynamic information un-
available at compile time. First, COMPASS-provided Aspen compiler directives
(i.e., pragmas) are used to identify the target model region in the code for captur-
ing information at compile time. MAPredict introduces new traits that need to
be included in the directives to specify memory access patterns where necessary.
Access pattern traits such as sequential streaming and strided access patterns
are automatically generated; however, user input (through pragmas) is needed
for stencil and random access patterns. User inputs are also needed for specify-
ing dynamic (e.g., malloc) input sizes of data structures and Empiricalfactor for
random access patterns because of their unavailability at compile time.

model matmul {

param N = 512

data a [((4*N)*N)]

kernel Matmul_openmp {

execute [N] "block_Matmul" {

loads [((1* sizeof_float)*N)] from b as stride (1)

loads [((1* sizeof_float)*N)] from c as stride(N)

stores [(1* sizeof_float)*N] to a as stride (1)

}}}

Listing 1.1: Application model - Matrix Multiply (partial view)

Compile-time static analysis phase In phase 2, MAPredict gathers applica-
tion information that is required to execute the model presented in §3. MAPre-
dict invokes OpenARC’s compile-time static analysis capability, which generates
an intermediate representation of the code and captures variables, variable sizes
(i.e.,Elementsize), instruction types (load or store), FLOPs, loop information, ac-
cess pattern information, machine-specific Empiricalfactor, etc., from source code.
After gathering the needed information, the source-to-source translation feature
of OpenARC is invoked to generate the Aspen language’s abstract application
model by following Aspen’s grammar [25]. An application model combines differ-
ent types of statements in a graph of kernels with one or more execution blocks.
An example of an application model is given in Listing 1.1 which shows load
and store information of matrix multiplication. Every load and store statement
shows the access pattern of that data structure.

Machine model generation phase The machine model is manually prepared
by gathering information about the machine, following the Aspen grammar (one



10 No Author Given

time effort). The machine model contains information unavailable in the appli-
cation model, and is required to execute the model presented in §3. MAPre-
dict gathers information about the micro-architecture, Cachelinesize, Pagesize,
prefetching status, compiler, etc., from the machine model.

Prediction generation phase MAPredict’s prediction engine is invoked by
passing the application and machine model. MAPredict invocation can also be
made from a runtime system using the optional runtime invocation feature of
COMPASS. When MAPredict is invoked, it traverses the call graph of the Aspen
application model in a depth-first manner. In this graph, each node represents
an execution block (a part of a function). MAPredict walks through every load
and store statement of the application model, collects the access pattern, and
evaluates the expression to obtain Elementcount, Elementsize, Stride, etc. Then,
MAPredict uses the machine model information to invoke the appropriate pre-
diction model to generate memory access prediction for that statement. MAPre-
dict does this evaluation for each statement and generates a prediction for the
execution block, which is recursively passed to make a kernel/function-wise pre-
diction. When the graph traversal finishes, MAPredict provides a total memory
access prediction for the application. MAPredict can provide kernel-wise mem-
ory access and execution block-wise memory access. In debug mode, it offers
statement-wise detail analysis.

4.3 Identifying randomness and Empiricalfactor

MAPredict combines static and empirical approaches to address randomness.
In a large codebase, identifying randomness is challenge because randomness
usually exists only in certain functions. MAPredict facilitates identifying ran-
domness in source code. At first, the source is annotated with basic MAPredict
traits (without any Empiricalfactor). When MAPredict is executed, it provides
function-wise memory access prediction. Then the dynamic analysis tool is run
on real hardware to get the same function-wise data. Comparing the results from
both tools makes it apparent which functions provide low accuracy, indicating
a potential source of randomness. However, a function can be large. MAPredict
provides execution block-level and statement-wise detailed analysis to pin-point
the randomness. After identifying, as described in §3.4, the Empiricalfactor is
calculated by comparing the output from the dynamic analysis tool (measured
value) and MAPredict (statically obtained value). Then the Empiricalfactor is an-
notated in the source code for that statement or execution block. When MAPre-
dict is rerun, it uses the Empiricalfactor to generate the prediction.

