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ABSTRACT

Typical approaches to classify scenes from light convert the light field to electrons to perform the
computation in the digital electronic domain. This conversion and downstream computational
analysis require significant power and time. Diffractive neural networks have recently emerged as
unique systems to classify optical fields at lower energy and high speeds. Previous work has shown
that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In
analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would
provide better performance, but the fundamental reasons for the potential improvement have not
been established. In this work, we present extensive computational simulations of two-layer
diffractive neural networks and show that they can achieve high performance with fewer diffractive
features than single layer systems.
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Figure 1. Geometry of the free-space diffractive neural network. (Left) The source light field
propagates to a material consisting of subwavelength apertures. Each aperture is partially
filled with a dielectric material, as shown in cross-section. Secondary waves are emitted

from each aperture, with a phase ¢, determined by the thickness of the dielectric material

in aperture k. (Right) The source light is constructed from the 28x28 pixels of the dataset,
as illustrated with the handwritten number 5. The material is of side length L and aperture
spacing d on a square array. The different dielectric thicknesses for each aperture are
illustrated with colorized circles to facilitate visualization. The detector plane has ten
detectors, with one detector in the middle and the other nine arranged in a circle of radius

Figure 2. Testing accuracy for MNIST as a function of the total number of apertures for single
layer and two-layer systems. The data points for the single layer system are the best
optimized results previously obtained from our simulations. The data points in orange for
the two-layer system are all the data points obtained for different values of the separation
between the planes and the last plane and the detector plane. The blue data points are the
best results for the tWo-1ayer SYStEIM..........cccoviiieiririiieireee et 11
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ACRONYMS AND TERMS

Acronym/Term

Definition

DNN

Diffractive Neural Network




1. INTRODUCTION

Identifying features in a scene from their emitted or reflected light is at the core of many applications such as
autonomous driving, feature recognition, and imaging. Usually this is accomplished by analyzing digital images
captured by photodetectors with high-end algorithms running on electronic computers. An alternative approach has
recently emerged whereby passive optical materials that diffract free-space optical fields act as neural networks and
perform neuromorphic inference[1-3] without relying on computation in the electronic domain. This all-optical
approach has potential for significant improvements in speed and energy consumption by taking advantage of the
physics of light propagation. Hybrid approaches have also been explored where free-space optical front ends are
integrated with electronic neural networks [4, 5] such that the optical material replaces some part of the neural network,
most commonly the convolution layer.

Recently, we presented detailed studies of single-layer diffractive neural networks (DDNs) and established the
conditions under which high performance can be achieved through optimization. However, it is well-known that
electronic neural networks benefit from depth, i.e. multiple successive layers process the information to perform
classification. Initial work in DNNSs indicated that multiple layers performed significantly better than a single layer,
but later research has since demonstrated that single layers can also achieve high performance. Thus, there is an open
question as to whether DNNs benefit from depth, and if so in what manner. This is particularly true given that in
electronic neural networks depth is usually accompanied with nonlinearity at each layer, a feature that is not present
in standard DNNs.

In this manuscript we present extensive numerical simulations of two-layer DNNs and show that they can achieve
high performance with fewer diffractive features than a single layer. We also show that co-design is essential to
achieve high performance through co-optimization of materials, architecture, and algorithms.



2. SYSTEM AND MODELING APPROACH

The optical classification system is illustrated in Fig.1. An incoming coherent light field of wavelength A impinges on
two metamaterials (labelled i =1,2) of size L, x L, consisting of N; apertures arranged in a square grid (aperture
spacing d so that L, = \/;l d ). Light transmission occurs only through the apertures, labelled & =1,..., N; and located
at 7 = (xk -2 ) . Each aperture is filled with a material of refractive index » and thickness #,, so that the transmitted
light acquires a phase ¢, =2znt,_/ A as it transmits through the aperture. The source plane is located at a distance H
from the first material plane, the two material planes are separated by /  while the detector plane is separated from
the last material plane by H_ . In this work we consider aperture diameters less than the wavelength such that the input
light intensity is uniform across the aperture.

The input light field is constructed from the individual digital images of the MNIST dataset. Each digital image

consistsof N, x N =28x28 greyscale pixels which we label with the indices m,n and positions 7 = (ma, na,—H,, )

where a is the width of the pixel (see Fig. 1). Throughout this manuscript we set N a = L, i.e. the input light fills the
first material fully. We construct a continuous monochromatic light field of wavelength A from the digital images, by
considering each pixel of the digital image as a point source of intensity /, and propagating the light from each pixel

as a spherical wave to the material plane.

The amplitude of the input electric field from any given pixel m,n at an aperture in the first material layer is

E"(7)= \/7 [(x ~ma) +(y, —na) +H :' and the amplitude of the output field after the first layer is given by
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This equation for the far field is appropriate when the detector plane is several wavelengths from the material plane.
(As discussed below, we also use it for closer separations to illustrate the general behavior of the system). In addition,
Eq. (1) assumes that the input light field £™ (Fkl) is uniform across the aperture; this requires that the aperture
diameter be less than the wavelength.

