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1. Introduction

The method-of-moments implementation of the electric-field integral equation (EFIE) yields many code-
verification challenges due to the various sources of numerical error and their possible interactions [1, 2].
Matters are further complicated by singular integrals, which arise from the presence of a Green’s function.
To address these singular integrals, an approach is presented in [1] wherein both the solution and Green’s
function are manufactured. Because the arising equations are poorly conditioned, they are reformulated
as a set of constraints for an optimization problem that selects the solution closest to the manufactured
solution. In this paper, we demonstrate how, for such practically singular systems of equations, computing
the truncation error by inserting the exact solution into the discretized equations cannot detect certain orders
of coding errors. On the other hand, the discretization error from the optimal solution [1] is a more sensitive
metric that can detect orders less than those of the expected convergence rate.

2. Truncation and Discretization Error

Let L£(-) and Lp(-) respectively denote the operators representing the continuous and discretized equa-
tions. The truncation error 7,(-) is the difference between them [3, 4]:

Lp(v) = L(V) 4+ Tr(v). (1)

Let u denote the solution to the continuous equations (L£(u) = 0) and u;, denote the solution to the
discretized equations (Lp(up) = 0). Inserting a Taylor-series expansion of £(v) about v = u into (1) and
evaluating at v = uy, yields

O ent Ollenl?) = ~m(w), 2

u

where ej, = uj, —u is the discretization error. Therefore, (2) relates the truncation error to the discretization
€erTor.
The truncation error can be computed from (1) by setting v = u:

Th(u) = Ly (u). 3)
As described in Section 5.5.6.1 of [4], evaluating (3) across a series of systematically refined discretizations
can be used to compute the convergence rate of e; without solving for u;. However, there are known
drawbacks to using this approach [4].
3. The Method-of-Moments Implementation of the EFIE
The variational form of the EFIE is: find u, such that
a(u,v) = (f,v) Vv ev, (4)

where f is a source, V is the test space, and the sesquilinear form and inner product are defined by

a(u,v) = a/S\_f(x) : // u(x')G(x,x")dS'dS + ﬁ/SV - v(x) . V' u(x')G(x,x")dS’dS, (5)

(u,v) = /Su(x) - v(x)dS.
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In (5), a and 8 are constants, G is a Green’s function, and the bar notation denotes complex conjugation.
If the domain is open, the component of u normal to the boundary is zero.

To solve (4), we approximate u with u; using a Galerkin method with Rao-Wilton—Glisson (RWG) basis
functions ¢;(x) [5]: un(x) = 2?21 u¢;(x), where n is the total number of unknowns. Defining Vj to
be the span of the RWG basis functions, the Galerkin approximation of the original problem is now: find
uy € Vy,, such that

a(un, ¢;) = (f,¢;) (6)
fori=1,...,n.
To verify the order of accuracy of (6), we can manufacture f [1] so that (6) becomes
a(un, ¢;) = a(u, ¢;). (7)

In (7), u is a manufactured solution that coerces uy, to u and permits the truncation error and discretization
error to be measured. Let u,(x) = Z?zl u¢;(x) denote the basis-function representation of u. The
truncation error is

Thi (u) = CL(IIT“ ¢z) - (fv ¢z) - a(un, ¢z) - a(ua ¢z) (8)

As an alternative to the continuous form of the discretization error e;, = u; —u, we can measure the discrete
form of the discretization error

e'=u"—u". 9)

However, the integrals in (7) cannot be accurately computed due to the presence of the Green’s function,
which yields a singularity when x = x’. In [1], this challenge is mitigated by manufacturing the Green’s
function as well. As a result, the matrix becomes practically singular, admitting infinite solutions u”.
Therefore, u” is chosen by selecting the closest choice to u™ that satisfies (7). The implications for the
truncation and discretization errors as code-verification metrics for such singular systems of equations are

discussed in the next section.