5 Experimental Setup

The experiment environment is discussed in this section. Processors in Table 1
were used in the experiments. The operating system of these processors is Centos-
7, and it supports transparent huge pages by default. The applications, along
with their input sizes and access patterns, are listed in Table 2. Forty-four func-
tions from these applications are evaluated for different input sizes, making it
a total of 130 workloads. GCC-9.1 and Intel-19.1 compilers are used for experi-
mentation. For parallel execution, the OpenMP programming model is used. In



Title Suppressed Due to Excessive Length 11

Table 2: Benchmarks. Here, R = region.
Name Pattern Input sizes

STREAM Triad [16] Sequential streaming access pattern 50M, 100M, 150M

Jacobi [13] Stencil access pattern without initialization 67M, 268M, 1B

Laplace2D [13] Stencil access pattern with initialization 16M, 64M, 100M

Vecmul for R - 7 [13] Strided pattern in prefetching zone 50M, 100M, 200M

Vecmul for R - 8 [13] Strided pattern in no prefetching zone 100M, 200M, 400M

XSBench [27] Algorithmic randomness large

Lulesh [10] Mixed patterns 15M, 27M, 64M

the graphs, BW stands for Broadwell without prefetching, and BW pf represents
Broadwell with prefetch enabled. A similar convention is used for others. All the
graphs in the experiment section show accuracy in Y-axis.

5.1 Accuracy calculation

Relative accuracy is considered, where accuracy = [100 - Absolute {(measured-
predicted)/measured*100}]. The measured value is generated by the dynamic
analysis tool described in §2.2. The predicted values are generated using MAPre-
dict. Both MAPredict and the dynamic analysis tool provide function-wise traf-
fic, making function-wise accuracy calculation possible.

5.2 Comparison with literature

Prediction accuracy of MAPredict is compared with a model from literature [31].
Even though this study [31] investigates data vulnerability, the main contribu-
tion is the analytical model for LLC-DRAM traffic prediction by considering
application and machine characteristics. Two other studies investigate memory
access prediction for static analysis [12, 20]. The main reason they are not con-
sidered for comparison is the lack of a detailed analytical model with equations.
Moreover, one of these studies depends on cache simulation [20], while another
depends on instruction counts without considering machine properties [12].

6 Experimental Results

In this section, the accuracy of the MAPredict framework is evaluated in two
steps. In the first step, the prediction accuracy of different applications with
regular memory access patterns is evaluated. In the second step, irregular access
patterns and a large application with mixed access patterns are investigated.

6.1 Regular access patterns

Regular access patterns are investigated for various micro-architectures, input
sizes, compilers, and execution models.

Sequential streaming access pattern To evaluate the model for sequential
streaming memory access pattern, the triad kernel of STREAM [16] is used. The
data structure is initialized, and the size is 50M 64 bit floating-points. The total
traffic, which is the summation of read and write traffic, are measured for all
the micro-architectures with prefetching disabled and enabled. The prediction
accuracy from MAPredict and the model from the literature [31] are compared
in Fig. 3a. MAPredict invoked Eq 3 and provided 99.1% and 99.1% average
accuracy in all processors when prefetching is disabled and enabled. For the same
cases, the model from literature provided 75.0%, and 75.4% average accuracy.



12 No Author Given

(a) Stream : Triad. (b) Stencil : Laplace2D. (c) Stencil : Jacobi.

(d) Strided : Vecmul 50. (e) Strided : Vecmul 200. (f) Single vs. multi-threaded.

Fig. 3: Accuracy comparison of different regular access patterns. Y-axis is accu-
racy, and X-axis is micro-architectures with prefetching disabled and enabled.
BLUE=MAPredict, WHITE=literature, and GREEN=multi-threaded.

