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Abstract. Fault tolerance is a key challenge as high performance com-
puting systems continue to increase component counts, individual com-
ponent reliability decreases, and hardware and software complexity in-
creases. To better understand the potential impacts of failures on next-
generation systems, significant effort has been devoted to collecting, char-
acterizing and analyzing failures on current systems. These studies re-
quire large volumes of data and complex analysis in an attempt to iden-
tify statistical properties of the failure data.
In this paper, we examine the lifetime of failures on the Cielo super-
computer that was located at Los Alamos National Laboratory, looking
specifically at the time between faults on this system. Through this anal-
ysis, we show that the time between uncorrectable faults for this system
obeys Benford’s law, This law applies to a number of naturally occurring
collections of numbers and states that the leading digit is more likely to
be small, for example a leading digit of 1 is more likely than 9. We also
show that a number of common distributions used to model failures also
follow this law. This work provides critical analysis on the distribution of
times between failures for extreme-scale systems. Specifically, the anal-
ysis in this work could be used as a simple form of failure prediction or
used for modeling realistic failures.

1 Introduction

Fault tolerance is a key challenge as high performance computing systems con-
tinue to increase component counts, individual component reliability decreases,
hardware complexity increases, and software complexity increases. To better un-
derstand the potential impacts on next-generation systems, significant effort has
been devoted to collecting, characterizing and analyzing failures [26, 25, 15, 19,
16]. These studies require large volumes of data, typically gathered over many
years, and utilizing complex analysis in an attempt to identify the underlying
probability distribution and its statistical properties.

Several mitigation methods have been developed to address memory failures.
A popular method of fault tolerance in today’s large-scale production systems
is coordinated checkpoint/restart. The overheads of checkpoint/restart are de-
termined, in part, by the duration of the checkpoint interval. Determining the
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optimal checkpoint interval requires an understanding of failure statistics on
a given system in order to minimize lost work and checkpoint overheads [8].
Therefore, to better understand checkpoint overheads, one must understand the
failure rate on a system. Checkpointing can also be coupled with failure predic-
tion [14] to minimize time lost in the rework stage, but current prediction-based
mechanisms have relatively poor performance or exceedingly high overheads.
Therefore, having a cheap method to determine when faults are likely could
improve application performance.

In this paper we examine faults on the entire lifetime of the Cielo supercom-
puter that was located at Los Alamos National Laboratory, looking specifically
at the time between memory faults on this system. We undertake several simple
analytical studies and make the following contributions. We show that:

– The time between uncorrectable memory faults over the lifetime of Cielo
obey Benford’s Law: the leading digit is more likely to be small (§3.2);

– The correctable faults from Cielo do not appear to obey Benford’s law. We
also outline a few suggestions as to why this is not true (§3.2); and

– Several common theoretical distributions used in HPC to model failures also
appear to obey Benford’s Law (§3.3).

To the best of our knowledge, this is the first work to demonstrate that
memory faults from an large-scale HPC system obey a Benford distribution. It
also provides critical analysis on the occurrence of memory failures on extreme-
scale systems. Specifically, our analysis could be used to improve existing failure
prediction mechanisms or to make models of memory failures more realistic.

2 Background

2.1 System Description

Cielo was a leadership-class HPC system located in Los Alamos, New Mexico. It
was a Cray XE6 system running Linux that was operated from March 2011 to
May 2016. At the time of its decommissioning, it was comprised of approximately
8,500 compute nodes. Each compute node contained 32 GB of DRAM and two
processor sockets, each occupied by an AMD OpteronTM 8-core processor. Cielo
consisted of 96 racks of compute nodes arranged in 6 rows. Each rack contained
96 compute nodes arranged in a three-level hierarchy. Each rack was composed
of three chassis. Each chassis was composed of eight slots. Each slot hosted four
compute nodes.

2.2 Terminology: faults and errors

Throughout this paper, we distinguish between faults and errors, cf. [2]. A fault
is the underlying cause of an error (e.g., stuck-at bits or high-energy particle
strikes). An error is incorrect system state due to an active fault. Errors are
detected and possibly corrected by higher-level mechanisms such as parity or
error correcting codes (ECC). They may also be uncorrected or, in the worst
case, undetected.



