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Abstract—The cache hierarchy in modern CPUs and GPUs is
becoming complex. The introduction of additional complexities
by manufacturers makes understanding the handshake between
the memory access pattern and the cache hierarchy difficult.
Moreover, the details of different cache policies are not publicly
available. Therefore, the research community relies on observa-
tion to understand the relation between memory access patterns
and cache hierarchy. Our previous studies delved into different
micro-architectures of Intel CPUs. In this study, GPUs from
NVIDIA and AMD are taken into consideration. Even though
the execution models in CPUs and GPUs are distinct, this study
attempts to correlate the behavior of the cache hierarchy of
CPUs and GPUs. Using the knowledge gathered from Intel CPUs,
the similarities and dissimilarities between CPUs and GPUs
are identified. Through model evaluation, this study provides a
proof of concept that LLC-memory traffic can be predicted for
sequential streaming and strided access patterns on GPUs.

Index Terms—AMD; NVIDIA; Intel; GPU; Memory Access
Pattern

I. INTRODUCTION

After Dennard scaling [13] ended, heterogeneous systems
have become the go-to solution for modern high performance
computing (HPC) systems, and this trend is expected to
be continued in the future [23]. Heterogeneity meets the
diversified need of HPC users by hosting powerful CPUs and
GPUs in the same node. However, it increases the complex-
ity of programmability, hardware design, and the role of a
runtime system. From a hardware design perspective, latency-
focused CPUs are vastly different than throughput-focused
GPUs. Moreover, instruction set architectures, programming
models, and execution models are different. For this reason,
finding similarities and identifying dissimilarities among CPUs
and GPUs from different manufacturers can provide a better
understanding of the performance. Since memory access is one
of the critical parts of understanding performance, this study
focuses on understanding the traffic between the Last level
cache (LLC) and memory.

Cache hierarchy plays a significant role in deciding the
compute and memory intensity of a kernel [24]. Since the
traffic between LLC and memory is one of the slowest
transactions when a kernel is in execution, exploring when and
why an LLC-memory transaction takes place is essential to un-
derstand the performance on CPUs or GPUs [17]. Especially,
GPUs need to be studied because the intense race between
GPU manufacturers like NVIDIA and AMD to provide more
computation power is propelling the release of new and more
capable GPUs. For example, the most recent Ampere GPUs
(A100) from NVIDIA [3] is countered by AMD’s Instinct
GPU (MI100) [1], where both of them host more than 30 GB
of device memory (NVIDIA Ampere GPUs have more than

double device memory from the previous Volta GPUs). To
conquer the field of machine learning, both NVIDIA and AMD
GPUs now have tensor cores and matrix cores, respectively.
This competition is reflected in the large-scale supercomputers
as well. For example, Frontier, the first exascale machine from
Oak Ridge National Laboratory, will host AMD’s Instinct
GPUs, whereas Perlmutter, the NERSC supercomputer, hosts
NVIDIA A100 GPUs. For this reason, it is high time to look
closely to understand the impact of the memory hierarchies of
different generations of NVIDIA and AMD GPUs.

Applications from different domains exhibit various mem-
ory access patterns [20]. The interplay between memory access
patterns and the cache hierarchy needs to be explored to un-
derstand the role of the memory hierarchy. Generally, regular
access patterns are more benefited by the cache hierarchy than
irregular access patterns. For this reason, the design of the
cache hierarchy is influenced by the common memory access
patterns. Nowadays, all modern CPUs and GPUs employ
prefetchers to facilitate regular access patterns. For example,
sequential streaming access is mostly benefited by existing
hardware prefetchers. However, there are other regular access
patterns, such as strided and stencil access patterns [25].
Different access patterns need to be studied to understand and
realize the benefit of the cache hierarchy fully.

Since CPUs have existed much longer than GPUs, the
understanding in the research community is much higher for
CPUs than the comparatively newer GPUs. Even though previ-
ous studies investigated the impact of memory access patterns
in CPUs and GPUs, there have not been many studies that
compare the LLC-memory traffic patterns between CPUs and
GPUs [9], [18], [19]. Investigating similarities would provide
opportunities to apply similar optimization techniques. Also,
finding the dissimilarities would provide a better understanding
of the differences between CPUs and GPUs. Therefore, it is
essential to look for the similarities and dissimilarities between
CPUs and GPUs.