Stencil memory access pattern MAPredict’s accuracy for stencil pattern is
evaluated using two benchmark kernels, Laplace2d and Jacobi [13]. Both ker-
nels have a 2D stencil access pattern with adjacent points. However, Laplace2D
has the write array initialized, and Jacobi has the write array non-initialized.
Laplace2D operates on a 4000 × 4000 matrix of 64-bit floating-points, whereas
Jacobi operates on an 8912 × 8912 matrix of 32-bit floating-points. In Fig. 3b
the comparison for Laplace2D is shown. Since the data structure is initialized,
allocating-store causes extra read, which the model from literature does not con-
sider. MAPredict provided 95.9% and 92.5% average accuracy when prefetching
is disabled and enabled, respectively. However, the model from literature pro-
vided 65.7% and 68.5% average accuracy. The prediction accuracy of Jacobi is
portrayed in Fig. 3c. Since the write data structure is non-initialized, page zero-
ing takes place. Even though the model in the literature did not consider page
zeroing, the equation remained the same. Thus, the same accuracy is observed.

Strided memory access pattern To evaluate strided access patterns of prefetch-
ing and no-prefetching region (pointed by 7 and 8 in Fig. 1c), vector multipli-
cation of 100M size is used with stride 50 and 200. The stride size 50 is used with
a non-initialized write array to evaluate the page zeroing effect. Initialized write
array is considered for stride 200. For the prefetching zone, traffic is significantly
different across micro-architectures. Moreover, for stride 50, the whole array is
written to the memory instead of one in fifty. Fig. 3d shows that MAPredict
captured the prefetching differences between different micro-architectures suc-
cessfully and provided 93.3% and 91.6% average accuracy when prefetching is
disabled and enabled, respectively. However, the model from literature provided
54.6% and 38.2% average accuracy because it does not account for prefetchers
and page-zeroing. For stride 200, the initialized data structure causes allocating-
store. The comparison is shown in Fig. 3e where MAPredict and the model form
literature provided 88.5% and 66.2% average accuracy, respectively.

Multi-threaded execution and impact of compiler Multi-threaded and
single-threaded executions are compared in Fig. 3f. Eight threads of BW are
used for experimentation, and OpenMP from GCC is used. No significant dif-
ference is observed for sequential streaming, stencil, and strided access patterns.



Title Suppressed Due to Excessive Length 13

Fig. 4: Accuracy of various input sizes. WHITE = prefetching disabled and BLUE
= prefetching enabled.

Moreover, MAPredict is capable of capturing the streaming store operation by
Intel compiler and provides better accuracy than the model from literature.
Other micro-architectures show a similar trend.

Comparison of different input sizes MAPredict’s accuracy is evaluated for
different input sizes for each application with regular access pattern given in Ta-
ble 2. Triad is tested with array sizes of 50M , 100M , and 150M . Matrix sizes for
Jacobi are 8192×8192, and 16384×16384, and 32768×32768. Laplace2D is tested
with 4000× 4000, 8000× 800, and 1000× 1000 matrix sizes. Strided vector mul-
tiplication is tested with vector sizes of 50M , 100M , and 200M for prefetching
region and 100M , 200M , and 400M for no prefetching region. Prediction accu-
racy of each data set for prefetching enabled and disabled cases are presented
in Fig. 4. The accuracy of different input sizes demonstrates that MAPredict’s
provides consistent accuracy for varied input sizes. The BW processor is used
for this evaluation, and a similar trend is observed for others.

6.2 Irregular access and large application with mixed patterns

To evaluate MAPredict’s capability of combining static and empirical data for
irregular access and mixed patterns, XSBench and Lulesh, are considered.

Algorithmic randomness XSBench [27] is a proxy application that calculates
the macroscopic neutron cross-section by randomly searching for energy and ma-
terial. The energy search is done by employing a binary search on a unionized
energy grid, an example of algorithmic randomness (total access = Accessrandom
* Empiricalfactor). As discussed in §3.4, both the number of access and the loca-
tion of access are random. Since it follows a binary search, algorithm complexity
(logn) is used to measure Accessrandom. The Empiricalfactor is calculated for BW
with prefetching disabled and used for all other processors (Empiricalfactor = the
ratio of measured value and Accessrandom). The predicted value is then compared
to the average of five measurements (up to 5% standard deviation) for accuracy
calculation. The blue bars in Fig. 5 show that only BW provided high accuracy
when prefetching is disabled and hence demonstrating the need for machine-
specific Empiricalfactor. When individual Empiricalfactor is used, the accuracy of
each processor improved (yellow bar). MAPredict provides the option to include
multiple machine specific Empiricalfactor in a single pragma; thus, a single source
code can be updated for multiple machines. The method presented in [31] does
not calculate the total number of random access rather focuses on the access
location, which makes the comparison irrelevant. Algorithmic randomness is an
extreme case, and it is only present in a certain function. For this reason, a large
application with mixed patterns is investigated next for different input sizes.



