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> | Introduction

Free-falling particle receiver (FFPR) in commercial scale (>100MW,)

- Central receiver system with ceramic particles (i.e. CARBO HSP, sand, etc).
- Advantages: Direct irradiance, high temperature, on-demand, cost-effective

- Disadvantages: High advective loss, short particle residence time, dispersive particle curtain//
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s 1 State of the art
Multistage falling particle receiver (MFPR)

- Longer residence time, higher absorptance, better particle stability
- Controlling the advective loss using troughs
- Previous studies: (1) Little investigation of MFPR in commercial scale (>100 MW )
(2) Little exploration of MFPR design outperforming FFPR in terms of efficiency

(3) No quantification of MFPR efficiency under various wind conditions
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+ 1 Objectives

1. To optimize MFPR geometry
2. To investigate the wind effects on the MFPR efficiency

3. To gain a robust correlation to predict the thermal performance of MFPR

\

1. Higher thermal efficiency for commercial capacity CSP

2. Better prediction of MFPR efficiency in realistic conditions

3. Less utilization of experimental/computational resources
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s 1 Computational model !
Cubit

- Geometry/mesh generation 55m

ANSYS Fluent

- Eulerian-Lagrangian model for the particle-laden flow v

- Realizable k-¢ turbulence model <50\, 58m

m
- Fluid-thermal coupling Schematic diagram of computational domain

h

-

- Non-grey discrete ordinate radiation model for radiative heat transfer
- Forward velocity (~0.3m/s) for trough angle of 30° [Shaeffer et al. (2020)]
- Particle drag model: Morsi & Alexander (1972)

Parameter range

- Wind directions: N ~ SW

- Wind speeds (U,): 0 ~ 15m/s

- Incident solar radiation: 100 ~ 200MW
- Inlet temperature: 888.15K

- Particle mass flow rate: 885kg/s
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MFEFPR efficiency in a quiescent condition
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7 I MFPR efficiency subject to wind

Advective loss 1s the main source of efficiency degradation.
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NW or WNW winds are detrimental for thermal efficiency.

Vortices existing ahead of open aperture intensify the advective loss.
Effects of wind speed are significant for either NW or WNW winds.
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Increasing solar ®p Marginal change in the magnitude of advective loss (Q;ss).
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o 1 Correlation development

42 simulations
- Incident solar power (Q;;,, = 100 and 200 MW), wind speeds (U,, = 5, 10, and 15m/s),
wind directions (8, = N, NNW, NW, WNW, W, SW, and S)
- A wind direction modifier is used to provide more accurate fit.

- R-square value ~ 94%, which is sufficient to predict the thermal efficiency.
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0o | Summary and conclusions

(d MFPR geometry in a quiescent condition

u The optimized MFPR geometry provides the thermal efficiency of 88%.
d MFPR efficiency under various wind conditions

u Wind direction is the dominant factor to degrade the thermal efficiency.

=  NW/WNW winds form a vortical structures near the open aperture as detrimentally

degrading thermal efficiency.

. Increasing wind speed has adverse effects on the efficiency for NW or WNW winds.

. Lower solar input power increases the proportion of advective loss.
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 Correlation development
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= R-square value ~ 94%, which is sufficient to predict the thermal efficiency.

. Different parameter inputs also need to be investigated for robustness.
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Thank you




