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ABSTRACT
Accurate prediction of ductile behavior of structural alloys up to and including failure is essential in 
component or system failure assessment, which is necessary for nuclear weapons alteration and life 
extensions programs of Sandia National Laboratories.  Modeling such behavior requires 
computational capabilities to robustly capture strong nonlinearities (geometric and material), rate-
dependent and temperature-dependent properties, and ductile failure mechanisms.

This study’s objective is to validate numerical simulations of a high-deformation crush of a 
stainless steel can.  The process consists of identifying a suitable can geometry and loading conditions, 
conducting the laboratory testing, developing a high-quality Sierra/SM simulation, and then drawing 
comparisons between model and measurement to assess the fitness of the simulation in regards to 
material model (plasticity), finite element model construction, and failure model.  Following previous 
material model calibration, a J2 plasticity model with a microstructural BCJ failure model is employed 
to model the test specimen made of 304L stainless steel.

Simulated results are verified and validated through mesh and mass-scaling convergence 
studies, parameter sensitivity studies, and a comparison to experimental data.  The converged mesh 
and degree of mass-scaling are the mesh discretization with 140,372 elements, and a mass scaling with 
a target time increment of 1.0e-6 seconds and time step scale factor of 0.5, respectively.  Results from 
the coupled thermal-mechanical explicit dynamic analysis are comparable to the experimental data.  
Simulated global force vs displacement (F/D) response predicts key points such as yield, ultimate, and 
kinks of the experimental F/D response. Furthermore, the final deformed shape of the can and field 
data predicted from the analysis are similar to that of the deformed can, as measured by 3D optical 
CMM scans and DIC data from the experiment. 
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
F/D Force vs displacement

DIC Digital Image Correlation

CMM Coordinate measuring machine
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1. INTRODUCTION
Accurate prediction of ductile behavior of structural alloys up to and including failure is essential in 
component or system failure assessment, which is necessary for nuclear weapons alteration and life 
extensions programs at Sandia National Laboratories.  Modeling such behavior requires computational 
capabilities to robustly capture strong nonlinearities (geometric and material), rate-dependence, 
temperature-dependence, and ductile failure mechanisms of the material of interest. 

The objective of this study is to validate numerical simulations of a high-deformation crush of 
a stainless steel can geometry. This process consists of identifying a suitable can geometry and loading 
conditions, conducting the laboratory testing independent of any simulation effort, developing a high-
quality Sierra/SM simulation, and then drawing comparisons between model and measurement. 
Through this process we intend to assess the fitness of the following components of the Sierra/SM 
simulation: material model (plasticity), finite element model construction, and failure model.

The material of interest for this study is AISI 304L-VAR, an austenitic stainless steel, with very 
low carbon content and high corrosion resistance. This is a highly ductile alloy that can withstand 
severe deformation before tearing (e.g. equivalent plastic strains of 0.9).

The boundary conditions are designed in order to provide a rigorous crushing load to the can 
geometry, with the intent to promote material tearing. This fosters validation comparisons for 
Sierra/SM’s regularized failure models, such as phase field fracture and nonlocal damage 
regularization. The crushing-type loading, broadly in compression with elements of buckling, stands 
in contrast to puncture loadings with localized shear character that have formed recent validation 
studies [2] and better represents a different class of abnormal mechanical situations. Preliminary 
simulations were employed to propose the orientation of the loading, finding that concentrating the 
impact on one “corner” of the can was most likely to cause tearing; nonetheless, the 304L alloy is so 
ductile that these predictions could not guarantee that tearing would occur. 

The validation can crush experiments were performed on a 220 kip capacity MTS 810 servo-
hydraulic test frame in the Mechanics of Materials Laboratory at Sandia National Laboratories, 
California. Experiments were conducted in actuator displacement (stroke) control at one of four 
monotonic loading rates of 0.01, 0.1, 1, and 5 inches per second.  The stroke and test frame 220 kip 
load cell were recorded during each experiment, but the complex loading angle required an additional 
three-axis load cell to capture the response of each can to the axial loading and resulting deformation.   
Stereo optical cameras were used to capture DIC images and Vic3D 9 Correlated Solutions software 
was used to post-process the images to determine full-field displacement and strain fields. A FLIR 
6903sc infrared camera was used to measure full-field temperature in a region of the cans that were 
tested at the three highest loading rates, where temperature increase was expected. 

Despite that none of the cans exhibited sufficient damage to constitute a tear or through-
crack, this dataset nevertheless provides a valuable resource for model validation through a challenging 
loading. This report seeks to document this validation process, including model-measurement 
comparisons, identification of model successes and failures, and discussion of means of improvement.

This work is the product of a multi-disciplinary team across the laboratories. Xai Lao 
performed the bulk of the simulations and developed the validation comparisons. Bonnie Antoun 
provided guidance for the test geometry, designed the test fixtures, and developed and supervised the 
laboratory testing. Kimberley Mac Donald set up and collected all DIC and FLIR images and 
performed much of the processing of that data.  Amanda Jones completed additional post-processing 
and merging of the DIC and FLIR data.  Gwyneth Diaz completed the 3D optical scans of the 
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deformed can crush specimens and converted the files to *.stl and *.stp formats.  Andrew Stershic 
and Brandon Talamini conducted the preliminary design simulations and provided guidance for the 
production simulations and validation analysis.
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2. MODEL VALIDATION APPROACH
Complementary to the experiment, a finite element model is built to simulate the physical can crushing 
process.  Simulation results are post-processed for verification and validation.  The verification and 
validation process involves mesh and mass-scaling convergence studies, model parameter sensitivity 
studies, and comparison of the simulated response to experimental data. 

2.1. Develop simulation to compare to experiment
In the experimental configuration, a 304L stainless steel can is fastened at its six perimeter screw tabs 
to a wedge fixture, as shown in Figure 2-1 (a). This fixture is designed with a 45° angle in one direction, 
and a 30° in a second direction; this orientation allows the loading cell plate to impact the can on a 
small corner. The can is fitted around the protrusion of an aluminum can insert (not visible) that is 
partially seated in the recess of and bolted to the wedge fixture. This provides additional constraint, 
partially distributing the load from the bolts.

The complementary finite element model consists of key geometric bodies such as the loading top 
plate, base-plate, can, can insert, and screw tabs, as shown in Figure 2-1 (b); note that only the 
protruding portion of the can insert is modeled.  The following boundary and/or contact conditions 
are enforced:

 top plate is constrained to only displace in the vertical direction (i.e. along Z-axis)
 bottom surface of the angled base-plate is held fixed in all directions
 can insert and screw tabs are perfectly connected to the top surface of the angled base-plate 

through tied contact
 all other contact interactions between each geometric body are modeled as Coulomb frictional 

contact with a constant frictional coefficient of 0.4
From previous studies, the mechanical behavior of this alloy may be adequately modeled using a 

rate- and temperature-dependent yield stress, temperature-dependent elastic moduli, and J2 plasticity 
with Voce hardening [3] (Sierra/LAMÉ j2_plasticity).  To model failure, a scalar damage model 
based on micro-mechanistic void nucleation and growth is incorporated into the constitutive model 
[3] (Sierra/LAMÉ bcj_failure). Element death capability is used to remove associated finite elements 
whenever any integration point reaches the critical damage threshold, set to be 15%.  The damage 
and failure employed is purely local; no regularization is included that could provide a material 
length scale. For more detailed information on the calibration and selection of the constitutive 
parameters, please see [2].  