14 No Author Given

Fig. 5: Accuracy of algorithmic randomness for XSBench

A large application with mixed patterns : Lulesh To demonstrate that
MAPredict can work with a large application with different memory access pat-
terns, Lulesh [10] is considered. Lulesh is a well-known app with different memory
access patterns for a 3D mesh data structure. It has 38 functions with a complex
call graph and 4474 lines of code, making it a large and complex example. Three
large data structure sizes (250×250×250, 300×300×300, and 400×400×400)
are used. The SK machine is selected for experimentation because it has the
smallest cache and hence, stresses the capability of MAPredict by increasing the
probability of machine randomness.

Function categorization of Lulesh Out of 38 functions in Lulesh, 24 func-
tions provide significant memory transactions (> 1 Million LLC-DRAM transac-
tions). The 24 memory intensive functions have different memory access patterns.
Most memory intensive functions are shown at Table 3, where column-2 shows ac-
cess patterns. Here, St=stencil (eight-point non-adjacent 3D stencil), S=stream,
DR=data structure randomness, and I=non-initialized arrays, N=nested ran-
domness (DR with branches), and All=all the above patterns.

Empiricalfactor Lulesh has data structure randomness in three functions.
The Empiricalfactor is calculated by comparing the static and dynamic data to
address this randomness (a one-time effort). So, a total of three Empiricalfactor
are used in three functions (out of 38).

Traffic: number of LLC-DRAM transactions Columns 3 and 4 show the
LLC-DRAM transaction (M=Million and B=Billion) obtained for MAPredict
and TAU+PAPI (dynamic analysis tool). The last function, which is the parent
of all functions, shows a total of 1.7 Billion LLC-DRAM transactions. However,
for the largest data size, Lulesh exhibits 3.5 Billion LLC-DRAM transactions.

Scaling and accuracy for Lulesh Scaling in terms of input sizes provides a
measure of success for one-time calculation of the Empiricalfactor. Column 5-10
of Table 3 show the accuracy of different functions for different data sizes for
prefetching enabled and disabled cases. Since some functions are parents to other
functions and the last function is the parent to all (total traffic), inaccuracy in
one function impacts the overall accuracy. MAPredict showed more than 93%
accuracy for all data sizes, which demonstrates the model and Empiricalfactor
scaled well in terms of input size. However, when multi-threaded experiments
are used the overall accuracy dropped but sill provided more than 80% accuracy.

6.3 Discussion

For regular access patterns, MAPredict’s static analysis provides higher ac-
curacy than the literature model and can handle different input sizes, micro-
architectures, cache sizes, compilers, and execution models. However, MAPredict
requires empirical observation for irregular patterns.



Title Suppressed Due to Excessive Length 15

Table 3: Analysis of Lulesh (selected functions). d1=data size 1 without prefetch-
ing, p-d1=with prefetching.

Function name Access MAP TAU Accuracy - 3 data sizes
(Shortened) Pattern redict PAPI d1 p-d1 d2 p-d2 d3 p-d3