Characterizing Memory Failures Using Benford’s Law 3

2.3 Terminology: Transient Vs. Permanent Faults

Hardware faults can be classified as transient, intermittent, or hard [3] [6] [7].
Transient faults, which cause incorrect data to be read from a memory location
until the location is overwritten with correct data. These faults occur randomly
and are not indicative of device damage [3]. Particle-induced upsets (“soft er-
rors”), which have been extensively studied in the literature [3][27], are one type
of transient fault. Distinguishing a hard fault from an intermittent fault in a
running system requires knowing the exact memory access pattern to determine
whether a memory location returns the wrong data on every access. In practice,
this is impossible in a large-scale field study such as ours. Therefore, we group
intermittent and hard faults together in a category of permanent faults.

2.4 Memory Failure Logs

All of the DRAM on Cielo is protected by chipkill-correct ECC. When the mem-
ory controller detects a memory error, it is designed to use ECC to correct the
error. If it is able to correct the error, the error is recorded as a correctable er-
ror (CE). If it is unable to correct the error, the error is recorded as a detected,
uncorrectable error (DUE). Correctable errors are recorded in registers provided
by the x86 Machine Check Architecture (MCA) [1]. The contents of these regis-
ters are polled periodically and written to the console log. Uncorrectable errors
are recorded in an event log after the node is rebooted. For both correctable and
uncorrectable errors, detailed information about each error is recorded. This
information includes the physical address where the error occurred and ECC
syndrome data that describes the cause of the error. Decoding the recorded in-
formation about each error allows us to identify the physical location of each
logged error. We examined the memory error logs collected on Cielo from May
2011 to May 2016. Additional details can be found elsewhere [16, 23].

2.5 Benford’s Law

Fig. 1. Probability mass function for Benford distribution and cumulative mass func-
tion (CMF)
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Benford’s law, also called the Newcomb–Benford law, the law of anomalous
numbers, or the first-digit law, is an observation about the frequency distribution
of leading digits in many real-life sets of numerical data. The law states that in
many naturally occurring collections of numbers, the leading digit is likely to be
small. In sets that obey the law, the number 1 appears as the leading significant
digit about 30% of the time, while 9 appears as the leading significant digit
less than 5% of the time. The law is named after physicist Frank Benford, who
proposed the law in 1938 [4], although it had been previously observed by Simon
Newcomb in 1881 [20]. Benford’s Law has been shown to apply to a wide variety
of data sets, including electricity bills, street addresses, stock prices, house prices,
death rates, lengths of rivers, and physical and mathematical constants.

Mathematically, the probability distribution of the leading digit d (d ∈
{1, · · · , 9} is:

P (d) = log10(d + 1)− log10(d) = log10

(
d + 1

d

)
(1)

Figure 1 shows both the probability distribution function (PDF) and the
cumulative distribution function (CDF) for a theoretical Benford distribution.

3 Experimental Results

3.1 Methodology

In the following sections we calculate the probability mass function of the leading
digit and compare with a theoretical Benford distribution. For this calculation
we use the time between memory faults in seconds. If the first digit of the
time between faults begins with a zero, we use the first non-zero digit in the
calculation.

The choice of seconds is arbitrary as the properties of this distribution is
independent of the representations (i.e., if an observation obeys Benford’s Law
it does not matter how that metric is represented). More formally, Benford’s
Law has been shown to be sum-invariant, inverse-invariant, and addition and
subtraction invariant [13, 5].

3.2 Cielo System Lifetime Data Benford Analysis

Figure 2 shows the empirical distribution of the first digit of the time between
faults in DRAM and SRAM over the lifetime of Cielo, measured in seconds.
Figure 2a shows the data for uncorrectable memory faults. Figure 2b shows the
data for correctable memory faults. From this figure, we make a few important
observations. First, the intervals between uncorrectable memory faults follows
a Benford distribution: memory fault intervals are much more likely to have
a small first digit. However, Figure 2b shows that while the interval between
correctable memory faults are more likely to have a small first digit, they do not
follow a Benford distribution as closely as the uncorrectable memory faults do.
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(a) All Uncorrectable Faults on
Cielo

(b) All Correctable Faults on
Cielo

Fig. 2. Benford distribution of fault time for all correctable faults and uncorrectable
faults over the entire lifetime of Cielo

This difference may be explained by the mechanics of how errors are logged
on the system. As described in Section 2.4 correctable memory faults on Cielo
were logged in a ring buffer. Therefore, it is possible that some of these errors
were lost when the ring buffer overflowed during computation. This is due, at
least in part, to the fact that a correctable memory fault can produce a very
large number of correctable errors, depending on the system’s memory access
patterns. If errors are lost, the calculation of the fault time may be affected. In
contrast, it is less likely that uncorrectable memory faults are lost because the
affected node halts and the single fault is recorded.