This constitutive model is assigned to all geometric bodies, which were meshed with eight-noded 
hexes with Total Lagrange section, full-integration formulation of degree 3, and a volume-averaged 
Jacobian.  It has been verified that the simulated responses are insensitive to the choice in modeling 
the can insert as aluminum (as in the experiment), or 304L stainless steel.  This is so because in 
either choice, the can insert experienced very little yielding throughout the loading protocol.  
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The loading protocol consists of the displacing the top plate downward at the prescribed loading 
rate (e.g. 5 in/s) in the -Z direction until the can is crushed and a displacement of 1.0 in. is reached, 
then the loading is reversed at the same rate.  This crushing process is simulated through a coupled 
thermo-mechanical explicit dynamic analysis with appropriate mass scaling. 

In the following analyses, a baseline loading rate of 5 in/s is assumed for the simulation, unless 
otherwise noted. Similarly, simulations shall be assumed to use adiabatic heating (non-conductive) for 
thermal effects and mass scaling in order reduce run-times.
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                               (a)                                                                                           (b)       

Figure 2-1. Comparison between experimental and finite element model set-up: (a) 304L can 
specimen bolted to angled base plate, and (b) complementary finite element model

2.2. Verification
The verification process consisted of mesh and mass-scaling convergence studies to substantiate the 
appropriate and consistent simulated response. 

2.2.1. Mesh Convergence Study
Four mesh densities, see Table 2-1, each being successively uniformly refined by a factor between 1.5 
and 2.0, are used for the mesh convergence study. We note that a constant target timestep was 
specified for mass scaling for all mesh densities tested. As this results in different degrees of mass 
scaling for each mesh, this affects the interpretation of overall system response with respect to the 
influence mesh density alone. Recognizing this subtlety, additional sets of analysis with different target 
time step for mass scaling were conducted in an attempt to isolate the pure mesh effect; these results 
were consistent and concluded to the same converged mesh density.  

Figure 2-2 shows the global force versus displacement (F/D) response of each analysis, in which 
the global force is defined as the sum of all nodal reaction forces on the bottom surface of the base-
plate and the global Z-displacement is absolute value of the averaged of all nodal Z-displacements on 
the bottom surface of the top plate (see Figure 2-1 (b)).  Although the mesh dependency of the 
structural response when using a local damage model is well-documented, this dependency was 
negligible in the simulated responses because the damage growth was minimal, and only a few elements 
died.  Hence, the simulated F/D responses converged with mesh refinement, as shown in Figure 2-2.  
The converged response (i.e. simulation with a mesh density of 140,372 elements) is comparable to 
the experimental data; whereas with coarser mesh densities, the simulated responses were much softer 
due to an inadequacy in resolving the local deformation; this leads to a relatively more dispersed 
deformation field, and consequently different instances of bulging.  To substantiate this claim, we note 
that deviations between the responses occurred in the loading time-span during which the can was 
undergoing large deformation and geometry change, and not in the initial loading and unloading 
periods when there was little-to-no deformation and change in geometry.

Load Cell

Can

Wedge fixture

Screw tabs

Can Insert

Screw tabs

Base Plate

Top Plate

Can
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Table 2-1. Mesh element densities 
Mesh Element densities
1 204,932 

2 140,372

3 65475

4 34794

Figure 2-2. Mesh convergence study results: simulated global F/D responses plotted against 
experimental data 

While global responses converged, it does not always guarantee converging local responses.  To 
be more rigorous in this study, local features such as displacement and temperature field, and 
deformation shape at final loading stage were also compared.  At the final deformed and unloaded 
state of the can, the displacement and temperature fields converged with mesh refinement, as shown 
in Figure 2-3 (a) and (b), respectively.  Additionally, the final deformed shape of the can converged.  

  

increasing mesh 
refinement
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(a)

(b)
Figure 2-3. Mesh convergence study results: simulated local features (a) displacement field, and (b) 
average temperature field of final deformed shape of can

2.2.2. Mass Scaling Convergence Study
When using explicit dynamic analysis to model quasi-static or less rapid physical processes, artificial 
mass scaling is often used to reduce analysis time. In this study, significant mass scaling is required to 
allow for a tractable simulation time.  However, this approach often implies a reduction in simulation 
prediction quality because the addition of artificial mass may significantly alter the inertial effects of 
the physical processes.  Recognizing this, we seek to quantify the effects that this artificial mass scaling 
has on the quality of the simulated response through a mass scaling study.  Hence, five analyses, each 
with a different mass scaling applied to all geometric bodies, were completed.  The mesh discretization 
of 140,372 elements were used along with five different degrees of mass scaling that are indirectly 
specified through the target time increment, see Table 2-2.  An additional time-step scale factor of 0.5 
is used to ensure stability and no spurious early element death, addressing previously observed stability 
issues with the Total Lagrange Hex8 element.1

Overall, the F/D responses of the analyses showed a convergent trend as mass scaling is 
decreased, as seen in Figure 2-4, although some sensitivity remains in the baseline (TS = 1.0e-6s) 
simulation.  The simulated response with more mass scaling was stiffer and less comparable to the 

1 Recent Sierra/SM development work has focused on stability of the Total Lagrange Hex8 element, particularly the 
calculation of the critical timestep in explicit dynamic simulations. Through preliminary testing, the authors believe that 
these improvements likely address this present instability. This element stability hardening is available in Sierra/SM 5.8.1.

Finer MeshCoarse Mesh



16

experimental result because of stronger non-physical inertial effects.  Complementing the convergent 
trend in the global responses, the displacement and temperature fields also converged, as shown in 
Figure 2-5 (a) and (b), respectively.  Also, at the last load step of the analysis with the least mass scaling, 
the deformed shape of the can converged with decreasing mass scaling.  Despite best efforts to balance 
between reduced computation time and prediction accuracy, it is important to note that the use of 
mass scaling may still affect the overall response, and may contribute to the differences between model 
and experiment. Considering analysis’s duration and accuracy, the analysis with a target time increment 
of 1.0e-6 seconds is taken as the converged response.   

Table 2-2. Target time step increments used in mass scaling convergence study

Analysis Target Time Step Increment [s] Total Mass Changed of Can [%]
1 1.0e-5 7.90e5

2 5.0e-6 1.97e5

3 2.0e-6 1.69e4

4 1.0e-6 7.80e3

5 5.0e-7 1.87e3

Figure 2-4. Mass scaling study results: simulated F/D responses plotted against experimental data

Decreasing 
mass scaling

Computation 
time limit 
reached
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(a)

(b)
Figure 2-5. Mass scaling study results: simulated local features (a) displacement field, and (b) 
average temperature field of the deformed shape of can at the last converged load step of the 
simulation with the least mass scaling

2.3. Comparison of F/D responses
All subsequent coupled thermal-mechanical explicit dynamic analyses use the converged mesh 
discretization of 140,372 elements and a mass scaling with a target time increment of 1.0e-6 seconds 
and time step scale factor of 0.5.