IntegrateStressF.Elm St,S 81M 83M 99.0 97.4 88.5 88.9 91.8 91.7

CFBHour.ForceF.Elm St,S 239M 241M 96.9 99.1 97.0 96.5 82.2 82.6

CHourg.Cont.F.Elm St,I,DR 604M 647M 92.8 93.1 93.0 92.7 76.2 77.9

LagrangeNodal All 824M 874M 94.2 94.2 95.3 95.1 85.4 86.5

CKinematicsF.Elm S,St 99M 100M 98.7 99.7 96.0 96.6 98.3 98.7

CLagrangeElements St,S,I 126M 130M 98.3 97.5 99.7 99.9 98.5 98.3

CMon.QGrad.F.Elm S,St 99M 105M 95.2 94.4 95.6 95.6 94.6 94.5

CMon.QReg.F.Elm DR,N,S 141M 150M 94.9 94.6 95.4 93.2 94.3 93.2

CEnergyF.Elm S 249M 261M 97.7 95.6 94.0 98.6 99.9 93.4

EvalEOSF.Elm DR,S 429M 451M 99.1 95.1 95.7 97.9 98.4 93.0

UpdateVol.F.Elm S 10M 10M 99.9 99.9 99.7 99.9 99.9 99.9

LagrangeElements All 824M 869M 98.4 95.0 99.3 96.7 96.9 93.7

Overall All 1.6B 1.7B 95.0 93.0 96.6 94.3 95.8 99.2

Overhead of MAPredict One of the objectives of MAPredict is to make it
usable from runtime systems for fast decisions. The evaluation of Lulesh takes
28.3 milliseconds (38 functions), averaging to less than a millisecond per func-
tion. For source code preparation, 249 lines of Aspen directives (79 MAPredict
directives) are used for 4474 lines of code, which is 5.5% source code overhead.

Usability of Empiricalfactor The calculation of Empiricalfactor is needed for
irregular accesses. However, the Empiricalfactor calculation is a one-time effort.
Once calculated, it becomes a part of the source code and can provide pre-
diction statically. Moreover, randomness usually occurs only in a small portion
of an application (regular access patterns are more commonly found). So, the
Empiricalfactor calculation is needed only where randomness exists.

7 Related Works

Related works presented in this section are divided into two categories.

7.1 Memory access prediction

Several studies investigated memory access patterns to make a reasonable pre-
diction. Yu et al. [31] used analytical models of different memory access patterns.
In Tuyere [20], Peng et al. used data-centric abstractions in an analytical model
to predict memory traffic for different memory technologies. Application models
in these aforementioned studies are manually prepared. Moreover, MAPredict
goes beyond these wrok by including the impact of page size, prefetchers and
compilers in machine model. Moreover, Tuyere framework showed the benefit of
analytical models over trace-based or cycle accurate simulator (such as Ramu-
lator [11], DRAMSim [21]) both in terms of time and space. MAPredict further
improves upon Tuyere by providing prediction in 1-3 milliseconds per function.
Allen et al. [3] investigated the impact of two memory access patterns on GPUs.
Some previous works used load and store instruction counts to measure memory
access and used that count to predict performance(e.g., COMPASS by Lee at



16 No Author Given

Table 4: Comparison with other works. A=All, P=Partial.
Studies Static Analytical Access Diff. micro- Diff. Multi- Pref

by analysis model patterns architecture compilers threaded etchers

Peng et al. [20] ✓ ✗ A ✗ ✗ ✓ ✗

Yu et al. [31] ✓ ✓ A ✗ ✗ ✗ ✗

Monil et al. [19] ✗ ✗ P ✓ ✗ ✗ ✓

Lee at al. [12] ✓ ✗ P ✓ ✗ ✓ ✗

Marques et al. [15] ✗ ✗ P ✗ ✗ ✓ ✗

Alappat et al. [2] ✗ ✗ P ✓ ✓ ✓ ✓

Hammond et al. [5] ✗ ✗ P ✓ ✗ ✓ ✗

Molka et al. [17] ✗ ✗ P ✓ ✗ ✓ ✗

MAPredict ✓ ✓ A ✓ ✓ ✓ ✓

al. [12]). Compile-time static analysis tools, such as Cetus [4], OpenARC [13],
and Caascade [14] are also used to measure instruction counts at compile time
and can provide a prediction. MAPredict does not solely depend on instruction
counts; it captures the impact of cache hierarchy through analytical models.
In contrast to MAPredict’s near-accurate prediction, analytical models such as
Roofline Model [30] and Gable [6] provide an upper bound for a system.