This study adopts an experimental evaluation approach to
explore and understand the impact of memory access patterns
on different GPUs from NVIDIA and AMD and tries to find
out the similarities and dissimilarities with Intel CPUs. Using
the two most common memory access patterns, sequential
streaming and strided access patterns, this study unveils the
factors that decide LLC-memory transactions. In summary, the
following contributions are reported.
• presenting the common factors in cache hierarchy that

trigger an LLC-memory transaction;
• strategies to measure LLC-memory traffic by using

NVIDIA’s Nsight Compute and AMD’s ROCm profiler;



• investigation and comparison of three NVIDIA GPUs,
P100, V100, and A100, with Intel CPUs for two memory
access patterns;
• investigation and comparison of three AMD GPUs, MI50,

MI60, and MI100, to explore similarities and dissimilar-
ities between Intel CPU and NVIDIA GPUs; and
• establishing a proof concept for predicting LLC-memory

traffic of NVIDIA and AMD GPUs.

II. BACKGROUND ON INTEL CPU

This section provides a background of the Intel Skylake
CPU, inspired by our previous study [18]. A vector multipli-
cation application that shows both sequential streaming (stride
= 1) and strided access pattern (stride > 1) is used. The number
of LLC-memory transactions is presented for different strides
(In this section, memory represents the system memory or
DRAM). LLC-memory transactions for the Skylake CPU are
measured using TAU [21] and PAPI [22]. Uncore counters
are measured from the integrated memory controller of the
Skylake CPUs [18]. These counters provide the count of LLC-
memory transactions in the unit of the cache line, which is 64
Bytes in Intel CPUs, Skylake processor in this case. For this
reason, total transactions are multiplied by 64 Bytes to calcu-
late the total bytes transferred between LLC and memory. The
findings demonstrated in this section also represent Cascade
Lake and Cooper Lake micro-architectures of Intel.

A. Application and a lower bound of LLC-memory traffic

The vector multiplication application used to measure LLC-
memory traffic has a separate vecMul function to perform the
multiplication. Only the vecMul function’s memory access is
measured, leaving out the memory transfers while initializing
the arrays and error checking. For every array index, two
reads and one write take place in this function. All the graphs
presented in this section show the LLC-memory bytes for
array size of 100 Million 32 bit floating-points. Therefore, two
read operations operate on 800 MBytes of data, and one write
operation operates on a total of 400 MBytes of data. At least
1200 MBytes must be transferred between LLC and memory
for the vecMul function (when stride is 1), providing the
lower bound of LLC-memory traffic. To observe the impact of
sequential streaming and strided memory access patterns, the
stride of vecMul is varied from 1 to 8192. The memory traffic
is plotted against the stride of vecMul. The main observations
are presented in Fig. 1, 2, and 3.

B. Impact of initialization of the write array for stride of 1

To find out the impact of initialization, the write array of
vecMul is only allocated (malloc) but not initialized with any
values. For this case, the read and write traffic is shown in
black lines in Fig. 1. The read and write traffic for stride of
1 is close to the lower bound, 800 MBytes and 400 MBytes,
respectively. Since many applications have the write arrays
with some values, the write array is initialized with random
values to observe the changes. The blue lines in Fig. 1 show
the read traffic for stride 1 is 1200 MBytes (instead of 800

Figure 1: Read and write traffic for vector multiplication in
Skylake processors when the write array is initialized and non-
initialized.

MBytes). However, the write traffic is 400 MBytes that follows
the lower bound. The extra read traffic is incurring because
Intel implements “allocating store” where a cache line is
brought to cache from memory while performing a store. For
this reason, the read traffic is three times the write traffic even
though the actual read operations are twice as much as write
operations.

C. Impact of the cache line size for strides greater than 1

The impact of the cache line size is visible in Fig. 1 for
strides larger than 1. The LLC-memory traffic for the read
traffic for initialized and non-initialized cases are portrayed by
blue and black lines in Fig. 1. Even though stride is doubled
(X-axis), traffic is the same until stride 16. This is because
the vecMul function operates on 32 bit floating-point data,
and stride 16 equals the cache line length, which is 64 Bytes.
Every time one array element is read, the entire cache line is
transferred between LLC and memory. For this reason, traffic
is the same until stride 16 and then reduces by half when the
stride is doubled. The same is observed for the write traffic for
the initialized case where write traffic is the same until stride
16 and then reduces by half. However, for the non-initialized
case, the impact of the cache line is not visible because
of “page-zeroing”, which takes place in Intel processors to
prevent information leakage. The Intel processor and the Linux
operating system used for this experiment support “transparent
huge pages” of 2 MBytes and 1 GBytes instead of default 4
KBytes pages. For this reason, the whole 2 MBytes pages are
written for “page-zeroing”, and the impact of the cache line
is not visible (detail in [18]).