The simulated global force vs displacement response in each global X, Y, and Z direction is plotted 
against the experimental data, as shown in Figure 2-6 (a), (b), and (c) respectively.  Despite under-
predicting the reaction forces, the simulated F/D response in the X and Y-direction was able to pick 
up the general trend of the experimental data.  The instantaneous jump in reaction force and its 
oscillation in the onset and tail end of the unloading process was due to dynamic effects that are 
magnified the mass scaling. 

While responses in the X and Y direction moderately captured the experimental data, response in 
the Z-direction predicted the experimental F/D quite well.  The loading, softening, and unloading 
branches and their respective average slopes of both the simulated and experimental response curves 
were comparable.  Similar to the experiment, the system is being unloaded from a stiffer geometric 
configuration; hence, for both response curves, the unloading branch was steeper than the initial 
loading branch.  Also, after the system was unloaded, free vibration manifests itself in the oscillation 
of the simulated response.  Furthermore, despite the timing offset, the simulation was able to pick up 
the first two kinks, yield, and the ultimate point.  But, it failed to capture the third kink; this third kink 
may be an outlier because it did not show up in the response curves of all other experimental replicates 
loaded at lower rates (see Figure 2-7).  

more mass scalingless mass scaling
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Although the majority of the report focuses primarily on the can crushing process at a loading rate of 
5.0 inch per second, other loading rates such as 1.0, 0.1 and 0.01 inch per second were also 
investigated.  The general findings and observations of the simulated results at these loading rates were 
similar to those concluded from the results at 5.0 in per second loading rate; simulated F/D responses 
in the Z direction were comparable to the experimental data, as shown in Figure 2-7, and the simulated 
F/D responses in the other global directions exhibited greater differences. 

(a)

(b)

(c)
Figure 2-6. 5.0 inch/sec Loading Rate’s Simulated F/D response plotted against experimental data 
in: (a) global X-direction, (b) Y-direction, and (c) Z-direction

‘kink’
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(a)

(b)

(c)
Figure 2-7. Simulated Global Z-direction F/D response plotted against experimental data for loading 
rate (a) 1 inch/sec, (b) 0.1 inch/sec, and 0.01 inch/sec (isothermal) 

2.4. Map F/D features to simulation events
To further elucidate the can crushing process, key features of the F/D response are mapped to 
simulation events.  As illustrated in Figure 2-8:

 (1)  (2): During this process, the can is loaded to yielding and minimally deforms locally in 
the vicinity of the contact area; thus, the reaction forces gradually increase.

‘kink’

‘kink’

‘kink’
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 (2)  (4): As the can continues to yield and deform locally, the stiffness decreases while both 
the contact area and consequently, the reaction force increases. At (4), the can begins to bulge 
(local buckling) in the vicinity of the contact area.  

 (4)  (7): With similar deformed geometry between state (4) and (5), the relatively sudden 
increase of contact area results in a sudden increase of reaction force as evident in the first 
kink point.  Then, as the bulge grows with the loading, the stiffness of the current deformed 
geometry is less than before (i.e. at (1)-(4)).  Also, there is a balance between the effects in 
lessening the stiffness caused by localized deformation, and in increasing the stiffness caused 
by the increase of contact area; the local buckling stabilizes, resulting in a steady effective 
positive stiffness.  

 (7)  (9): Similar to the process (4) to (5), from (7) to (8), the reaction force suddenly increases 
due to a sudden increased of contact area. The reaction force gradually increases with contact 
area, whereas the stiffness slowly decreases. At (9), the can begins to bulge globally at an area 
remote from the vicinity of the contact area. 

 (9)  (11): With continued loading, the can predominantly deforms globally, while there is no 
net increased in contact area.  Consequently, there is not enough ‘stiffening’ induced by contact 
area to offset the diminishing stiffness effect caused by the global bulging.  Hence, the ultimate 
point at (9) and a softening branch.

 (11)  (13): With relatively constant deformed current geometry, as the system is unloading, 
the contact area decreases and consequently, so does the reaction. After the system is fully 
unloaded during which there was no contact area, the reaction force oscillates due to dynamic 
effects from free vibration.
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Figure 2-8. Map of F/D features to simulation events, with color indicating contact status (red = in-
contact)

2.5. Establish sensitivities to model parameters
Despite comparable F/D responses between the simulation and experiment, the kinks are not aligned. 
This discrepancy may be caused by the simulated response’s sensitivity to modeling efforts.  To this 
end, efforts were made to validate simplifications and assumptions made in modeling the physical 
process, and to establish sensitivities to model parameters such as initial geometric configuration, 
treatment of boundary conditions, and material parameters. 

The simulated results from the sensitivity study are compared against the baseline (converged 
simulation) simulated results, and experimental data. Reasonable bounds for model parameters were 
determined through analyst experience, rather than tangible physical evidence; for example, geometric 
tolerances tend to be rather small, as the test specimen must remain in alignment, whereas material 
calibration procedures can often lead to a much larger spread for yield strength and hardening 
parameters; a large range was considered for friction coefficient, as this is rarely measured directly for 
the test materials, and wide ranges exist in the literature.

One key factor unexplored in this sensitivity analysis is geometric tolerances in the manufacturing 
of the can test specimen and differences between idealized geometry and manufactured specimens. 
The CMM comparisons later in this study address this concern in part, but not perhaps to the level of 
detail needed to verify geometric tolerances.

1.

2.

3.

4.
5.

7. 8. 9.

10. 11.

12.

13.

6.
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2.5.1. Specimen Orientation
By considering slightly different initial specimen orientations with respect to the top loading plate, the 
simulated response’s sensitivity to specimen orientation may be found.  Specifically, four different 
initial specimen orientations are established by rotating the baseline specimen orientation by +/- 1 
degree about each axis of rotation, as shown in Figure 2-9.

The simulated global F/D responses are insensitive to initial specimen orientation as evident in 
Figure 2-10.  While the kinks are invariant, the difference in contact area between analyses results in 
small deviations in the F/D responses between 0.3 and 0.8 inch global displacement interval.  
Furthermore, the final deformed shapes are comparable.  

Figure 2-9. Original geometry configuration with illustration of the axes of rotation

 

                                       

(a)                                                                         (b)
Figure 2-10. F/D response plotted against baseline simulation and experimental data for: (a) 
specimen rotated about Axis 1, and (b) specimen rotated about Axis 2

Axis 2

Axis 1

Axis 1
Axis 2
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2.5.2. Yield Stress
Two initial yield stresses, with +/- 5% difference from the base-line initial yield stress, are considered.  
As shown in Figure 2-11, the simulated global F/D responses are sensitive to the initial yield stress of 
the material model.  This sensitivity is noticeable in the loading period during which the can 
experienced significant yielding.  On the contrary, since there is minimal-to-no yielding in the initial 
linear loading and unloading branches, there was no deviation in the response curves.  

Furthermore, increasing the initial yield stress shifts both the yield point, and consequently, the 
response curve upward.  For the case with larger initial yield stress, the localized bulge is larger, so it 
contacts the top loading plate earlier; hence, the second kink occurs sooner. 