7.2 Understanding Intel processors
Some studies delved into Intel processors to understand their performance by
using benchmarks. Using the Intel advisor tool, Marques et al. [15] analyzed
the performance of benchmark applications to understand and improve cache
performance. Alappat et al. [2] investigated Intel BW and CS processors to un-
derstand the cache behavior using the likwid tool suite [28]. Hammond et al.
investigated the Intel SK processor [5] by running different HPC benchmarks.
Hofmann et al. also investigated different Intel processors to analyze core and
chip-level features [7, 8]. Park et al. also investigated the performance of differ-
ent Intel micro-architectures and optimized HPC benchmarks to perform better.
Molka et al. [17] used a micro-benchmark framework to analyze the main mem-
ory and cache performance of Intel Sandy bridge micro-architecture (also AMD
Bulldozer processors). Performance evaluation using benchmarks is also done by
Saini et al. for Ivy Bridge, Haswell, and Broadwell micro-architectures [22, 23].
These studies investigated Intel micro-architectures using benchmarks; however,
unlike MAPredict, they did not develop strategies for predicting memory traffic.

7.3 Comparing MAPredict with other studies

Table 4 compares MAPredict with other literature where first four rows represent
the study of memory access patterns and static analysis. The next four rows
represent studies that are focused on understanding of Intel micro-architectures.
Table 4 shows that MAPredict addresses the missing parts from both domains
to provide a unique framework.

8 Conclusion and Future Work

This research presents the MAPredict framework, which provides a prediction of
memory traffic for Intel processors. This study investigates the interplay between
an application’s memory access pattern and Intel micro-architectures’ cache hi-
erarchy. Based on the observation from Intel processors, an analytical model is



Title Suppressed Due to Excessive Length 17

derived that takes memory access patterns of an application, properties of a pro-
cessor, and choice of the compiler into consideration. MAPredict generates an
application model for a given application through compile-time analysis. The ap-
plication is combined with a target machine model to synthesize the appropriate
analytical model to predict LLC-DRAM traffic. Through experimentation with
benchmarks on processors from Intel Broadwell, Skylake, Cascade Lake, and
Cooper Lake micro-architectures, the analytical model’s validity is verified by
achieving average accuracy of 99% for streaming, 91% for strided, and 92% for
stencil patterns. MAPredict also facilitates providing hints in the source code to
capture dynamic information and randomness either from the application or ma-
chine to obtain better accuracy. By combining static and empirical approaches,
MAPredict achieved up to 97% average accuracy on different micro-architectures
for random access patterns. Future work will investigate MAPredict on AMD,
ARM, and IBM processors.

References

1. Top 500 supercomputers published at sc20. https://www.top500.org/.
2. C. Alappat, J. Hofmann, G. Hager, H. Fehske, A. Bishop, and G. Wellein. Under-

standing hpc benchmark performance on intel broadwell and cascade lake proces-
sors. arXiv preprint arXiv:2002.03344, 2020.

3. T. Allen and R. Ge. Characterizing power and performance of gpu memory access.
In Intl. Workshop on Energy Efficient Supercomputing (E2SC), pages 46–53, 2016.

4. C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, and S. Midkiff. Cetus: A source-
to-source compiler infrastructure for multicores. Computer, pages 36–42, 2009.

5. S. Hammond, C. Vaughan, and C. Hughes. Evaluating the intel skylake xeon
processor for hpc workloads. In International Conference on High Performance
Computing & Simulation (HPCS18), pages 342–349, 2018.

6. M. Hill and V. J. Reddi. Gables: A roofline model for mobile socs. In Intl. Sympo-
sium on High Performance Computer Architecture (HPCA), pages 317–330, 2019.

7. J. Hofmann, D. Fey, J. Eitzinger, G. Hager, and G. Wellein. Analysis of intel’s
haswell microarchitecture using the ecm model and microbenchmarks. In Intl.
Conference on Architecture of Computing Systems, pages 210–222. Springer, 2016.

8. J. Hofmann, G. Hager, G. Wellein, and D. Fey. An analysis of core-and chip-level
architectural features in four generations of intel server processors. In International
supercomputing conference, pages 294–314. Springer, 2017.

9. W. Jalby, D. Kuck, A. Malony, M. Masella, A. Mazouz, and M. Popov. The long
and winding road toward efficient high-performance computing. Proceedings of the
IEEE, 106(11):1985–2003, 2018.