D. Prefetchers

The impact of enabling and disabling the prefetchers is
shown in Fig. 2. Each core of Intel Skylake micro-architecture
has four hardware prefetchers where two of which are L2
prefetchers. These prefetchers bring additional cache lines to
cache to ensure better performance. Prefetchers only impact
the read traffic. Read traffic is shown in Fig. 2 when prefetch-
ers are enabled and disabled. Until stride 16, there is no
visible difference; however, this is the region where prefetchers
provide the most benefit since data is already made available



Figure 2: Read and write traffic when the prefetchers are
disabled and enabled.

in the cache for faster computation. The main difference is
observed after stride of 16. Extra read traffic is observed from
stride 16 to stride 128 when prefetchers are enabled. This is
because the prefetching algorithm still triggers the prefetching
operation even when there could be a little benefit since the
stride size is much larger. However, after a particular stride,
the prefetching and no prefetching cases are the same, which
indicates that Intel prefetching algorithm allows prefetching
up to a specific stride size.

E. Compiler

The impact of using different compilers is shown in Fig. 3.
GNU and Intel compilers are compared. The only difference
is observed when the stride size is 1. The Intel compiler
shows the read traffic the same as the lower bound for the
read traffic. Intel implements “streaming store” instead of
“allocating store” for stride of 1. Intel compiler implements
“streaming store” by default and can be turned off by using
a compiler flag. However, the GNU compiler does not imple-
ment this feature by default. When “streaming store” is used,
Intel processors use a write combining buffer to perform the
store operation instead of fetching the cache line from memory.
For this reason, the read traffic reduces for stride 1.

Figure 3: Read and write traffic comparison for Intel and GNU
compilers.

III. METHODOLOGIES FOR GPU ACCESS INVESTIGATION

This section provides the methodologies to investigate LLC-
memory traffic for sequential streaming and strided access
patterns in NVIDIA and AMD GPUs. In this section, memory
represents the device memory of the GPUs. At first, detailed
hardware information of the NVIDIA and AMD GPUs used
in this study is presented. Then, the application that exhibits
sequential streaming and strided access patterns is presented
(i.e., the strided vecMul function for GPUs). Finally, the
strategies to measure the LLC-memory traffic for different
NVIDIA and AMD GPUs are discussed.

A. NVIDIA and AMD GPUs

NVIDIA and AMD have been releasing different GPGPUs
for more than a decade. With the rejuvenation of machine
learning, GPUs are getting even more attention. For this
reason, there is an intense race between manufacturers to
provide better performance for diverse workloads. The recent
NVIDIA and AMD GPUs host tensor/matrix cores capable
of performing fused matrix multiply and accumulate oper-
ations to facilitate machine learning workloads. This study
considers three recent GPUs from both NVIDIA and AMD.

Table I: NVIDIA and AMD GPUs.

Item NVIDIA Tesla GPUs AMD Radeon GPUs
name Pascal: P100 Volta: V100 Ampere: A100 Instinct: MI50 Instinct: MI60 Instinct: MI100

Release year 2016 2017 2020 2018 2018 2020
Architecture Pascal Volta Ampere GCN 5.1 GCN 5.1 CDNA 1.0

Number of SMs/CUs 56 80 108 60 64 120
Number of Cores 3584 5120 6912 3840 4096 7680

Peak performance FP32 (float) 13.41 TFLOPS 14.13 TFLOPS 19.49 TFLOPS 13.41 TFLOPS 14.75 TFLOPS 23.07 TFLOPS
Peak performance FP64 (double) 6.705 TFLOPS 7.066 TFLOPS 9.746 TFLOPS 6.705 TFLOPS 7.373 TFLOPS 11.54 TFLOPS

Tensor/Matrix cores No Yes (640) Yes (432) No No Yes (each CU)
Device memory size 16 GB HBM2 16 GB HBM2 40 GB HBM2e 16 GB HBM2 32 GB HBM2 32 GB HBM

Memory Bus 4096 bit 4096 bit 5120 bit 4096 bit 4096 bit 4096 bit
Bandwidth 732.2 GB/s 900 GB/s 1555 GB/s 1,024 GB/s 1,024 GB/s 1,229 GB/s

L1 cache per SM/CU 24 KB 128 KB 192 KB 16 KB 16 KB 16 KB
L2 cache size 4 MB 6 MB 40 MB 4 MB 4 MB 8 MB

Cache line size 32 Bytes 32 Bytes 32 Bytes 64 Bytes 64 Bytes 64 Bytes
Warp/Wavefront size 32 threads 32 threads 32 threads 64 threads 64 threads 64 threads

Compiler nvcc nvcc nvcc hipcc hipcc hipcc
Profiler nvprof nvprof Nsight compute rocprof rocprof rocprof

Software stack Cuda-11.0 Cuda-11.2 Cuda-11.2 rocm-3.9.0 rocm-4.3.0 rocm-4.3.0
Machine name Oswald01 Leconte Illyad Gilgamesh Explorer Cousteau

Facility ExCL ExCL OACISS OACISS ExCL ExCL



Table I shows an overview of the hardware information of
three NVIDIA Tesla and AMD Radeon GPUs, where the
most recent are the A100 from NVIDIA and MI100 from
AMD [1]–[6]. The machines used in this study are part of
ORNL Experimental Computing Laboratory (ExCL) [8] and
Oregon Advanced Computing Institute for Science and Society
(OACISS) [7].