4. Singular Systems of Equations

Given their similar properties, in [6], expectations for the RWG basis functions are based on those for
rooftop basis functions. Likewise, in this section, we consider the one-dimensional analogy with piecewise
linear basis functions ¢;(x). We restrict the solution to real numbers and set S = [a, b] in (5). We consider
the extreme case of G(z,z’) = 1, which yields a singular system of equations. As a result, (7) becomes: find
up, € Hy, such that

alun, ¢i) = alu, ¢;) (10)

fori=1,...,n, and

a(u, ¢;) = oz/ab oi(x) /ab u(z')dz'dx + 5/; ij(iz (x) /ab %(m')dm’dw. (11)

Since fab 40 (2)dx = 0, (11) is reduced to

T

a(u, ;) = a / " i) / " ()

For a uniform discretization, after dividing both sides by ah, where h = (b —a)/N and N = n+ 1 is the
number of elements, the system of equations for (10) is

A R R B RO S (12)



which can be written as £, (uy) = Au” — b = 0, where A = hl,y, and b = (fab u(x)dm) 1,,«1. For the

truncation error, the division by h ensures that

OL; 1 1 /P b b
5 u~eh— Ja(eh,qﬁi)— E/a q’)l(x)/a en(z')dx dx—/a en(z)dz,

such that the truncation and discretization errors are of the same order in (2).

4.1. Original System
Accounting for the boundary conditions u(a) = u(b) = 0, the trapezoidal-rule approximation of the
integral in (12) is

/b u(z)dr = hiu? + O(h?), (13)

such that b = Au™ + O(h?) and (12) becomes
Lp(up) = A (u" —u") + O(h?) = 0. (14)
From (3) and (14),
Th(u) = Lin(u) = F4(u) + O(h?), (15)

where
Tr(u) =A (" —u") =0,

such that the truncation error 7 (u) is O(h?), as expected. Because A is singular, a unique solution cannot
be computed and a meaningful discretization error cannot be obtained.

If an error § # 0 that is O(h"), where r > 0, is introduced in A; ; in (12), such that it becomes (1+6)A4, ;,
71 (u) in the truncation error (15) becomes

0i—1x1
‘T’h(u) = 5’U,;Lh ].1><1 . (16)

0n—ix1
If j is fixed, as n is increased, x; will approach a and uj = u(z;) will be asymptotically proportional to the
leading term of the Taylor series expansion at © = a + jh about x = a. If that term is O(h?), 75 (u) (15)
will be O(h™ir{a+7+1,2}) " If the error is introduced in a column corresponding to a fixed z location (e.g.,

j = N/2), Th(u) will be O(h" 4 1). Therefore, if j is fixed and ¢ + r > 1 or the error is spatially fixed and
r > 1, the error will go undetected.

4.2. Reduced System

To perform code verification for a singular system of equations, such as that in (12), an approach is
presented in [1], which uses a QR factorization of the transpose of the matrix to select the u” closest to u™
that satisfies the system of equations. To simplify the factorization, we divide both sides of (12) by h once
more:

1P !
SR D :E/u(x)dx L (17)
1 1] (W ¢ 1
which can be written as Au” = b, where A = 1,4, and b = % (f: u(x)dx) 1,,x1. Performing a pivoted QR

factorization of AT, such that

ATP =[Qi, Q] [f(ﬂ = QiR



the optimal solution is
u" = Qiu' +Q:Q3u", (18)
where u’ is the solution to (17) when the size is reduced to its rank:
u' = (RY) PTh,

where () denotes the Moore-Penrose pseudoinverse. Noting that QQ” = Q:QT + Q2Q¥ =1,,x,, (18) can
be written as

u" = Qu' — QQTu" +u". (19)

4.2.1. Without an Error

The factorization is P = I,x,, Q1 = n7 21,1, Ry = n'/%1,4,, and (Rf)T = n"3/211y,. The first
term of (19) is

1 1 b
Qv =Q; (RIT)Jr PTp = ﬁlnxnb = </ u(x)dat) 1,1 (20)
a
Inserting (13) into (20) yields
1
Qu' = Ehmu” + O(h?). (21)
The second term of (19) is
1
Q:QMu" = Elnxnun. (22)

Inserting (21) and (22) into (19), the discretization error (9) is
e =&" + O(n?), (23)
where
& = <11m e T - Lw) u” = 0.
n n

The discretization error e’ is O(h?), as expected.