10. I. Karlin. Lulesh programming model and performance ports overview. Technical
report, Lawrence Livermore National Lab.(LLNL), CA, United States), 2012.

11. Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible
dram simulator. IEEE Computer architecture letters, 15(1):45–49, 2015.

12. S. Lee, J. Meredith, and J. Vetter. Compass: A framework for automated perfor-
mance modeling and prediction. In 29th International Conference on Supercom-
puting (ICS15), pages 405–414, 2015.

13. S. Lee and J. S. Vetter. OpenARC: Open accelerator research compiler for
directive-based, efficient heterogeneous computing. In ACM Symposium on High-
Performance Parallel and Distributed Computing (HPDC), Vancouver, 2014. ACM.

https://www.top500.org/


18 No Author Given

14. M. Lopez, O. Hernandez, R. Budiardja, and J. Wells. Caascade: A system for static
analysis of hpc software application portfolios. In Programming and Performance
Visualization Tools, pages 90–104. Springer, 2017.

15. D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and Z. Matveev.
Performance analysis with cache-aware roofline model in intel advisor. In Intl.
Conference on High Performance Computing Simulation, pages 898–907, 2017.

16. J. D. McCalpin. Stream benchmarks, 2002.
17. D. Molka, D. Hackenberg, and R. Schöne. Main memory and cache performance of

intel sandy bridge and amd bulldozer. In Proceedings of the workshop on Memory
Systems Performance and Correctness, pages 1–10, 2014.

18. M.A.H. Monil, M. Belviranli, S. Lee, J. Vetter, and A. Malony. Mephesto: Modeling
energy-performancein heterogeneous socs and their trade-offs. In International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2020.

19. M.A.H. Monil, S. Lee, J. Vetter, and A. Malony. Understanding the impact of
memory access patterns in intel processors. 2020.

20. I. Peng, J. Vetter, S. Moore, and S. Lee. Tuyere: Enabling scalable memory work-
loads for system exploration. In International Symposium on High-Performance
Parallel and Distributed Computing, pages 180–191, 2018.

21. P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory
system simulator. IEEE computer architecture letters, 10(1):16–19, 2011.

22. S. Saini and R. Hood. Performance evaluation of intel broadwell nodes based
supercomputer using computational fluid dynamics and climate applications. In
2017 IEEE 19th International Conference on High Performance Computing and
Communications Workshops (HPCCWS), pages 58–65. IEEE, 2017.

23. S. Saini, R. Hood, J. Chang, and J. Baron. Performance evaluation of an in-
tel haswell-and ivy bridge-based supercomputer using scientific and engineering
applications. In 2016 IEEE 18th International Conference on High Performance
Computing and Communications (HPCC), pages 1196–1203. IEEE, 2016.

24. S. Shende and A. Malony. The tau parallel performance system. The International
Journal of High Performance Computing Applications, 20(2):287–311, 2006.

25. K. L. Spafford and J. S. Vetter. Aspen: A domain specific language for performance
modeling. In SC12: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, Salt Lake City, 2012.

26. D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance data
with papi-c. In Tools for High Performance Computing 2009, pages 157–173. 2010.

27. J. Tramm, A. Siegel, T. Islam, and M. Schulz. Xsbench-the development and
verification of a performance abstraction for monte carlo reactor analysis. The
Role of Reactor Physics toward a Sustainable Future (PHYSOR), 2014.

28. J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In 2010 39th International Conference
on Parallel Processing Workshops, pages 207–216. IEEE, 2010.

29. M. Umar, S. V. Moore, J. S. Meredith, J. S. Vetter, and K. W. Cameron. Aspen-
based performance and energy modeling frameworks. Journal of Parallel and Dis-
tributed Computing, 120:222–236, 2018.

30. S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65–
76, 2009.

31. L. Yu, D. Li, S. Mittal, and J. S. Vetter. Quantitatively modeling application
resiliency with the data vulnerability factor. ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC), 2014.


	 MAPredict: Static Analysis Driven Memory Access Prediction Framework for Modern CPUs 

