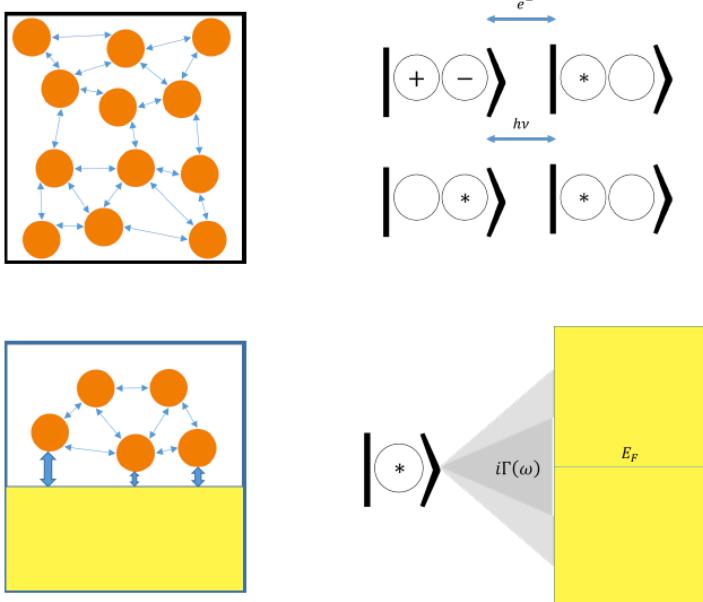


Electron and Electron-Nuclear Dynamics of Open Quantum Subsystems

Michele Pavanello¹


¹Department of Chemistry, Rutgers University, Newark, NJ, U.S.A.

Abstract

Leveraging an open-subsystem formulation of Density Functional Theory (DFT) we aim at describing periodic and molecular systems alike, including their electronic and nuclear dynamics. Subsystem DFT enables first principles simulations to approach realistic time- and length-scales, and most importantly sheds light on the dynamical behavior of complex systems. Taking subsystem DFT to the time domain allows us to inspect the electron dynamics of condensed-phase systems in real time. In liquids and interfaces, we observe all the relevant regimes proper of non-Markovian open quantum system dynamics, such as electronic energy transfer, and screening. In addition, the *ab-initio* modeling of system-bath interactions brought us to observe and justify the holographic time-dependent electron density theorem. Contrary to interactions between molecular (finite) systems, when molecules interact with metal or semiconductor surfaces the electron dynamics is strongly non-Markovian with dramatic repercussions to the molecule's response to external perturbations.

Metals and semiconductors typically have large polarizabilities, and even in a regime of low coupling their effect on impinging molecular species is significant—line broadening, peak shift, and intensity borrowing are observed, characterized, and explained in terms of inter-subsystem dynamical interactions and a many-body decomposition of the system's density-density response function in a way that transcends the canons of Fermi Golden Rule [1,3,6].

To approach the nonadiabatic dynamics of condensed-phase systems, we set on finding methods for computing excited states that are “balanced” with ground state calculations and that can be seamlessly extended to a subsystem formulation. Exploiting the machinery of Constrained DFT, we proposed [3] a variational method for calculating low-lying excited states of molecular systems which we dub eXcited Constrained DFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, N_c , in the virtual space of a reference set of occupied orbitals. By imposing this population to be $N_c = 1$, we compute the first excited state. Our results show that XCDFT achieves accurate excitation energies without incurring into problems of variational collapse typical of the more commonly adopted Δ SCF method, even for certain multireference excited states [7]. XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H_3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. We also implemented nonadiabatic couplings for XCDFT which are quantitative against MR-CI for a select set of molecular systems and excited states [8].

Figure 1: Open subsystems and their interactions. Upper left: collection of molecular subsystems; upper right: typical avenues of exchange of energy and electrons between open subsystems; lower left: interface between a set of molecular subsystems and an extended subsystem; lower right: depiction of the coupling between a finite subsystem having a discrete energy spectrum and an extended system having a dense energy spectrum.

In the cost-extension year of the grant (2020-2022), we implemented of Ehrenfest dynamics in a subsystem real-time TDDFT software which is available in a TDDFT simulation in the QEPy software [10] and for a Subsystem TDDFT simulation, in the eDFTpy software [11]. In addition to the Ehrenfest dynamics, we have developed a robust software for subsystem TDDFT in Python called eDFTpy [11] which we have applied to determine the many-body dispersion effects among water molecules while they solvate a surface comprised by monolayer MoS₂ [12]. As we have also developed an embedding method capable of combining orbital-free DFT and TDDFT as well as Kohn-Sham DFT and TDDFT in a single electronic structure method [13]. While the code for now has only been applied to describe the ground electronic states of interface systems, we plan to explore way of coupling subsystem TDDFT with time-dependent Thomas-Fermi theory for metal surfaces. We expect the latter to yield fast and still accurate models of the dynamics of molecule-metal interfaces which is still largely uncharted due to the large computational cost of modeling the metallic system. This is subject of ongoing research.