Figure 2-11. Simulated F/D response for model with varied initial yield stress plotted against base-
line simulation and experimental data 

2.5.3. Voce Hardening Parameters
All analyses use the Voce hardening model, which is represented with the following equation:

σ = σ𝑦 +𝐴(1 ― exp ( ― 𝑛ε𝑝),

where σ𝑦 is the initial yield stress, A is the hardening modulus, and n is the exponent coefficient.  The 
hardening slope is:

𝑑σ
𝑑ε𝑝 = 𝑛𝐴exp ( ― 𝑛ε𝑝)

Using the base-line n and A, the initial hardening slope is calculated by setting ε𝑝 to be 0.  To test the 
model sensitivity on the initial hardening slope, two other initial hardening slopes with +/- 5% 
difference from the base-line initial hardening slope are considered.  Since the Voce hardening 
parameters are coupled in the slope expression, two sets of {n, A} are considered:  one set consists of 
a varied n, paired with the base-line A; the other consists of a varied A paired with base-line n.

At this level of variation, the simulated global F/D responses are insensitive to either Voce 
hardening parameters, but were relatively more sensitive to A than n, shown in Figure 2-12.  Aside 
from the unloading branch, deviations in F/D responses occurred after a global displacement of 0.25 
inch.   Note that the kinks and yield point are relatively unchanged; whereas, there is a slight sensitivity 
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to the peak force. Increasing either n or A results in stiffer response due to a larger effective hardening 
slope.

                                        (a)                                                                         (b)
Figure 2-12. F/D response plotted against baseline simulation and experimental data for: (a) +/- 5% 
of Voce exponent coefficient n, and (b) +/- 5% of Voce hardening modulus A

2.5.4. Yield Surface
Besides the baseline simulation with J2 von Mises yield surface, we explored model-form sensitivity by 
testing the model with a Hosford yield surface.  For only isotropic hardening, the yield surface can be 
expressed by the same parameters: 

𝑓 σij,ε𝑝 = ϕ(σij) ― σ(ε𝑝) = 0,

where ϕ is effective stress and σ is the current yield stress. The Hosford effective stress is given as:

ϕ(σij) =
|σ1 ― σ2|a + |σ2 ― σ3|a + |σ1 ― σ3|a

2

1∕a

where a is the yield surface exponent.  Hosford yield surfaces reduces to J2 von Mises yield surface 
when the yield surface exponent is 2 or 4.  For this study, the yield surface exponent is set to 15 
resulting in a yield surface position between the Tresca and J2 von Mises yield surfaces. No other 
material re-calibration is performed; the properties from the original J2 von Mises model are used.

The simulated global F/D responses are sensitive to the choice of yield surface used.  As shown 
in Figure 2-13, the analysis with Hosford yield surface results in a ‘softer’ response.  Unlike the first 
kink, analysis with the Hosford yield surface does a better job at picking up the second kink.   
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Furthermore, response curve of the analysis with the Hosford yield surface experiences the 2nd kink 
sooner compared to the base-line analysis, because there is more local bulging at the vicinity of the 
contact area, and consequently increased of contact area with the loading plate. 

Figure 2-13. F/D response for models with J2 von Mises and Hosford yield surface

2.5.5. Contact Friction Coefficient
Since the model has many contacts between different geometric bodies, it is prudent to assess its 
sensitivity to contact friction coefficient.  To this end, two separate analyses are performed for 
comparison, each with a different contact friction coefficient (i.e. 0.3 and 0.5). 

The simulated global F/D responses of these analyses are compared to the base-line analysis (i.e. 
simulation with contact friction of 0.4) and the experimental data, as shown in Figure 2-14.  Evidently, 
the global F/D responses are relatively insensitive to the contact friction coefficient.  In fact, deviation 
between the responses only occurs during the ‘softening’ branch (i.e. between the ultimate and 
unloading point).  Prior to this point, the can predominantly deforms locally in the vicinity of loading 
contact, resulting in little to no slippage between the geometric bodies.  In contrast, during the 
‘softening’ branch, the can exhibits broad buckling, with deformation distant from the loading contact 
area, resulting in some slippage.  This slippage permits sensitivity to the friction coefficient, with a 
larger friction coefficient resulting in a larger global force.  Despite this difference in global response, 
the final deformed geometry of the analyses are very similar. 
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Figure 2-14. F/D response for models with different contact friction coefficients

2.5.6. Boundary condition assumptions (treatment of bolted connections)
The model’s sensitivity to the treatment of the bolted connections are also assessed.  Figure 2-15 
shows the node-sets and surfaces that are used to define different tied boundary conditions of the 
bolted connections to the base-plate.  Three alternative combinations of the treatment of the bolted 
connections are considered:

 (Baseline) Both can insert bolt and screw tab surfaces tied to base-plate

 Can insert bolt node set and screw tab surfaces tied to base-plate

 Both can insert and screw tabs bolt node-sets tied to base-plate

 Can insert surface and screw tabs bolt node-set tied to base-plate

Clearly, as shown in Figure 2-16, the simulated global F/D responses are sensitive to the treatment 
of the bolted connections.  Comparing the two cluster of the analyses (i.e. screw tabs bolt node-set 
tied versus screw tab surfaces tied), treatment of the screw tabs boundary condition significantly 
affects the global response, resulting in a large offset of the curves; whereas, the effects of the can 
insert boundary conditions to the global response are relatively minimal.  In fact, the offset of response 
curves between the sets are caused by the different boundary conditions of the screw tabs.  

Similar to the observation made in the prior section regarding the contact friction coefficient, the 
deviation in the global response occurs predominantly in the ‘softening’ branch.  In the analyses with 
screw tabs bolt node-sets tied, the oscillatory responses at the end of the ‘softening’ branch are 
believed to be a numerical artifact due element stability2.  Again, despite the difference in global 
response, the final deformed shape of the can of these analyses were still comparable. 

2 The authors believe that the recent element stability hardening, as previously mentioned in Section 2.2.2, addresses this 
present instability.



27

(a)                                                  

 (b)
Figure 2-15. Illustration of the node-sets and surfaces that will be tied to base-plate for (a) screw 

tabs, and (b) can insert 

Screw tab surfaces (highlighted)

Can insert surface (highlighted)

Screw tab bolt node-set (highlighted)

Can insert bolt node-set (highlighted)
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Figure 2-16. F/D response for models with different can insert and screw tab boundary conditions 

2.5.7. Bolt Preload Tension
The study of the model’s sensitivity to boundary condition treatment of the bolted connections 
assessed the two extreme cases in the treatment of the screw tabs boundary condition (i.e. one with 
only the screw tabs bolt node-sets tied and the other with their surfaces tied).  An intermediate case 
with a more realistic treatment of the boundary condition of the screw tabs bolted connections is 
considered via preload tension capability in Sierra.  Note that for this case, the bolted connections at 
the can inserts are modeled as tied interfaces, since these boundary conditions have minimal effects 
on the response, as previously shown.  Additionally, only isothermal mechanical explicit dynamic 
analysis is considered for this study since the can’s mechanical responses (F/D curve and deformed 
shape) are comparable to coupled thermal-mechanical analysis. 

Three separate isothermal mechanical explicit dynamic analysis, each with a different contact 
friction coefficient, are performed.  In these analyses, the bolted connections at the screw tabs are 
modeled explicitly with a bolt head and shaft with the interface conditions, as shown in Figure 2-17, 
and their respective preload tension.  During the preload period, the preload tension along each bolt’s 
longitudinal axis is established to a target value which is determined based on actual torque applied in 
the experiment (40 in-lb).  A relaxation period immediately follows the preload period to damp out 
any inertial effects from the preload process prior to the main loading. 

