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ABSTRACT 
Typical approaches to classify scenes from light convert the light field to electrons to perform the 
computation in the digital electronic domain. This conversion and downstream computational 
analysis require significant power and time. Diffractive neural networks have recently emerged as 
unique systems to classify optical fields at lower energy and high speeds. Previous work has shown 
that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In 
analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would 
provide better performance, but the fundamental reasons for the potential improvement have not 
been established. In this work, we present extensive computational simulations of two-layer 
diffractive neural networks and show that they can achieve high performance with fewer diffractive 
features than single layer systems. 
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ACRONYMS AND TERMS 
 

Acronym/Term Definition 

DNN Diffractive Neural Network 



 
 

8 
 

1. INTRODUCTION 
Identifying features in a scene from their emitted or reflected light is at the core of many applications such as 
autonomous driving, feature recognition, and imaging. Usually this is accomplished by analyzing digital images 
captured by photodetectors with high-end algorithms running on electronic computers. An alternative approach has 
recently emerged whereby passive optical materials that diffract free-space optical fields act as neural networks and 
perform neuromorphic inference[1-3] without relying on computation in the electronic domain. This all-optical 
approach has potential for significant improvements in speed and energy consumption by taking advantage of the 
physics of light propagation. Hybrid approaches have also been explored where free-space optical front ends are 
integrated with electronic neural networks [4, 5] such that the optical material replaces some part of the neural network, 
most commonly the convolution layer.  

Recently, we presented detailed studies of single-layer diffractive neural networks (DDNs) and established the 
conditions under which high performance can be achieved through optimization. However, it is well-known that 
electronic neural networks benefit from depth, i.e. multiple successive layers process the information to perform 
classification. Initial work in DNNs indicated that multiple layers performed significantly better than a single layer, 
but later research has since demonstrated that single layers can also achieve high performance. Thus, there is an open 
question as to whether DNNs benefit from depth, and if so in what manner. This is particularly true given that in 
electronic neural networks depth is usually accompanied with nonlinearity at each layer, a feature that is not present 
in standard DNNs.  

In this manuscript we present extensive numerical simulations of two-layer DNNs and show that they can achieve 
high performance with fewer diffractive features than a single layer. We also show that co-design is essential to 
achieve high performance through co-optimization of materials, architecture, and algorithms. 
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2. SYSTEM AND MODELING APPROACH 
 
The optical classification system is illustrated in Fig.1. An incoming coherent light field of wavelength λ impinges on 
two metamaterials (labelled 1, 2i = ) of size i iL L× consisting of Ni apertures arranged in a square grid (aperture 

spacing d so that i iL N d= ). Light transmission occurs only through the apertures, labelled 1, ..., ik N= and located 

at ( ), , .ki k k ir x y z= Each aperture is filled with a material of refractive index n and thickness kit   so that the transmitted 

light acquires a phase 2 /ki kintφ π λ=  as it transmits through the aperture. The source plane is located at a distance
in

H  

from the first material plane, the two material planes are separated by
12

H while the detector plane is separated from 

the last material plane by .
out

H In this work we consider aperture diameters less than the wavelength such that the input 
light intensity is uniform across the aperture.  

The input light field is constructed from the individual digital images of the MNIST dataset. Each digital image 
consists of 28 28

in in
N N× = ×  greyscale pixels which we label with the indices m,n and positions ( ), ,mn inr ma na H= −

where a is the width of the pixel (see Fig. 1). Throughout this manuscript we set 1,
in

N a L= i.e. the input light fills the 
first material fully. We construct a continuous monochromatic light field of wavelength λ from the digital images, by 
considering each pixel of the digital image as a point source of intensity mnI  and propagating the light from each pixel 
as a spherical wave to the material plane.  

The amplitude of the input electric field from any given pixel m,n at an aperture in the first material layer is 

( ) ( ) ( )
1 / 2

2 2 2

1 1 1

mn

in k mn k k in
E r I x ma y na H

−

= − + − +  
  and the amplitude of the output field after the first layer is given by  
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  (1) 

This equation for the far field is appropriate when the detector plane is several wavelengths from the material plane. 
(As discussed below, we also use it for closer separations to illustrate the general behavior of the system). In addition, 
Eq. (1) assumes that the input light field ( )1in

mn
kE r  is uniform across the aperture; this requires that the aperture 

diameter be less than the wavelength. 