Figure 4: A simplistic representation of execution on CPU
and GPU for strided access. Here, two threads are considered
for CPU. For GPU only two threads per warp/wavefront is
considered to show the difference (hypothetical). However, the
warp/wavefront sizes are 32 and 64 threads in NVIDIA and
AMD GPUs.

B. Strided vector multiplication for CUDA and ROCm

To investigate sequential streaming and strided access pat-
terns, the vector multiplication application used for the CPU
study [18] is modified for CUDA and ROCm platform. The
basic difference between multi-threaded CPU code and GPU
code is presented in Fig. 4. Programming model, such as
OpenMP, divides a data structure among the available threads
in a CPU where each thread continuously (based on stride size)
executes the array indices. Multi-threaded execution for two
threads is shown in Fig. 4. However, GPU decomposes the
total computation in blocks consumed by warps/wavefronts
in SM/CU. For this reason, blocks are usually chosen to
be multiple of warp/wavefront size. Each warp/wavefront
employs 32 (NVIDIA) and 64 (AMD) threads for computation.

To make the comparison more straightforward, the GPU
execution shown in Fig. 4 displays a hypothetical situation
where each warp has only two threads. So, the computation
is done by hardware threads in a multi-threaded execution in
CPUs (considering OpenMP) where the same thread processes
the neighboring elements, which increases cache locality. On
the other hand, warps/wavefronts consume thread blocks in
GPU where different threads access adjacent data (depending
on stride size). Because warps/wavefronts are scheduled in
SM/CU, having the same warp threads working on neighbor-
ing data provides the best cache locality and can take advan-
tage of memory coalescing in the L1 cache. For this reason,

the vector multiplication application is modified in such a way
so that neighboring threads in a warp/wavefront execute the
adjacent elements (a standard practice [9]). Since this study
focuses on the LLC-memory (L2-Global memory for GPUs),
the impact on shared memory at L1 is not considered.

The modified CUDA code is shown in Listing 1 where
neighboring threads execute neighboring elements for various
strides. However, when the stride is 1, vecMul exhibits a
standard sequential stream access pattern like the STREAM
benchmark [16]. Note that only the vectors read by vecMul
are allocated and initialized before transferring to the device
(h a and h b). The write array is only allocated. While
measuring the traffic, only vecMul function is considered.
The hipify tool from the ROCm software stack is used to
convert the CUDA code to HIP code. Since this is a small
piece of code, the conversion using hipify compiled without
any error. For this study, nvcc (cuda-11.0) and hipcc (rocm-
3.9.0 and rocm-4.3.0) compilers are used.

1 __global__ void vecMul(float *a, float *b, float *c,
int n, int stride){

2 // Get our global thread ID
3 int id = blockIdx.x * blockDim.x + threadIdx.x;
4 // Ensuring strided access and boundary checking
5 if (id*stride < n)
6 c[id*stride] = a[id*stride] * b[id*stride];
7 }
8

9 int main( int argc, char* argv[] ){
10 int n = 100000000;
11 // host and device data structures
12 float *h_a, *h_b, *h_c, *d_a, *d_b, *d_c;
13 size_t total_size = n*sizeof(float);
14 // Allocate the vectors in the host
15 h_a, h_b, h_c = allocate_host(total_size);
16 // Initialize a and b vectors int the host
17 for( int i = 0; i < n; i++ ) {
18 h_a[i] = sin(i); h_b[i] = cos(i);
19 }
20 // Allocate the vectors in the device
21 d_a, d_b, d_c = allocate_device(total_size);
22 // Initiate host to device synchronous transfer
23 copy_to_device(h_a, d_a, h_b, d_b)
24

25 Start_memory_counters(); // done automatically
by profiler

26 vecMul<<<gridSize, blockSize>>>(d_a, d_b, d_c, n
, stride);

27 Stop_memory_counters(); // done automatically by
profiler

28

29 // Initiate device to host synchronous transfer
30 copy_from_device(h_c, d_c);
31 // free host and device memory
32 free(h_a, h_b, h_c, d_a, d_b, d_c);
33 }

Listing 1: Strided vector multiplication in CUDA (this is not
the exact code.)