4.2.2. With an Error

We now consider the case when an error 6 # 0 is introduced in A;; in (17), such that it becomes
(1+06)A, ;. If i = 1, the factorization is P = I,,xp,
1 [ 10 nE Y2100
Q1 = — |nl1x1 —&? 1a |,

7 | Loojxa n€7 Y21, 50
R1 = 1 _7211><1 Cllxnfl
v Oix1 8621151
(RT)T _ 1 011x1 Ol><n—1:|
! 6y | —CET V20 AT P10



where E=n—1,n=1+64,(=n+06, and vy = /& +n2. If i # 1, the factorization is P = I,, 5,
1 11 *571/21j—1><1
Qi =n""%1, Y2 110 )
Loojx1 —€71Y21, 50

— 1 i— Cll 1 nll —3
R, =n 1/2 Nlixi—1 X Xn—1i 7
! O1xi1 0621141 Oixpy

(RT)T _ n” 1273/ {551/211”1 01x1 551/211Xni]
! d —(1ixi—1 nélixa —(lisn—i|

The first term of (19) is

; 1 Nl 1xic1 =& Ljix1 Nl 1xn—i
Quu' = Qi (RY) P'b =~ | —¢lixin 3 R e L

)
£ Nlp—jxi-1 —& In—jx1 Mlp_jxn—i
1 b 1 1x1
:—/ u(x)da: 01><1 . (24)
fh a 1 .
n—jx1
Inserting (13) into (24) yields
1 | Yi-1xn
Q' == |01, | U™+ O(K2). (25)
€11
n—jxn
The second term of (19) is
[0 _1xj-1 0j—1x1 0j—1xn—j] 1 (1 1521 0j—1x1 Lj—1xn—j |
Q:QTu" = [ |01x;_1 111 O01xn—j +g 0151 01x1 015xn—j u”. (26)
10n—jxj—1 On—jx1 On—jxn—j| [ 1n—jxj—1 On—jx1 ln—jxn—j|

Inserting (25) and (26) into (19), &" in the discretization error e = &" + O(h?) (23) is

. Oj_1xj-1 0j_1x1 Oj_1xn—j 1 O;_1xj-1 1lj—1ix1 Oj_1xn—j .
e’ =1 — 0151 11 O1xn—j + = [O1xj-1 O1x1 O1xn—j u
10n—jxj—1 On—jx1 On—jxn—j| 10n—jxj—1 ln—jx1 On—jxn—j|
0 1x1 h 1 1x1
:u;l —<¢ 1141 er 01x1 . (27)
O0n—jx1 1, jx1

If j is fixed, as n is increased, x; will approach a and uj = u(x;) will be asymptotically proportional to the
leading term of the Taylor series expansion at © = a + jh about = a. If that term is O(h?), (23) will be
O(h™n{a:2}) If the error is introduced in a column corresponding to a fixed z location, (23) will be O(h)
if u(z;) # 0. Therefore, if ¢ < 2 or the error is spatially fixed, the error will be detected. Note that, while
the column index of the error appears in (27), § does not.

4.3. Summary

In the absence of coding errors, the truncation error computed from the singular equations and the
discretization error computed from the optimal solution are both O(h?). However, the discretization error
is more effective at detecting coding errors than the truncation error.

For coding errors with an index-fixed column, the discretization error can detect errors if ¢ < 2, whereas
the truncation error can only detect errors if ¢ < 1 —r. For coding errors with a physically fixed column, the
discretization error can detect any errors, whereas the truncation error can only detect errors if r < 1.



Location of 8, (i, )

Case u(zx) ¢ a b c d
1 sintz 1 — (1,2) (2,N/4) (N/2,N/2)
2 sinmz? 2 — (1,2) (2,N/4)  (N/2,N/2)

Table 1: Simplified analogy: Cases.