The preload force is determined from a classical relation:

analyses in which 
screw tab surfaces 
were tied 

analyses in which 
screw tab bolt node-
sets were tied 

oscillatory 
responses due to 
spurious element 
deaths  
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𝑇[𝑖𝑛―𝑙𝑏𝑓] = 𝐾𝑃[𝑙𝑏𝑓]𝑑[𝑖𝑛]

where T is torque, P is preload force, d is bolt diameter, and K is the nut factor, typically taken as 
0.2. This relation is known to be approximate, with error as 35% [4]. The imprecision of this relation 
is accounted for, in part, by considering a wide range of friction coefficients in the preload study: 0.3-
0.5 .

The simulated global F/D responses of these analyses is plotted against the experimental F/D 
response in Figure 2-18.  These responses are able to capture key features (i.e. kinks, ultimate point, 
softening branch, etc.) and shape of the experimental F/D response curve. Additionally, the trends 
are consistent with the conclusions drawn from the studies with different screw tabs boundary 
condition and contact friction coefficient.  

Since this bolt preload boundary condition is more representative of the real bolted connection, 
we expected that the corresponding F/D response should be closer to the experimental data in than 
previous analyses with simplified bolt treatment.  However, this is not the case; the response is stiffer, 
with a delayed unloading branch, compared to the baseline model. This response is similar to the 
alternative boundary condition cases using tied nodesets for the screw tabs.

A potential explanation for this discrepancy may be that the preload simulation is in fact more 
accurate, but combined with the stiffer response imparted by mass scaling (refer to Figure 2-4), it 
overshoots the experimental data. Therefore, it is possible that the softer response of a simulation 
without mass scaling combined with the stiffer response of the preloaded bolt connection may 
counteract each other, providing a response closer to the experimental data. Unfortunately, testing 
this hypothesis exceeds the limits of computational tractability on Sandia’s Capacity Clusters (HPC), 
so it was not pursued at this time.

Figure 2-17.  Schematic of bolted connection at the screw tabs

base-plate

bolt shaft

bolt head

screw 

tab

merged/tied
interface

friction 
contact
interface

friction 
contact
interface
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Figure 2-18.  F/D response for bolt preload models with different contact friction coefficients

2.6. Comparison of deformed geometry from CMM scans and DIC results
Although the global F/D responses, especially in the global Z-direction, between simulation and 
experiment were comparable, additional data is available for model validation, namely digital image 
correlation (DIC) strain/displacement data, infrared temperature field data, and 3D or coordinate 
measure machine (CMM)-scanned deformed cans. Developing comparisons against these field 
measurements complements the previous F/D comparisons to provide a more rigorous validation 
approach. Successful efforts and future endeavors in comparing the deformed shapes are presented 
this section. 

2.6.1. 3D CMM Scan
As a preliminary base-line assessment, the simulated final deformed shape of the can is compared to 
an image of the experimental final deformed shape of the can.  Figure 2-19 illustrates key features 
common between the experimental and simulated final deformed shape of the can.  These key features 
include:

 the relatively flat triangular ‘load bearing’ area 

 the ‘Y-shaped’ bulging ridge and top bulging dome, which were brought about by the 
localized buckling at the vicinity of the ‘bearing’ area

 the bulging ridge of the can’s lateral sides, and the valleys between the this ridge the ‘Y-
shaped’ ridge, which were brought about by the buckling remote from the ‘bearing’ area

 the ‘uplift’ of the front unconstrained bottom portion of the can 

In contrast, a key difference between the two final deformed shapes of the can is that in the 
experiment, there was no fracture observed; whereas, in the simulation, full damage develops in a few 
elements, resulting in their removal by element death. These areas of simulated damage correspond to 
areas of abrasions, as seen in the experiment.  Specifically, higher damage concentrates along the 
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deformed edge of the can between the top bulge and ‘bearing area’, at which there are significant deep 
abrasions along this contour. 

Complementary to comparisons via photos, a more thorough comparison may be achieved by 
comparing 3D scans of the final deformed shape to that of the simulation.  Before actual comparison 
can be made, both experimental and simulation data are post-processed as illustrated in the flowchart 
found in Appendix A.1 resulting in a common and consistent representation of the deformed can.  
This process includes:

1. Raw scan data of many images of the deformed can to allow a full 360 degree representation 
are stitched together to form a coherent geometry using the scanner software 

2. The experimental deformed can geometry is further processed to produce an ACIS solid 
model (stp format) so that it can be use in Cubit.  

3. Exodus file of the simulated deformed geometry of the can is also processed to produce an 
ACIS solid model (stp format).

4. Both deformed can ACIS solid models are imported into Cubit.  

5. Establish a common reference point to facilitate alignment and overlay of both ACIS models 
since each model references different global coordinate systems.

a. Ideal reference points are spatial points either on or associated with region of the 
deformed geometry at which has undergone negligible deformation and displacement 
that were common to both the experiment and simulation.    

b. Since the farthest screw tab opposite to the loading top plate negligibly deformed and 
displaced in both the experiment and simulation, the common reference point was 
taken to be the center of this tab.

6. Use ‘Transform’ operations in Cubit to align and overlay both ACIS models to the best of an 
analyst’s judgment. 

7. Mesh both deformed ACIS solid models and export each ACIS solid model separately as 
Exodus file so that the final deformed shaped may be compared in Paraview.

As an estimate to provide a 360° comparison, Figure 2-20 (a)-(c) shows the deformed shape of 
both the simulation and experiment and their overlaid geometry, as viewed from the global ±X, ±Y, 
and ±Z-axis, respectively.  Overall, the simulated final deformed geometry is consistent with the 
deformed geometry of the experiment.  

Despite the successful implementation of this workflow, it is equally important to recognize its 
drawbacks, specifically in terms of accuracy and computational cost.  Intrinsic error in mesh 
representation of the deformed geometries, especially at severely deformed regions, should be 
minimized as practical by using higher mesh density at the expense of computational cost.  
Additionally, errors associated with human subjectivity when aligning and overlaying the deformed 
geometries should also be considered. 
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                             (a)                                                                                               (b) 
Figure 2-19.  Comparison key features of can’s final deformed shape between (a) experiment and 
(b) simulation

dead 
elements 
removed

Note: Photo of the deformed shape of the can may be from the 
experiment with a different loading rate (0.01 inch/sec) and maximum Z-
displacement excursion (1.23 inch)   

abrasions
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Figure 2-20. Comparison of can’s final deformed shape between simulation and experiment as view 
from (a) ±X-axis, (b) ±Y-axis, and (c) ±Z-axis   

(a)

(b)

(c)

                        Simulation                                    Experiment                   Overlay (Red = Experiment)
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2.6.2. Digital Image Correlation Results 
Due to its versatility and relative ease of implementation, digital image correlation (DIC) techniques 
are often use in mechanical experiments to measure displacement and strain fields.  This technique is 
implemented for the can crushing experiments in this study, with the results shown in Figure 2-21.  
The DIC results (i.e., displacement and strain fields) are compared to the corresponding field variables 
from the simulation. Only the X (lateral) and Y (vertical) fields are presented here, but a more 
comprehensive data comparison is provided in Appendix A.2. It is important to note that the DIC 
results and the FE model are not perfectly aligned to the same coordinate system, despite our best 
efforts to do so.

