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Abstract 
 

Leveraging an open-subsystem formulation 
of Density Functional Theory (DFT) we aim at 
describing periodic and molecular systems 
alike, including their electronic and nuclear 
dynamics. Subsystem DFT enables first 
principles simulations to approach realistic 
time- and length-scales, and most importantly 
sheds light on the dynamical behavior of 
complex systems. Taking subsystem DFT to the 
time domain allows us to inspect the electron 
dynamics of condensed-phase systems in real 
time. In liquids and interfaces, we observe all 
the relevant regimes proper of non-Markovian 
open quantum system dynamics, such as 
electronic energy transfer, and screening. In 
addition, the ab-initio modeling of system-bath 
interactions brought us to observe and justify 
the holographic time-dependent electron 
density theorem. Contrary to interactions 
between molecular (finite) systems, when 
molecules interact with metal or semiconductor 
surfaces the electron dynamics is strongly non-
Markovian with dramatic repercussions to the 
molecule’s response to external perturbations. 
Metals and semiconductors typically have large polarizabilities, and even in a regime of low coupling their effect 
on impinging molecular species is significant–line broadening, peak shift, and intensity borrowing are observed, 
characterized, and explained in terms of inter-subsystem dynamical interactions and a many-body decomposition 
of the system’s density-density response function in a way that transcends the canons of Fermi Golden Rule [1,3,6].  

To approach the nonadiabatic dynamics of condensed-phase systems, we set on finding methods for computing 
excited states that are “balanced” with ground state calculations and that can be seamlessly extended to a subsystem 
formulation. Exploiting the machinery of Constrained DFT, we proposed [3] a variational method for calculating 
low-lying excited states of molecular systems which we dub eXcited Constrained DFT (XCDFT). Excited states 
are obtained by self-consistently constraining a user-defined population of electrons, N!, in the virtual space of a 
reference set of occupied orbitals. By imposing this population to be N! = 1, we compute the first excited state. 
Our results show that XCDFT achieves accurate excitation energies without incurring into problems of variational 
collapse typical of the more commonly adopted ΔSCF method, even for certain multireference excited states [7]. 
XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct 
topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, 
XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water 
molecules. We also implemented nonadiabatic couplings for XCDFT which are quantitative against MR-CI for a 
select set of molecular systems and excited states [8]. 

 
Figure 1: Open subsystems and their interactions. Upper left: 
collection of molecular subsystems; upper right: typical 
avenues of exchange of energy and electrons between open 
subsystems; lower left: interface between a set of molecular 
subsystems and an extended subsystem; lower right: depiction 
of the coupling between a finite subsystem having a discrete 
energy spectrum and an extended system having a dense 
energy spectrum. 

 



 

 

In the cost-extension year of the grant (2020-2022), we implemented of Ehrenfest dynamics in a subsystem 
real-time TDDFT software which is available in a TDDFT simulation in the QEpy software [10] and for a 
Subsystem TDDFT simulation, in the eDFTpy software [11]. In addition to the Ehrenfest dynamics, we have 
developed a robust software for subsystem TDDFT in Python called eDFTpy [11] which we have applied to 
determine the many-body dispersion effects among water molecules while they solvate a surface comprised by 
monolayer MoS2 [12]. As we have also developed an embedding method capable of combining orbital-free DFT 
and TDDFT as well as Kohn-Sham DFT and TDDFT in a single electronic structure method [13]. While the code 
for now has only been applied to describe the ground electronic states of interface systems, we plan to explore way 
of coupling subsystem TDDFT with time-dependent Thomas-Fermi theory for metal surfaces. We expect the latter 
to yield fast and still accurate models of the dynamics of molecule-metal interfaces which is still largely uncharted 
due to the large computational cost of modeling the metallic system. This is subject of ongoing research. 

In order to employ orbital-free TDDFT as a reliable alternative to TDDFT for metals and large-sized 
nanoparticles, we developed a fully nonadiabatic Thomas-Fermi method (time-dependent orbital-free DFT) 
capable of recovering the large majority of the nonadiabaticity in the Pauli kernel [9,14]. which will be useful 
when nonstandard embedding schemes (such as the one mentioned above) are implemented. We implemented a 
new orbital-free DFT code [5] where we collect all of the latest methods. 
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