Light from the apertures of the first layer described by Eq. (1) propagates to the second layer and serves as the input
for the apertures in that layer; the output field after the second layer is
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Since the light is coherent, the total time-averaged output intensity at detector p is [/ » = . To

22 E(7)

k  mn

identify objects from the light field we first consider the case of M output photodetectors, each corresponding to one
of the M classes. The detectors are distributed in a circular pattern on a plane, as illustrated in Fig. 1, with 7 " denoting

the position of detector p, with p = 0,...9. We chose the digit “0” (item 1 for Fashion) for the center detector and
evenly distributed the remaining nine detectors around the circle. Other arrangements are also possible. For example,
previous work has considered square distributions[1, 6, 7], and it might be possible to reduce the number of detectors
using a combinatorial detection scheme. Further work is needed to determine the optimal detector configuration. The
detector pattern radius chosen here was previously shown to be optimal for a single layer[8].



The approach is to learn the phases ¢, such that the intensity on detector p is maximal when the incoming light field

contains an object corresponding to class p. This is done by minimizing the cross-entropy cost function

1
C=-—Y log| — 3)

where the sum is over the N training images, and the subscript ¢ indicates the target detector. This standard function is
chosen because it provides good accuracy and convergence for classification tasks on MNIST when used with
electronic neural networks[9]. We normalized the intensities[2] as

- I
Fop—r 4
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where max {I } means the maximum value of the intensity on the M detectors. In this work we use /=10 since it
gave good performance for single layers.

Datasets and training. We use a gradient descent approach with the Adam algorithm [10], with the learning rate
halved if the training accuracy decreased between two successive epochs (defined as one pass through the full training
dataset). The phases were updated at each epoch using the analytical expressions for. The process was implemented
in Fortran MPI and distributed on up to 100 parallel processors (2.6 GHz, 64GB of RAM).

The MNIST[11] dataset was used in its original format and order. MNIST images correspond to the handwritten
digits 0 to 9, and we therefore used 10 detectors on the output plane. We trained on the first 50,000 images and tested
on 10,000 images. The phases were optimized using mini-batches of 50 images. The inference performance was
obtained by calculating the optical intensity on each of the output detectors, with a successful classification when the
output light intensity was maximal on the target detector.

image pixels

H

in 12 out
Figure 1. Geometry of the free-space diffractive neural network. (Left) The source light field propagates to a material
consisting of subwavelength apertures. Each aperture is partially filled with a dielectric material, as shown in cross-
section. Secondary waves are emitted from each aperture, with a phase ¢ _determined by the thickness of the dielectric

material in aperture k. (Right) The source light is constructed from the 28x28 pixels of the dataset, as illustrated with
the handwritten number 5. The material is of side length L and aperture spacing d on a square array. The different
dielectric thicknesses for each aperture are illustrated with colorized circles to facilitate visualization. The detector
plane has ten detectors, with one detector in the middle and the other nine arranged in a circle of radius R.
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3. RESULTS

The main result of this work is shown in Fig. 2. There, the testing error on the MNIST dataset is plotted as a function
of the total number of apertures in the system, comparing the case of two layers with a single layer. Our results for
two layers qualitatively follow those for a single layer: for a small number of apertures N, the testing error decreases
as 1/N, until it reaches about 6%, after which further increases in N only lead to slow decrease of the testing error.
The advantage of the two-layer system is seen for testing errors greater than ~5%, where the number of apertures to
achieve a certain error is lower for the two-layer system compared to the single layer system. For example, the single
layer system requires about 1400 apertures to achieve 5% error, while the two layer system only needs about 450.
Interestingly, as the number of apertures increases both systems seem to follow the same quantitative behavior, with
lowest error of about 4%.
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Figure 2. Testing accuracy for MNIST as a function of the total number of apertures for single layer and two-layer
systems. The data points for the single layer system are the best optimized results previously obtained from our
simulations. The data points in orange for the two-layer system are all the data points obtained for different values of
the separation between the planes and the last plane and the detector plane. The blue data points are the best results
for the two-layer system.

Figure 2 also shows several data points for each total number of apertures for the two-layer system. Each data point
was obtained by training the system for fixed values of H, and H . One can see that significant variations in the

testing error are found for the same number of apertures, even though each point was fully trained. This behavior was
previously described for a single layer case where the importance of co-designing the system was found to be critical
to achieve high performance. The two-layer system also shows this behavior, with even more complexity since the
number of physical parameters to optimize is larger.
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4, CONCLUSION

Diffractive neural networks are attracting interesting for their ability to perform classification tasks with reduced
energy and at faster speeds. Determining their full potential requires an assessment of key factors such as the impact
of depth on performance. In this work, we showed that extending DNNs from a single to two layers can lead to a
significant reduction in the number of needed features to achieve a given accuracy. However, we find that even after
careful optimization, adding depth does not lead to improved performance for a large number of features. These results
pose interesting questions about the fundamental computing capacity of DNNs, and how it can be harnessed in actual
physical systems.
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