Figure 2-21 shows a comparison between the simulated and DIC displacement magnitude field 
variable at two different load steps (i.e., at ultimate point and largest displacement excursion of global 
F/D response).  As illustrated in Figure 2-21, the displacement magnitude field variable of the 
simulation and DIC are qualitatively comparable.  Specifically, the contour striations of both the 
simulation and DIC are similar and occur over a relatively common region of the deformed can.  
Furthermore, the wavy contours are present in both the DIC and simulated displacement magnitude 
field.  Despite the similarity in contour striations, the size of each contour band and their transition 
(e.g., gradient) are different between the simulated and DIC result.  These differences are more 
pronounced at the later loading step, as evident in the smaller width and rapid transition of the 
contours as illustrated in Figure 2-21 (b). We believe that the primary cause of this difference is that 
the simulation predicted a larger bulging ridge than was captured by DIC; however, the slight 
differences of the coordinate systems may also contribute.
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(a)

(b)

Note: The colored scale bars are the same for experimental DIC and simulated data. 

Figure 2-21.  Comparison between simulation (right) displacement (magnitude) field variable and 
experimental (left) DIC displacement (magnitude) response at (a) ultimate point, and (b) largest 
applied displacement of global F/D response

Y

Z X

Y

Z X

Y

Z X

Y

Z X

DIC Simulation
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2.6.3. Future work
Thus far, only qualitative comparisons between simulated and experimental results have been 
established.  It will be valuable to also establish some quantitative metrics to measure ‘errors’ in F/D 
response and in the final deformed geometry.  In either case, these error metrics may be use in 
optimization scheme for model parametrization study. 

Since error metrics for F/D response (i.e. an averaged error sense in term of energy of F/D curve 
and/or mean squared difference of the F/D data points) are well established, the primarily focus here 
is to establish an error measure in the final deformed geometry.  Particularly for quantifying ‘error’ in 
the final deformed geometry, a potential error metric can be established in terms of the ‘intersected’ 
volume between the simulated and experimental deformed shapes as demonstrated in Figure 2-21 (a).  
Following naturally from the “Alignment and Overlaying” process, the total ‘intersected’ volumes, 
along with the average volume of the two deformed shapes, may be readily calculated using the 
Geometry Boolean functions in Cubit, provided that the deformed geometries are in favorable format.  
Then, the ‘intersected’ volume is normalized by the average volume of the two deformed shapes; this 
quantity represented on average, how well the predicted deformed shape fits the true experimental 
deformed shape.  Finally, the percent error is computed by subtracting this quantity from one. 

 

(a)

(b)
Figure 2-22.  Illustration of the error metric calculation process for (a) misaligned, but successful 
intersected volumes calculation and (b) aligned, but unsuccessful intersected volumes calculation 
deformed geometries

This proposed process has been prototyped and executed with mixed success. In some cases, the 
intersection operation failed to get the intersected volume between the experimental and simulated 
deformed geometries that were aligned because Cubit could not determine the relationship between 
the geometric entities, as see in Figure 2-21(b).  After much exploration and help from the Cubit team, 
we believe that this failure may be attributed to Cubit’s inability to operate on a large number of 
surfaces in close proximity.  Ongoing efforts and other options (such as possibly using Paraview filters 
to calculate intersected volume) are being explored. 

simulated 
deformed shape

experimental 
deformed shape

intersected 
volumes
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Similarly, in future endeavors, we would like to develop a scheme which enables quantitative 
comparison between the simulated and DIC field data.  This often requires that DIC data and the FE 
model are aligned with the same coordinate system.  Doing so will provide a more direct one-to-one 
comparison of the data and minimize errors in transforming one data set to a consistent coordinate 
system of another.  Additionally, interpretation of field data comparisons over time is not trivial. To 
address this challenge, the field data may be reduced to a 1-D field over time by only sampling data at 
key DIC locations (e.g., at a specific point or along a specific line within the DIC data) and comparing 
this field data to the interpolated FE model results at corresponding points.  Alternately, a ‘leveling 
approach’, in which the FE model is used to simulate the DIC experiment, provides a more 
comprehensive means to compare the field data by enabling the capability to compute the difference 
between the two field data sets.  The suggested approaches as discussed here are not exhaustive.  
Hence, there is ongoing discussion and collaboration with R&D engineers to determine the most 
effective and feasible methods for performing comprehensive DIC-FE-model comparisons.
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3. CONCLUSION
State-of-the-art computational tools and capabilities are often used to accurately model physical 
processes and predict ductile behavior up to failure in the component or system failure assessment.  
In this study, Sierra/SM is used to model the physical process of the crushing of a 304L stainless steel 
can.  The simulated results are verified and validated through mesh and mass-scaling convergence 
studies, several parameter sensitivity studies, and a comparison between simulated and experimental 
results. 

From the convergence studies, the converged mesh and degree of mass scaling are established to 
be the mesh discretization with 140,372 elements, and a mass scaling with a target time increment of 
1.0e-6 seconds and time step scale factor of 0.5, respectively.  Using these parameters, the simulated 
results from the coupled thermal-mechanical explicit dynamic analysis are comparable to the 
experimental data.  In addition to reproducing the different branches of the response curve (i.e. 
loading, softening, and unloading), the simulated F/D also predicts key points such as yield, ultimate, 
and kinks.  It is established that the kinks are caused by stiffness increases brought about by the 
additional contact area; whereas the ultimate point (peak force) is limited by the can’s inability to 
support further loading due to the development of a significant buckling mode. Furthermore, the final 
deformed geometry of the simulation and experiment is very similar, as verified by comparisons to 
photography and 3D or CMM scans.  They both consist of common features such as bulges caused 
by buckling, a triangular bearing area, and uplift at the can’s base. Favorable comparison of 
deformation fields between the finite element model and DIC data further supports this validation. 

Despite comparable F/D response, final deformed shape between the simulation and experiment, 
and comparable DIC fields, the kinks are still misaligned; the simulation under -and over-predicted 
the timing of the first and second kinks, respectively.  This discrepancy may be because of the 
response’s sensitivity to modeling parameters and assumptions.  To this end, a study was done to 
establish the response’s sensitivity to model parameters such as initial geometric misalignment, 
treatment of boundary conditions of screw tabs and can insert, and material yielding and hardening 
parameters.  Out of all the model parameters, the F/D response was most sensitive to the initial yield 
strength, yield surface, and treatment of boundary conditions for the can insert and screw tabs.  Similar 
to decreasing the initial yield strength, changing the yield surface shape (i.e. using Hosford vs von 
Mises) shifted the response curve downward; hence, resulting in a more compliant response.  This 
compliance may have allowed the simulation with the Hosford yield surface to better pick up the 
second kink.  On the contrary, the kinks’ positions were invariant to initial yield stress and the 
particular contact boundary conditions of the can insert and screw tabs.  Furthermore, it was found 
that the response is more sensitive to the contact boundary condition of the screw tabs than the can 
insert.  Even so, changing the contact boundary condition of the screw tabs from circular bolt node-
sets to having the whole surface tied to the base-plate resulted in little change to the response curve.  
Considering all these findings, it is concluded that the simulation’s inability to better capture the kinks 
is likely affected more by the material constitutive modeling than the model construction choices.  
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APPENDIX A.