C. Measuring LLC-memory traffic in GPUs

LLC-memory traffic is measured for the GPUs listed in
Table I to investigate the impact of memory access patterns.
NVIDIA’s CUDA software stack provides nvprof , and Nsight
Compute (ncu) for profiling GPU kernels. AMD’s ROCm
software stack provides ROCm profiler (rocprof ) for the same



purpose for AMD GPUs. These tools are used in this study to
gather LLC-memory traffic for the strided vecMul function.

1) Using nvprof and ncu for NVIDIA GPUs: Profiling
tool nvprof provides the functionality to measure hardware
metrics for GPU kernels (vecMul in this case). Unlike
Intel CPU, where uncore counters are read from the inte-
grated memory controller, nvprof provides a direct metric
for LLC-memory byte transfer. The name of the metrics
are dram read bytes and dram write bytes. Here, dram
indicates the device memory. These metrics are specified in
the command line while the executable is attached to the
nvprof . In some cases, the kernels are replayed multiple times
to provide accurate LLC-memory bytes transferred. LLC-
memory traffic for P100 and V100 is measured using nvprof .
However, the support for nvprof is discontinued for CUDA
Compute Capability 8.0 and onward. For this reason, Nsight
Compute (ncu) has been used for A100 where the metric
names are dram bytes read and dram bytes write (one
extra underline in the counter name).

2) Using rocprof for AMD GPUs: AMD’s ROCm profiler
(rocprof ) is used in this study to measure LLC-memory
traffic for MI50, MI60, and MI100 GPUs. Like nvprof ,
the rocprof command-line tool can measure basic hardware
counters and derived metrics. Unlike nvprof , counters/metrics
are specified in a file provided in the command line along with
the executable. The value of the hardware counters/metrics is
then generated and stored in a CSV file. Two derived metrics
represent the LLC-memory traffic for AMD Instinct GPUs;
they are FETCH SIZE and WRITE SIZE. These met-
rics provide the traffic in the unit of KiB, which is converted
to MBytes for an even comparison.

3) Scripts for data collection: To gather the data seam-
lessly, scripts are prepared both for NVIDIA and AMD GPUs
to execute and collect the LLC-memory traffic. These scripts
vary the stride size and collect the traffic, which is then plotted
for analysis.

IV. UNDERSTANDING NVIDIA AND AMD GPUS

This section explores the similarities and dissimilarities
of LLC-memory traffic between Intel CPU and GPUs from
NVIDIA and AMD. LLC-memory traffic gathered from GPUs
by following the methodologies presented in §III are compared
to that of CPUs shown in §II. At first, three NVIDIA GPUs are
investigated, followed by an exploration of AMD GPUs. All
the graphs presented in this section have stride as X-axis and
read/write traffic in MBytes in Y-axis. Through investigation,
some key observations and hypotheses are formulated.

A. LLC-memory traffic of NVIDIA GPUs

Three NVIDIA GPUs from Pascal (P100), Volta (V100),
and Ampere (A100) architectures are investigated.

1) Similarities between P100 GPU with Skylake CPUs:
LLC-memory traffic for strided vecMul on P100 is presented
in Fig. 5. The blue lines represent the data for P100. When
plotted, the traffic trend of P100 is found to be very sim-
ilar to the CPU when the write data structure is initialized

Figure 5: Read and write traffic for P100 GPU. Traffic of
P100 follows similar trend of Skylake CPUs when write data
structure is initialized and Intel compiler is used.

and compiled using the Intel compiler. It is noteworthy that
vecMul for GPU does not have the write array initialized.
Even though the write array is uninitialized, P100 shows a
similar trend as CPU with allocating store. The CPU traffic
is presented using green lines (the same data from Fig. 3).
The main difference observed, in this case, is for the stride of
8 and 16. This difference is because of the cache line sizes
in NVIDIA GPU (32 Bytes) and Intel CPUs (64 Bytes). The
following observations can be made from Fig. 5.

Observation-1 Like Intel compiler, nvcc compiler imple-
ments streaming-store operation when stride is 1.

Observation-2 NVIDIA GPU performs allocating store
even when the data structure is not initialized.

Observation-3 The write traffic of NVIDIA GPU is the
same as the write traffic for the initialized case of the Skylake
processors.

Figure 6: Read and write traffic for all GPUs

2) Similarities between P100, V100, and A100: Traffic
from all NVIDIA GPUs are shown in Fig. 6. It is visible
that the write traffic for all the GPUs is the same. Moreover,
all the GPUs implement streaming store and allocating store.
Therefore, observations 1, 2, and 3 are also applicable for
V100 and A100 by following the transitive property. For
both read and write traffic, V100 and A100 show little to
no difference. The main difference between P100 and later
GPUs is observed for the read traffic when the stride size is
larger than the cache line size (stride of 8). On average, the
read traffic in V100 and A100 is 1.6× higher than that of



P100. When the stride size is larger than the cache line size,
the difference between P100 and A100 (also V100) shows
a striking similarity to the prefetching enabled and disabled
cases for Intel CPUs presented in Fig. 2. This difference
suggests that there has been a major change in the prefetchers
of Volta architecture and onward. Therefore, the following
observation and hypothesis can be made.

