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Nanoparticles & Their Distributions

Superparamagnetic nanoparticles – magnetic nanoparticles in which

there is a single magnetic domain for the entire particle – have

emerging applications in medical theranostics,1 and high efficiency

electronics.2,3 Since the early 2000s the standard synthesis of

superparamagnetic nanoparticles has been a two-step process

involving isolation of badly characterized intermediates followed by

prolonged heating in high boiling solvent.4,5 These procedures often

suffer from batch-to-batch size inconsistency. Because magnetic

properties of interest scale exponentially with particle volume, fine

control of size and predictable reaction outcomes are necessary to

fully realize the potential of superparamagnetic nanomaterials. Here

we present our recent effort toward improving reproducibility in

ferrite nanoparticle synthesis. We have developed a convenient,

single vessel procedure that gives low dispersity particles of a

consistent size. We have benchmarked our procedure against

standard methods to demonstrate its superiority.
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Summing these distributions is mathematically challenging,6,7

meaning determination of the universal particle distribution for a set

of synthetic conditions by repeating the reaction and gathering

empirical data is often impractical for the bench chemist needing to

evaluate reaction performance.

Nanoparticle size distributions are often modeled as either Gamma

(left) or Log-Normal (right) distributions.
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Coefficient of Variation

Pooled standard deviation can be calculated as the square root of the

average variance from k repeated reactions and gives an estimate of

the likely particle distribution width when a reaction is repeated. The

coefficient of variation gives an estimate of how far a reaction’s

mean size will be from the most likely size, μ, the average of

observed sizes.

Krishnan Procedure5

Hyeon Procedure4

Replicate Size (nm) [σ, RSD]

1 10.71 [1.16, 10.8%]

2 7.63 [0.66, 8.7%]

3 6.93 [0.85, 12.2%]

4 6.15 [0.67, 10.9%]

5 7.06 [1.06, 15.0%]

Average [spool] 7.70 [0.90, 11.7%]

Replicate Size (nm) [σ, RSD]

1 20.01 [1.96, 9.8%]

2 22.58 [3.52, 15.6%]

3 31.75 [5.87, 18.5%]

4 33.07 [5.49, 16.6%]

5 29.13 [4.57, 15.7%]

Average [spool] 27.31 [4.51, 16.5%]

Examples of two commonly used Fe3O4 nanoparticle synthesis

procedures were evaluated for their reproducibility. Each

procedure was repeated five times, and the resulting nanoparticles

were evaluated by Transmission Electron Microscopy (TEM) and

Small Angle X-Ray Scattering (SAXS). Sizes were determined by

SAXS measurements on crude reaction samples. Both procedures

rely on synthesis and isolation of poorly characterized Fe-oleate

intermediates. The average is the mean of size from the

repetitions, with the spool, and spool/μ in brackets.

In order to develop an Fe3O4 synthesis with consistent size

performance over repeated execution, we pursued a simple one pot

procedure. Rather than synthesize and isolate Fe-oleate precursors

we generated Fe-oleate species in situ using oleic acid as the only

solvent. This allowed for substantially higher reaction temperatures,

which in turn gave more favorable nucleation dynamics, leading to

extremely reproducible particle sizes and distributions.

Run 1 Run 2 Run 3

Run 4 Run 5

Replicate One Pot (nm) 

[σ, RSD]

1 23.52 [1.51, 6.4%]

2 24.15 [1.74, 7.2%]

3 22.34 [1.45, 6.5%]

4 22.89 [1.42, 6.2%]

5 24.43 [1.76, 7.2%]

Avg. [spool] 23.47 [1.58, 6.7%]

Summary

Avg spool CV 

One Pot 23.47 nm
1.58 nm

6.7%
3.7%

Krishnan 27.31 nm
4.51 nm

16.5%
21.0%

Hyeon 7.70 nm
0.90 nm

11.7%
22.9%

In an effort to improve synthetic

predictability in Fe3O4 NP forming

reactions we have developed a simple, one

pot procedure that gives low dispersity

products with a predictable size. In

addition, owing to the mathematical

complication of summing distributions, we

have borrowed easy to calculate figures of

merit from the field of error analysis in the

form if spool and CV. Our new one pot

procedure significantly out performs

standard literature methods for the

preparation of superparamagnetic

magnetite NPs.

Conclusion

Magnetite nanoparticles are not the only

superparamagnetic materials of interest. In

addition to size, nanomaterial magnetic

properties can be modified by changing

nanoparticle composition. We are presently

developing reproducible methodology.
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