In order to employ orbital-free TDDFT as a reliable alternative to TDDFT for metals and large-sized nanoparticles, we developed a fully nonadiabatic Thomas-Fermi method (time-dependent orbital-free DFT) capable of recovering the large majority of the nonadiabaticity in the Pauli kernel [9,14]. which will be useful when nonstandard embedding schemes (such as the one mentioned above) are implemented. We implemented a new orbital-free DFT code [5] where we collect all of the latest methods.

Grant Number: DE-SC0018343.

Students: Alina Umerbekova, Jessica Martinez

Postdocs: Dr. Pablo Ramos, Dr. Kaili Jiang, Dr. Xuecheng Shao

Publications Acknowledging the Grant

1. Sudheer Kumar P. and Alessandro Genova and Michele Pavanello
Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water
J. Phys. Chem. Lett., **8**, 5077 (2017)
2. Pablo Ramos and Michele Pavanello
Low-lying Excited States by Constrained DFT
J. Chem. Phys., **148**, 144103 (2018)
3. Alina Umerbekova, Shou-Feng Zhang, Sudheer Kumar P. and Michele Pavanello
Dissecting Energy Level Renormalization and Polarizability Enhancement of Molecules at Surfaces with Subsystem TDDFT
Eur. Phys. J. B, , Hardy Gross special issue (2018)
4. Johannes Tolle, Andre Gomes, Pablo Ramos and Michele Pavanello
Charged-cell Periodic DFT Simulations Via an Impurity Model Based on Density Embedding: Application to the ionization potential of liquid water
Int. J. Quantum Chem., , Advances in Simulating Solvation special issue (2018)
5. Xuecheng Shao, Kaili Jiang, Wenhui Mi and Michele Pavanello
DFTpy: An efficient and object-oriented orbital-free DFT code
WIREs: Comp. Mol. Sci., **11**, e1482 (2020)
6. Alina Umerbekova and Michele Pavanello

Many-body response of benzene at monolayer MoS₂: Van der Waals interactions and spectral broadening

Int. J. Quantum Chem., 120, e26243 (2020)

7. Nell Karpinski, Pablo Ramos and Michele Pavanello
Capturing multireference excited states by constrained-density-functional theory
Phys. Rev. A, 101, 032510 (2020)
8. Pablo Ramos and Michele Pavanello
Nonadiabatic couplings from a variational excited state method based on constrained DFT
J. Chem. Phys., 154, 014110 (2021)
9. Kaili Jiang and Michele Pavanello
Time-dependent orbital-free density functional theory: Background and Pauli kernel approximations
Phys. Rev. B, 103, 245102 (2021)
10. Xuecheng Shao, Oliviero Andreussi, Davide Ceresoli, Matthew Truscott, Andrew Baczewski, Quinn Campbell and Michele Pavanello
QEpy: Quantum ESPRESSO in Python, 2022
<http://qepy.rutgers.edu/>
11. Xuecheng Shao and Michele Pavanello
eDFTpy: a density embedding code for molecules and materials entirely in Python, 2022
<http://edftpy.rutgers.edu/>
12. Xuecheng Shao, Alina Umerbekova, Kaili Jiang and Michele Pavanello
Many-body van der Waals interactions in wet MoS₂ surfaces
Electronic Structure, 4, 024001 (2022)
13. Xuecheng Shao, Wenhui Mi and Michele Pavanello
Density Embedding Method for Nanoscale Molecule–Metal Interfaces
J. Phys. Chem. Letters, 13, 7147 (2022)
14. Kaili Jiang, Xuecheng Shao and Michele Pavanello
Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory
Phys. Rev. B, 104, 235110 (2021)

Other publications not mentioned in this report but still supported by the DOE grant – and directly resulting from the implementations and method development resulting from the DOE grant project:

15. C Chakravarty, H Aksu, JA Martinez B, P Ramos, M Pavanello, B Dunietz
Role of Dielectric Screening in Calculating Excited States of Solvated Azobenzene: A Benchmark Study Comparing Quantum Embedding and Polarizable Continuum Model for Representing the Solvent
J. Phys. Chem. Letters 13, 4849 (2022)

16. W Mi, X Shao, A Genova, D Ceresoli, and M Pavanello
eQE 2.0: Subsystem DFT Beyond GGA Functionals
Comp. Phys. Comm. 269, 108122 (2021)

17. A Wasserman and M Pavanello
Quantum embedding electronic structure methods
Int. J. Quantum Chem. 120, e26495 (2020)