Observation-4 When the stride size is larger than the cache
line on V100 and A100 GPUs, the read traffic shows a similar
pattern of prefetching-enabled Skylake processor. Traffic is
about 1.6× higher than P100 and prefetching-disabled Skylake
processor.

Hypothesis-1 From Volta architecture and onward, NVIDIA
GPUs implement Intel CPU-like prefetching mechanism.

Figure 7: A tailored comparison between GPUs and CPU

3) A tailored graph to realize the similarities: A hypo-
thetical scenario is considered where the cache line size of
Skylake CPU is 32 Bytes instead of 64 Bytes to demonstrate
the similarities between Intel CPU and NVIDIA GPUs. Even
though the consideration is hypothetical, the data presented in
Fig. 7 are actual data. To prepare Fig. 7, the read and write
traffic for stride 16 is removed only for CPU and shifted left
for all the strides greater than 16. This conversion shows the
CPU data for a 32 Byte cache line because one read or write
would fetch/store 32 Bytes instead of 64 Bytes for one access.
The highest stride shown in Fig. 7 is 4096 instead of 8192.
After this conversion, the write traffic for all GPUs and CPU
shows a similar data and trend. The similarity is observed
between the read traffic for P100 and CPU with prefetching
disabled (overlapped blue and black lines in Fig. 7 for the read
traffic).

All GPUs and CPU in Fig. 7 show similar data for the read
traffic until stride of 8. A100 (V100 as well) and prefetching-
enabled CPU show the same trend after stride size of 8
(denoted by green and red lines in Fig. 7). However, there
is no overlap between the green and red lines, and the CPU
reports higher read traffic than the A100 GPUs till stride 64,
then the opposite is observed. The CPU keeps prefetching
until the stride of 80 (not shown in the figure and determined
experimentally). On the contrary, GPU keeps prefetching even
for higher strides where there should not be any benefit for
such action since the memory accesses are more than four
cache lines apart. In summary, it can be said that there are

more similarities than dissimilarities. Therefore, the following
hypothesis can be formulated.

Hypothesis-2 Model prepared to predict LLC-memory traf-
fic for sequential streaming and strided access pattern for an
Intel Skylake CPU with a cache line size of 32 Bytes can be
customized to predict LLC-memory traffic for NVIDIA GPUs.

B. LLC-memory traffic of AMD GPUs
In contrast to NVIDIA GPUs, AMD GPUs considered in

this study are comparatively newer. MI50 and MI60 instinct
GPUs have the same GCN 5.1 architecture, whereas MI100
adopts CDNA 1.0 architecture. Since these GPUs are released
within two years, a high similarity is expected.

Figure 8: Read and write traffic for MI50 GPU. A comparison
with Intel Skylake CPU.

1) Similarities between MI50 GPU with Skylake CPU:
The LLC-memory traffic for MI50 is shown in Fig. 8. The
read and write traffic for stride one is very close to the
theoretical lower bound. The read traffic in Fig. 8 for MI50
is found to be following the same trend as the Skylake CPU
when the data structure is not initialized (shown initially at
Fig. 1). The vecMul function for GPU does not have the
write array initialized; so, unlike NVIDIA GPUs, MI50 does
not implement allocating store, which is more appropriate for
this function because there is no value in the write array and
bringing the cacheline from memory is unnecessary.

Observation-5 AMD GPUs do not implement allocating
store for uninitialized write array.

Even though the read traffic shows similarity with the non-
initialized case, the write traffic in Fig. 8 shows the same trend
as the write traffic for the initialized case. Hence, it proves that
page zeroing like CPU is not occurring even though the write
array is not initialized.

The most interesting observation in Fig. 8 is that a drop
is observed for the read traffic when the stride is 16 but for
the write when the stride is eight. This difference suggests
that the cache line length is 64 Bytes for the read transactions
and 32 Bytes for the write transactions. Such a scenario is
not observed in Intel CPUs or NVIDIA GPUs. To confirm
the cache line length, rocminfo command is used in all the
AMD GPUs where the cache line length is shown to be 64
Bytes. The write traffic dropping from stride of 8 instead of
16 even though the cache line length is 64 Bytes needs to be
investigated.