Location of 4, (i, 5)
Case (o, f) a b ¢ d

(1 - (1,2) (2, f(N))  (F(N), f(N))
2 (1,0) - (1,2) (2, f(N)) (F(N), f(N))
3 (0,1 — (1,2) (2, f(N))  (J(N), f(N))

Table 2: EFIE: Cases.

5. Numerical Examples

We demonstrate the observations of Section 4 with numerical examples in this section for the simplified
one-dimensional analogy to the EFIE (12), as well as for the EFIE (7).

5.1. Simplified Analogy

For the simplified analogy, we consider the cases in Table 1 for the domain [a, b] = [0, 1]. Cases la and
2a have no errors, Cases 1b and 2b have an error of 6 = 1/20 at fixed row and column indices, Cases 1c¢ and
2¢ have the error at a fixed row index and spatially fixed column, and Cases 1d and 2d have the error at
spatially fixed rows and columns. The leading term of the Taylor series expansion at x = a + h about z = a
is O(h?), where ¢ = 1 for Case 1 and ¢ = 2 for Case 2.

Figure 1 provides a comparison of the error metrics 7p(u) from (15), e from (23), 7n(u) — 74(u)
from (15), and &" —e" from (23). 7(u) is O(h?) not only for Cases la and 2a, but also for Cases 1b and 2b,
such that the fixed-index errors go undetected. Cases 1c, 1d, 2¢, and 2d are O(h), such that the spatially
fixed errors are detected, but consistency is falsely implied. e” is O(h?) for Cases la and 2a, as well as Case
2b since the error introduced in Case 2b is O(h?) since ¢ = 2. Case 1b is O(h) and Cases lc, 1d, 2¢ and
2d are O(h), such that those errors are detected. Finally, 75 (u) — 75, (u) verifies the expression in (16) and

&" — e verifies the expression in (27), as only the O(h?) terms remain.

5.2. EFIE

For the EFIE, we consider the cases in Table 2 for the domain (z,y) € [—1, 1] x [0, 1]. For these cases,
u(x) = {cos (mz/2) cos (ry/4),cos(rx/4)sin(ry)}, and G(x,x’) = 1 — ||x — x'||3/5. If j is fixed, as n is
increased, (z;,y;) will approach (—1,0), and the leading term of the Taylor series expansion is O(h). For
the EFIE, N denotes the number of triangles used to discretize the domain and h = 2/v/N.

Cases la, 2a, and 3a have no errors. Cases 1b, 2b, and 3b have an error of 6 = 1/100 at fixed row and
column indices. For Cases 1c, 2¢, and 3¢, the row index of the error is fixed, and the column indices f(N)
are those associated with the solution values at z = 0. For Cases 1d, 2d, and 3d, the row and column indices
of the error are spatially fixed and denoted by f(INV).

Figure 2 provides a comparison of the error metrics 7, (u) from (8) and e” from (9). For the EFIE, the
truncation error is computed by factoring out k2, so that

oL; a(en, @;)

ov | T h2

u
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Figure 1: Simplified analogy: Convergence comparison of error metrics e.
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and the truncation and discretization errors are of the same order in (2). For the cases with d,

oul?
Thi (1) = T;a(¢ja @)+ O(h?). (28)

n (28), a(¢;, ¢;) is O(h*) due to the four-dimensional integrals of the basis functions. Therefore, 7 (u) is
O(h?) not only for the cases without error, but for all of the cases with error, such that none of the errors
are detected. e is O(h?) for Cases la, 2a, and 3a. Cases 1b, 2b, and 3b are O(h), and Cases 1c, 1d, 2c, 2d,
3c, and 3d are O(hY), such that these errors are detected.

6. Conclusions

In this paper, we showed how, for a singular system of equations, computing the truncation error by
inserting the exact solution into the discretized equations cannot detect certain orders of coding errors.
However, the discretization error from the optimal solution is a more effective metric.
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