(a) DRAM Uncorrectable
Faults on Cielo

(b) SRAM Uncorrectable
Faults on Cielo

Fig. 3. Benford distribution of uncorrectable fault time for Static Random Access
Memory (SRAM) and Dynamic Random Access Memory (DRAM) on Cielo

To understand how these data are affected by memory technology, Figure 3
shows the leading digits of our uncorrectable memory fault data divided into two
groups: memory faults in Static Random Access Memory (SRAM) (Figure 3b);
and memory faults in Dynamic Random Access Memory (DRAM) (Figure 3a).
Investigating these differences are important to developing a complete under-
standing of how memory faults occur because these two memory technologies
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use different protection mechanisms on Cielo; Chipkill [9] is used to protect
DRAM, and memory parity is used to protect SRAM.

From the data in these figures. we make several observations. First, the
SRAM uncorrectable fault times in Figure 3b appear to follow a Benford distri-
bution. The likely reason for this is due to total number of faults in each of these
two scenarios. Because some of the logs we analyzed contain confidential infor-
mation, we cannot comment on the total number of DRAM or SRAM faults, but
over its lifetime, Cielo experienced more SRAM errors in comparison to DRAM.
This is related to the fact that the SRAM structures are typically protected only
by parity. Recent AMD processors provide much stronger SRAM protection. Fi-
nally, we observe that although the Benford distribution does not appear to be
a good match for the intervals between uncorrectable DRAM faults, they do
exhibit a similar trend: leading digits are still likely to be small.

(a) DRAM Correctable DRAM
Faults on Cielo

(b) SRAM Correctable DRAM
Faults on Cielo

Fig. 4. Benford distribution of correctable fault times for Static Random Access Mem-
ory (SRAM) and Dynamic Random Access Memory (DRAM) on Cielo

In Figure 4, we examine the same data for correctable memory faults. In-
terestingly, we observe a trend that is the opposite of what we observed with
uncorrectable memory faults. Specifically, the Benford distribution is a good
match for the time between DRAM correctable faults while the match between
the Benford distribution and the time between correctable SRAM faults is not
particularly good. In this case, these differences in SRAM cannot be attributed
to the size of the data sample (i.e., the total number of correctable memory faults
in our dataset). Correctable faults are much more common than uncorrectable
faults. As a result, we do not believe that these results can be attributed to the
size of the sample. We are currently investigating the source of this phenomenon.
As with uncorrectable memory faults, it might be related to the differences of
logging and reporting the correctable errors. However, further study is needed.

Finally, Figure 5 shows the distribution of failure interarrival times for both
permanent and transient faults. For the data in these figures, we only distinguish
between faults based on whether they are transient or permanent. All other
distinctions are ignored; each dataset includes SRAM and DRAM faults, and
correctable and uncorrectable memory faults). From this figure we observe that
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(a) Transient Faults (b) Permanent Faults

Fig. 5. Benford distribution of the interarrival times for permanent and transient faults
on Cielo.

the permanent errors more closely follow a Benford distribution. This result
may not be surprising given the fact that the majority of permanent faults are
uncorrectable and transient faults are more likely to be correctable. However, it
suggests that further analysis is needed to understand if the processes behind
these faults obey a Benford distribution. Although the Benford distribution is
not a particularly fit for the intervals between transient memory faults, these
intervals do exhibit the same general trend: small leading digits are more common
than large leading digits.

3.3 Theoretical Distributions

In the previous section, we observed that fault interarrival time for Cielo ap-
peared to follow closely a Benford distribution. In addition to charactertizing
and tabulating failures, fitting failures to known distributions is common in fault
tolerance. In this section, we examine the relationship between Benford’s Law
and three probability distributions that are commonly used to model failures on
HPC systems: exponential, Weibull, and gamma.

Mathematically, the probability mass function of the leading digit d (d ∈
{1, · · · , 9} for a theoretical probability distribution is:

P (d) =

∞∑
k=−∞

(
F ((d + 1) · 10k)− F (d · 10k)

)
where F (x) is a cumulative density function (CDF).