To investigate this anomaly, the detail of the metric used
to measure the write traffic is explored. The formula of the
metric is WRITE SIZE = (TCC MC WRREQ sum ∗
32)/1024 (this formula is found from the metrics.xml file
inside the rocprofiler directory of ROCm software stack).
The explanation for this metric is the following, “The
total kilobytes fetched from the video memory. This is
measured with all extra fetches and any cache or mem-
ory effects taken into account.” For further investigation,
TCC MC WRREQ sum metric is explored where the
formula is sum(TCC MC WRREQ, 16). The description
of the metric is “Number of 32-byte transactions going over
the TC MC wrreq interface. Sum over TCC instances.”
Therefore, this description confirms that AMD GPUs perform
32 Byte transactions for write traffic, and the write traffic in
AMD GPUs follows the same trend as NVIDIA GPUs.

Observation-6 AMD GPUs show 64 Byte LLC-memory
transactions for read and 32 Byte transactions for write traffic.

Figure 9: Read and write traffic for all AMD GPUs

2) Similarities between MI50, MI60, and MI100: The LLC-
memory traffic for MI50, MI60, and MI100 are shown in
Fig. 9. All the AMD GPUs show similar trends and data.
Therefore, observations 4 and 5 apply to all the AMD GPUs
(following the transitive property). So, the following hypoth-
esis can be made.

Hypothesis-3 Because there are many similarities, a model
prepared to predict LLC-memory traffic for sequential stream-
ing and strided access patterns for an Intel Skylake CPU can be
customized to predict LLC-memory traffic for AMD Instinct
GPUs.

C. Comparison of the profiling tools

This study found that NVIDIA’s ncu tool provides more
hardware counters and metrics for GPU execution when
compared to the rocprof . However, the detailed formula
behind a metric can be found in rocprof , which is helpful
to investigate further. Moreover, rocprof provides the facility
to write custom-derived metrics. From an accuracy standpoint,
both ncu and rocprof provided a reasonably accurate traffic
count close to the theoretical traffic count for lower strides.
Unfortunately, this is not the case for CPUs. Our previous
study observed some extra traffic while measuring CPUs. One
common problem found for all the cases is that when the
number of accesses is low (i.e., higher strides), the traffic

count is not accurate compared to the theoretical traffic. This
study suspects that the inaccuracies in higher strides come
from having low memory access and a smaller lifespan of
an application. A smaller lifetime of the application makes
pinpointing the memory traffic of a function difficult for the
profiler. While modeling and comparing accuracy, this fact
needs to be taken into consideration.

D. Discussion about the hypotheses

Three hypotheses are formulated in this study. To prove
Hypothesis-1, one would need to study the details of the
changes in the prefetching algorithm from Pascal to Volta
architecture of NVIDIA. However, hypotheses 2 and 3 can
be verified by preparing a prediction model.

V. EXPERIMENT AND PREDICTION: A PROOF OF CONCEPT

In this section, a prediction model is formulated to test
hypotheses 2 and 3. The model is evaluated for different input
sizes for the vecMul function in the NVIDIA and AMD
GPUs. In §II and §IV the input size used is 100M 32 bit
floating-point data. However, input sizes of 50M and 200M
32 bit floating-point data are evaluated in this section. The
predicted and measured total traffic are compared to find
out the prediction error. Relative accuracy is considered to
determine the error, where error = Absolute[(measured −
predicted)/measured ∗ 100], and the formula for accuracy
is accuracy = [100 − error]. While experimenting, it is
observed that NVIDIA Nsight Compute does not generate data
for smaller data sizes with less computation (also explained
in §IV-C). For this reason, strides considered in this evaluation
are from 1 to 1024.

A. Prediction model for NVIDIA GPUs

The prediction strategy for NVIDIA GPUs are presented
in Table II. Table II incorporates the observations 1-4 that
are reported in §IV. Here, “stream” stands for the calculated
theoretical traffic for one data structure. For example, for a
100M 32 bit floating-point data structure size, stream = 400
MBytes. To reference the cell above, “prev” is used.

Table II: Prediction for NVIDIA GPUs.

Stride Read P100 Read V100/A100 Write for all
1 stream * 2 stream * 2 stream
2 stream * 3 stream * 3 stream
4 stream * 3 stream * 3 stream
8 stream * 3 stream * 3 stream

16 prev/2 prev/2 * 1.6 prev/2
32 prev/2 prev/2 prev/2
64 prev/2 prev/2 prev/2
128 prev/2 prev/2 prev/2
256 prev/2 prev/2 prev/2
512 prev/2 prev/2 prev/2

1,024 prev/2 prev/2 prev/2

B. Prediction accuracy for NVIDIA GPUs

The strength of the model presented in Table II is depicted
in Fig. 10. For the input size of 50M, high average accuracy is
observed for NVIDIA GPUs (P100 showed 97.3% accuracy,



(a) Prediction accuracy for input size of 50M. (b) Prediction accuracy for input size of 200M.