Light from the apertures of the first layer described by Eq. (1) propagates to the second layer and serves as the input 
for the apertures in that layer; the output field after the second layer is 
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  (1.2) 

Since the light is coherent, the total time-averaged output intensity at detector p is ( )
2

, .k mn
p out p

k mn
I E r= ∑∑ 

 To 

identify objects from the light field we first consider the case of M output photodetectors, each corresponding to one 
of the M classes. The detectors are distributed in a circular pattern on a plane, as illustrated in Fig. 1, with pr  denoting 
the position of detector p, with p = 0,…9. We chose the digit “0” (item 1 for Fashion) for the center detector and 
evenly distributed the remaining nine detectors around the circle. Other arrangements are also possible. For example, 
previous work has considered square distributions[1, 6, 7], and it might be possible to reduce the number of detectors 
using a combinatorial detection scheme. Further work is needed to determine the optimal detector configuration. The 
detector pattern radius chosen here was previously shown to be optimal for a single layer[8]. 
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The approach is to learn the phases kiφ  such that the intensity on detector p is maximal when the incoming light field 
contains an object corresponding to class p. This is done by minimizing the cross-entropy cost function 
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  (3) 

where the sum is over the N training images, and the subscript t indicates the target detector. This standard function is 
chosen because it provides good accuracy and convergence for classification tasks on MNIST when used with 
electronic neural networks[9]. We normalized the intensities[2] as 

 
{ }max
p

p

I
I f

I
=   (4) 

where { }max I  means the maximum value of the intensity on the M detectors. In this work we use f=10 since it 
gave good performance for single layers. 

Datasets and training. We use a gradient descent approach with the Adam algorithm [10], with the learning rate 
halved if the training accuracy decreased between two successive epochs (defined as one pass through the full training 
dataset). The phases were updated at each epoch using the analytical expressions for. The process was implemented 
in Fortran MPI and distributed on up to 100 parallel processors (2.6 GHz, 64GB of RAM). 

The MNIST[11] dataset was used in its original format and order. MNIST images correspond to the handwritten 
digits 0 to 9, and we therefore used 10 detectors on the output plane. We trained on the first 50,000 images and tested 
on 10,000 images. The phases were optimized using mini-batches of 50 images. The inference performance was 
obtained by calculating the optical intensity on each of the output detectors, with a successful classification when the 
output light intensity was maximal on the target detector. 

 
Figure 1. Geometry of the free-space diffractive neural network. (Left) The source light field propagates to a material 
consisting of subwavelength apertures. Each aperture is partially filled with a dielectric material, as shown in cross-
section. Secondary waves are emitted from each aperture, with a phase 

ki
φ  determined by the thickness of the dielectric 

material in aperture k. (Right) The source light is constructed from the 28x28 pixels of the dataset, as illustrated with 
the handwritten number 5. The material is of side length L and aperture spacing d on a square array. The different 
dielectric thicknesses for each aperture are illustrated with colorized circles to facilitate visualization. The detector 
plane has ten detectors, with one detector in the middle and the other nine arranged in a circle of radius R. 
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3. RESULTS 
 
The main result of this work is shown in Fig. 2. There, the testing error on the MNIST dataset is plotted as a function 
of the total number of apertures in the system, comparing the case of two layers with a single layer. Our results for 
two layers qualitatively follow those for a single layer: for a small number of apertures N, the testing error decreases 
as 1/N, until it reaches about 6%, after which further increases in N only lead to slow decrease of the testing error. 
The advantage of the two-layer system is seen for testing errors greater than ~5%, where the number of apertures to 
achieve a certain error is lower for the two-layer system compared to the single layer system. For example, the single 
layer system requires about 1400 apertures to achieve 5% error, while the two layer system only needs about 450. 
Interestingly, as the number of apertures increases both systems seem to follow the same quantitative behavior, with 
lowest error of about 4%.  

 

Figure 2. Testing accuracy for MNIST as a function of the total number of apertures for single layer and two-layer 
systems. The data points for the single layer system are the best optimized results previously obtained from our 
simulations. The data points in orange for the two-layer system are all the data points obtained for different values of 
the separation between the planes and the last plane and the detector plane. The blue data points are the best results 
for the two-layer system. 
 

Figure 2 also shows several data points for each total number of apertures for the two-layer system. Each data point 
was obtained by training the system for fixed values of 12H  and outH . One can see that significant variations in the 
testing error are found for the same number of apertures, even though each point was fully trained. This behavior was 
previously described for a single layer case where the importance of co-designing the system was found to be critical 
to achieve high performance. The two-layer system also shows this behavior, with even more complexity since the 
number of physical parameters to optimize is larger. 
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4. CONCLUSION 
 
Diffractive neural networks are attracting interesting for their ability to perform classification tasks with reduced 
energy and at faster speeds. Determining their full potential requires an assessment of key factors such as the impact 
of depth on performance. In this work, we showed that extending DNNs from a single to two layers can lead to a 
significant reduction in the number of needed features to achieve a given accuracy. However, we find that even after 
careful optimization, adding depth does not lead to improved performance for a large number of features. These results 
pose interesting questions about the fundamental computing capacity of DNNs, and how it can be harnessed in actual 
physical systems. 
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