A.1. Flowchart for simulated and experimental can deformed geometries 
alignment process 

Exodus (.exo) file 
of deformed shape

1.  Filter out dead elements
(a) Using Paraview, use 
threshold filter on ‘death 
status’ or,
(b) Using Python, run the 
script provided in A.2, 
threshold.py 

2.  Remesh updated deformed .exo file

If updated .exo file has too many 
‘quad’ facets, for computational 
efficiency delete existing mesh, remesh 
surfaces with fewer ‘tri’ elements, and 
export Facet file (.fac)

updated_deforme
d_exo_file_1

updated_deformed_f
ac_file

3.  Convert .fac file into ACIS  
Run facet2acis_V2_vol2.py script 
provided in A.3. to convert .fac file 
into ACIS (.sat) file format

4.  Convert ACIS (.sat) to ACIS 
(.stp) 
Import ACIS (.sat) into Cubit; 
stitch, heal, and regular all 
geometric bodies.  
Export file as ACIS (.stp).

2.  Convert file into ACIS (.stp) using 
Geomagic Design X software 

updated_deformed_
sat_file

Raw 3D CMM scan data of 
cross-sectional cuts of deformed 
can (VL-500 Series Application.) 

1.  Matched, aligned, and stitched 
multiple cross sections into one 
coherent geometry using Geomagic 
Design X software. 

Alignment Process
See sample journal file in 
Appendix A.4.

Simulated_deformed_
geometry (.stp)

Experimental_deformed
_geometry (.stp)

Mesh deformed geometries 
and export each individual 
(.exo) file to be view in 
Paraview.

Compute intersected 
volumes between the 
deformed geometries using 
Cubit Boolean operations.

Experiment Side Simulation Side
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A.2. Comparison between simulated response and DIC result
Results are presented for the load step at the ultimate point of F/D response.  Note that the colored 
scale bars are the same for experimental DIC and simulation data. 
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Results are presented for the load step at the largest applied displacement during the test.  Note that 
the colored scale bars are the same for experimental DIC and simulation data. 
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A.3. Python script used to filter out dead elements, threshold.py (Shared by 
Michael Veilleux, 1542)

import sys
import os
from optparse import OptionParser

usage = \
'''
Filter out the elements of specified blocks that are not within the specified bounds 
of an element or nodal variable.

Example:
  % python threshold.py --input in.e --output out.e --blocks 2 --type element --
variable death_status --min 0.99 --max 1.01 --step -1

This example:
1. Reads the pre-existing exodus file in.e
2. Applies the filter to block_2 only.  All other blocks do not get any elements 
removed.
3. Filters on the element variable death_status; all elements in block_2 with 
death_status outside of 0.99 to 1.01 are removed.
4. Applies this filter for the death_status field values at the last time step (--step 
-1) in in.e
5. Writes the filtered results to a new exodus file out.e
''' 

#
# find and import exodus.py
#
exoPath = os.environ.get('SIERRA_SNTOOLS_PATH')
if not isinstance(exoPath, str):
  raise Exception, \
      "SIERRA_SNTOOLS_PATH not set. Is the sierra module loaded?"
exoPath += "/contrib/testTools/adagio/modules"
if not os.path.isdir(exoPath):
  raise Exception, \
      "Directory searched for exodus.py, %s, does not exist" % exoPath
exoFile = "%s/exodus.py" % exoPath
if not os.path.isfile(exoFile):
  raise Exception, \
      "Expected full path of exodus.py, %s, does not exist" % exoPath
sys.path.append(exoPath)

from exodus import exodus

#
# parser helper functions
#
def isInt(var):
  """ 
    Determine if variable is an int.
    Works for strings, floats, and int.
  """
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  ok = True
  try:
    num = int(var)
  except ValueError:
    ok = False
  return ok

def isFloat(var):
  """ 
    Determine if variable can be a float.
    Works for strings, floats, and int.
  """
  ok = True
  try:
    num = float(var)
  except ValueError:
    ok = False
  return ok

def isOptionFlag(arg):
  if arg[:2] == "--" and len(arg) > 2:
    return True
  if isInt(arg) or isFloat(arg):
    return False
  if arg[:1] == "-" and len(arg) > 1 and arg[1] != "-":
    return True
  return False

def varArgCallback(option,opt_str,value,parser,*args,**kwargs):
  """
  handler for an option flag that follows with a variable number of arguments,
  all arguments following the flag must be of the same type
  """
  done = 0
  value = []
  rargs = parser.rargs
  # iterate through the remaining unparsed arguments
  while rargs:
    arg = rargs[0]
    # break when we get to the next option flag
    if isOptionFlag(arg):
      break
    # process an integer argument
    if 'type' in kwargs and kwargs['type'] == 'int': 
      value.append(int(arg))
      del rargs[0]
    # process a float argument
    elif 'type' in kwargs and kwargs['type'] == 'float': 
      value.append(float(arg))
      del rargs[0]
    # otherwise keep the argument as a string
    else:
      value.append(arg)
      del rargs[0]
  setattr(parser.values,option.dest,value)
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#
# parsing
#
parser = OptionParser(usage=usage)
parser.add_option('-i', '--input', dest='input', type='str', default=None,
                  help='Provide name of input exodus file')
parser.add_option('-o', '--output', dest='output', type='str', default=None,
                  help='Provide name of output exodus file')
parser.add_option('-b', '--blocks', dest='blocks', action='callback', default=None,
                  callback=varArgCallback, callback_kwargs={'type':'int'},
                  help='Provide the blocks on which to apply filter (default is all 
blocks)')
parser.add_option('-t', '--type', dest='type', type='str', default=None,
                  help='Provide the variable type to filter (nodal or element)')
parser.add_option('-v', '--variable', dest='variable', type='str', default=None,
                  help='Provide the name of the variable to filter')
parser.add_option('-n', '--min', dest='min', type='float', default=None,
                  help='Provide the minimum bound of the filter')
parser.add_option('-x', '--max', dest='max', type='float', default=None,
                  help='Provide the maximum bound of the filter')
parser.add_option('-s', '--step', dest='step', type='int', default=None,
                  help='Provide the time step of when to apply the filter')
parser.add_option('-k', '--keep-all-steps', dest='keep_all_steps',
                  action='store_true', default=False, 
                  help='Copy variables at all time steps (default copies only filter 
step)')
(options,args) = parser.parse_args()

#
# check for required command line inputs
#
if options.input == None:
  parser.error("Name of input exodus file required by -i or --input options")
if options.output == None:
  parser.error("Name of output exodus file required by -o or --output options")
if options.type == None:
  parser.error("Filter variable type (nodal or element) required by -t or --type 
options")
if options.variable == None:
  parser.error("Filter variable name required by -v or --variable options")
if options.min == None:
  parser.error("Minimum bound of filter required by -n or --min options")
if options.max == None:
  parser.error("Maximum bound of filter required by -x or --max options")
if options.step == None:
  parser.error("Time step to apply the filter required by -s or --step options")

#
# open the input exodus file in read-only mode
#
exo_in = exodus(options.input, "r")

#
# handle the unique request for filtering on the last step
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#
num_steps = exo_in.num_times()
if options.step == -1:
  options.step = num_steps

#
# containers for mesh entities that pass threshold filtering
#
threshold_blk_ids  = []
threshold_elem_ids = set()
threshold_node_ids = set()
threshold_nset_ids = []
threshold_sset_ids = []