Figure 10: Prediction accuracy for NVIDIA GPUs for different input sizes.

(a) Prediction accuracy for input size of 50M. (b) Prediction accuracy for input size of 200M.

Figure 11: Prediction accuracy for AMD GPUs for different input sizes.

V100 showed 92.6% accuracy, and A100 showed 93.4%
accuracy). However, it is visible that with higher strides,
the error increases. When the 200M input size is used, the
average accuracy increased (P100 showed 98.8% accuracy,
V100 96.4% accuracy, and A100 showed 97.9% accuracy).
This increased accuracy for larger data sizes confirms that the
profiler cannot report exact memory traffic for application with
short life span which operates on smaller data sizes. Another
observation can be made from Fig. 10b. From stride 16 and
onward, V100 and A100 report a higher error. This inaccuracy
stems from using a factor of 1.6× to capture the impact
of the prefetchers in the newer NVIDIA GPUs. Therefore,
more understanding of the prefetchers of NVIDIA GPUs is
needed to improve the model’s accuracy. However, Fig. 10b
still provides more than 88% accuracy for all the cases.

C. Prediction model for AMD GPUs

The prediction strategy for AMD GPUs is presented in
Table III. Table III incorporates the observations 5 and 6 that
are reported in §IV. Since all the AMD GPUs in this study
follows a similar pattern, the same model is used for all.

D. Prediction accuracy for AMD GPUs

The error of the model presented in Table III is presented
in Fig. 11. AMD GPUs provided higher accuracy than the
NVIDIA GPUs. For the input size of 50M, higher average
accuracy is observed for AMD GPUs (MI50 showed 99.98%

Table III: Prediction for AMD GPUs.

Stride Read for all Write for all
1 stream * 2 stream
2 stream * 2 stream
4 stream * 2 stream
8 stream * 2 stream
16 stream * 2 prev/2
32 prev/2 prev/2
64 prev/2 prev/2

128 prev/2 prev/2
256 prev/2 prev/2
512 prev/2 prev/2

1,024 prev/2 prev/2

accuracy, MI60 showed 99.5% accuracy, and MI100 99.6%
accuracy). Even higher inaccuracies are observed 200M input
size (MI50 showed 99.9% accuracy, MI60 showed 99.6%
accuracy, and MI100 99.7% accuracy). For both input sizes,
error increased for higher strides; however, all strides provided
more than 97% accuracy.

E. Discussion

The seemingly simplistic model generated higher accuracy
than the CPU prediction model presented in our previous
study [18]. Sequential streaming and strided memory access
patterns are common in large applications. Model for other
access patterns, such as stencil, can be derived from using
these two patterns. Therefore, proof of concept for these two



patterns opens the door for predicting LLC-memory traffic for
larger applications.

VI. RELATED WORKS

Memory access patterns play an important role in deciding
the performance of an application running on GPUs [19]. Two
studies delved into sequential streaming and strided access
patterns. Allen et al. investigated the impact of memory access
patterns on power and performance on GPUs [9]. Their focus
was to understand the impact on attained bandwidth and
average power. Ding et al. proposed instruction Roofline model
for GPUs [14]. Even though the study focuses on different
instructions, the authors looked into the impact of sequential
streaming and strided memory access patterns to define the
theoretical upper bound. Unlike these studies, we effort to
understand the memory transactions that take place between
LLC and memory. Other studies also focused on understanding
the impact of memory accesses on performance and power on
GPU [12], [15]. Ben-Nun et al. investigated different mem-
ory access patterns for multi-GPU scenario [10]. The main
objective of their work was to provide task partitioning and
device-level optimization for a multi-GPU environment. Our
study considered regular access patterns with no possibility of
bank conflict at the shared memory for a warp/wavefront. This
is the best case for performance. However, multiple threads in
a warp can access the same bank for irregular application,
causing bank conflict that impacts performance. Burtscher et
al. investigated such irregular applications on GPUs [11].

Our study differs from these studies because the main
objective of our investigation is to separate the LLC-memory
traffic from other observations such as execution time, attained
bandwidth, or energy consumption. This separation allows us
to find the apparent similarities between CPUs and GPUs.

VII. CONCLUSION AND FUTURE WORK

This study investigates the impact of sequential streaming
and strided memory access patterns on different NVIDIA and
AMD GPUs. By presenting the observation on Intel Skylake
CPU, this study attempts to identify the similarities and dis-
similarities in LLC-memory traffic on different generations of
NVIDIA and AMD GPUs. Through investigations, some key
observations and hypotheses are made. Models are prepared by
incorporating those key observations. Experimental evaluation
shows that the LLC-memory traffic can be predicted for
different memory access patterns. Studying large applications
with complex memory access patterns and investigating Intel
GPUs are in the future plan.
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