Figure 6a shows the probability of the leading digit of a random variable
drawn from exponential distributions. The solid lines represent the probabilities
based on the theoretical distribution. The dashed lines represent the probability
predicted by Benford’s Law. Figures 7a and 7c show the same data for two
different groups of Weibull distributions, corresponding to two different values
of the shape parameter (0.25 and 0.75). Figures 8a and 8c show the same data
for two different groups of gamma distributions, corresponding to two different
values of the shape parameter (0.25 and 0.75).
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(a) Per-digit probability. (b) Sum of Squared Er-
rors (SSE)

Fig. 6. Exponential Distribution. Comparison of the probability leading digits from
data drawn from exponential distributions to the results predicted by Benford’s Law. In
subfigure (a), solid lines represent values for the theoretical exponential distributions.
Dashed lines represent the values predicted by Benford’s Law.

Figure 6b shows the the sum of squared errors (SSE) of the leading digit
probabilities based on theoretical exponential distributions relative to the prob-
ability predicted by Benford’s Law. Figures 7b and 7d show the same data for two
different groups of Weibull distributions, corresponding to two different values
of the shape parameter (0.25 and 0.75). Figures 8b and 8d show the same data
for two different groups of gamma distributions, corresponding to two different
values of the shape parameter (0.25 and 0.75).

These figures show that the probability of leading digits for random variables
drawn from these theoretical distributions closely match the values predicted by
Benford’s Law. Because these distributions have been shown to be a reasonable
fit for memory errors on Cielo [16], these data help explain why Benford’s Law
accurately predicts the leading digits of these intervals on Cielo.

4 Related Work

Failures characterization on large computer systems has been ongoing for over a
decade. These studies have focused both on failures in HPC centers [21, 25, 24, 12,
26, 10, 23, 16, 11] and industry datacenters [22, 18, 17, 12]. These studies cover a
wide diversity of systems of varying sizes and hardware/software configurations,
yet many common failure trends are observed across all these systems.

Our work distinguishes itself from the existing studies in a number of impor-
tant ways. First, to the best of our knowledge this is the first study to examine
Benford’s law and the interarrival times of failures for an HPC system. Second,
this work is critical to both those modeling faults for HPC and those studying
failures as it provides a simple methodology for verifying failure times. Finally,
the results of this work may be of use to the those trying to mitigate or predict
failures as this Benford property might be utilized to aid failure prediction.
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(a) Per-digit probability
(Weibull w/ shape (k) = 0.25)

(b) Sum of Squared Er-
rors (SSE)
(Weibull w/ shape (k) = 0.25)

(c) Per-digit probability
(Weibull w/ shape (k) = 0.75)

(d) Sum of Squared Er-
rors (SSE)
(Weibull w/ shape (k) = 0.75)

Fig. 7. Weibull Distribution. Probability of leading digits from data drawn from
two groups of Weibull distributions (each with a different value of the shape param-
eter) to the results predicted by Benford’s Law. In subfigures (a) and (c), solid lines
represent values for the theoretical Weibull distributions. Dashed lines represent the
values predicted by Benford’s Law.

5 Conclusions

In this paper, we have provided a study of the time interval between memory
faults for both correctable and uncorrectable errors on the Cielo supercomputer
that was located at Los Alamos National Laboratory. Through this analysis,
we show that the time between uncorrectable faults for this system obeys Ben-
ford’s law – a law that states that the leading digits of some naturally occurring
datasets is more likely to be small in value. We also show that correctable errors
do not appear to follow this law, possibly due to the fact that the logging of
correctable errors is done by polling mechanism and therefore many errors can
be missed or logged with times that vary significantly from the actual fault time.
Finally, we show that many common distributions used in literature to model
failures also follow a Benford distribution.
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(a) Per-digit probability
(gamma with shape (k) = 0.25)

(b) Sum of Squared Er-
rors (SSE)
(gamma w/ shape (k) = 0.25)

(c) Per-digit probability
(gamma w/ shape (k) = 0.75)

(d) Sum of Squared Er-
rors (SSE)
(gamma w/ shape (k) = 0.75)

Fig. 8. Gamma Distribution. Probability leading digits from data drawn from two
groups of gamma distributions (each with a different value of the shape parameter)
to the results predicted by Benford’s Law. In subfigures (a) and (c), solid lines repre-
sent values for the theoretical gamma distributions. Dashed lines represent the values
predicted by Benford’s Law.
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