#
# fork based on threshold variable type
#
if options.type == 'element':

  # check that the threshold element variable exists
  num_evars = exo_in.get_element_variable_number()
  if num_evars <= 0:
    raise Exception, "Cannot perform threshold operation. " + \
        "No element variables exist in file '%s'" % options.input

  evar_names = exo_in.get_element_variable_names()
  try:
    ithreshold = evar_names.index(options.variable)
  except:
    raise Exception, "Cannot perform threshold operation. Element variable" + \
        "'%s' not found in file '%s'" % (options.variable, options.input)

  # determine which blocks, elements, and nodes meet the threshold
  truth_table = exo_in.get_element_variable_truth_table()
  blk_ids     = exo_in.get_elem_blk_ids()

  if options.blocks == None:
    options.blocks = blk_ids

  elem_id = 1

  for iblk in xrange(len(blk_ids)):
    blk_id = blk_ids[iblk]
    (conn, num_blk_elems, \
     num_elem_nodes) = exo_in.get_elem_connectivity(blk_id)

    if blk_id not in options.blocks:
      for ielem in xrange(num_blk_elems):
        threshold_elem_ids.add(elem_id+ielem)
        threshold_node_ids.update( \
            conn[ielem*num_elem_nodes:(ielem+1)*num_elem_nodes])

      threshold_blk_ids.append(blk_id)
      elem_id += num_blk_elems
      continue
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    blockIsAdded = False

    if truth_table[iblk*num_evars + ithreshold] == False:
      elem_id += num_blk_elems
      continue

    evar_vals = \
        exo_in.get_element_variable_values(blk_id, \
        options.variable, options.step)
    for ielem in xrange(num_blk_elems):
      if evar_vals[ielem] >= options.min and \
         evar_vals[ielem] <= options.max:
        blockIsAdded = True
        threshold_elem_ids.add(elem_id+ielem)
        threshold_node_ids.update( \
            conn[ielem*num_elem_nodes:(ielem+1)*num_elem_nodes])

    if blockIsAdded == True:
      threshold_blk_ids.append(blk_id)

    elem_id += num_blk_elems

elif options.type == 'nodal':

  # check that the threshold nodal variable exists
  num_nvars = exo_in.get_node_variable_number()
  if num_nvars <= 0:
    raise Exception, "Cannot perform threshold operation. " + \
        "No nodal variables exist in file '%s'" % options.input

  nvar_names = exo_in.get_node_variable_names()
  try:
    ithreshold = nvar_names.index(options.variable)
  except:
    raise Exception, "Cannot perform threshold operation. Nodal variable" + \
        "'%s' not found in file '%s'" % (options.variable, options.input)

  # determine which nodes meet the threshold
  nvar_vals = \
      exo_in.get_node_variable_values(options.variable, options.step)
  for inode in xrange(exo_in.num_nodes()):
    if nvar_vals[inode] >= options.min and \
       nvar_vals[inode] <= options.max:
      threshold_node_ids.add(inode+1)

  blk_ids = exo_in.get_elem_blk_ids()

  if options.blocks != None:
    for blk_id in blk_ids:
      if blk_id in options.blocks:
        continue
      (conn, num_blk_elems, \
       num_elem_nodes) = exo_in.get_elem_connectivity(blk_id)
      for node_id in conn:
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        threshold_node_ids.add(node_id) 

  # determine which blocks and elements meet the threshold
  elem_id = 1

  for iblk in xrange(len(blk_ids)):
    blk_id = blk_ids[iblk]
    (conn, num_blk_elems, \
     num_elem_nodes) = exo_in.get_elem_connectivity(blk_id)
    blockIsAdded = False

    for ielem in xrange(num_blk_elems):
      if len(threshold_node_ids.intersection(set( \
          conn[ielem*num_elem_nodes:(ielem+1)*num_elem_nodes]))) == \
          num_elem_nodes:
        blockIsAdded = True
        threshold_elem_ids.add(elem_id+ielem)

    if blockIsAdded == True:
      threshold_blk_ids.append(blk_id)

    elem_id += num_blk_elems

else:
  raise Exception, "Invalid threshold variable type '%s'" % options.type

#
# determine which nodesets to keep
#
if exo_in.num_node_sets() > 0:
  nset_ids = exo_in.get_node_set_ids()
  for ns_id in nset_ids:
    if threshold_node_ids.intersection( \
        set(exo_in.get_node_set_nodes(ns_id))):
      threshold_nset_ids.append(ns_id)

#
# determine which sidesets to keep
#
if exo_in.num_side_sets() > 0:
  sset_ids = exo_in.get_side_set_ids()
  for ss_id in sset_ids:
    (elem_list, side_list) = exo_in.get_side_set(ss_id)
    if threshold_elem_ids.intersection(set(list(elem_list))):
      threshold_sset_ids.append(ss_id)

#
# open the output exodus file in write mode
#
if os.path.isfile(options.output):
  os.remove(options.output)

exo_out = exodus( options.output,          \
    mode        = "w",                     \
    array_type  = 'ctype',                 \
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    title       = exo_in.title(),          \
    numDims     = exo_in.num_dimensions(), \
    numNodes    = len(threshold_node_ids), \
    numElems    = len(threshold_elem_ids), \
    numBlocks   = len(threshold_blk_ids),  \
    numNodeSets = len(threshold_nset_ids), \
    numSideSets = len(threshold_sset_ids) )

#
# transfer QA and information records
#
exo_out.put_qa_records( exo_in.get_qa_records() )
exo_out.put_info_records( exo_in.get_info_records() )

#
# transfer nodal coordinate names
#
exo_out.put_coord_names( exo_in.get_coord_names() )

#
# transfer nodal coordinates
#
threshold_node_ids = list(threshold_node_ids)
threshold_node_ids.sort()

(x, y, z) = exo_in.get_coords()

threshold_x = []
threshold_y = []
threshold_z = []

old_to_new_node_ids = {}
new_node_id = 1

for node_id in threshold_node_ids:
  threshold_x.append(x[node_id-1])
  threshold_y.append(y[node_id-1])
  threshold_z.append(z[node_id-1])

  old_to_new_node_ids[node_id] = new_node_id

  new_node_id += 1

exo_out.put_coords(threshold_x, threshold_y, threshold_z)

#
# transfer node ID map
#
id_map = exo_in.get_node_id_map()

threshold_id_map = []
for node_id in threshold_node_ids:
  threshold_id_map.append(id_map[node_id-1])

exo_out.put_node_id_map(threshold_id_map)
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#
# transfer element blocks
#
elem_id = 1
blk_ids = exo_in.get_elem_blk_ids()

for blk_id in blk_ids:
  (elem_type, num_blk_elems, \
   num_elem_nodes, num_elem_attrs) = exo_in.elem_blk_info(blk_id)

  blk_elem_ids = set()
  for ielem in xrange(num_blk_elems):
    blk_elem_ids.add(elem_id)
    elem_id += 1

  if blk_id not in threshold_blk_ids:
    continue

  threshold_blk_elem_ids = threshold_elem_ids.intersection(blk_elem_ids)
  threshold_num_blk_elems = len(threshold_blk_elem_ids)

  if threshold_num_blk_elems == 0:
    continue

  exo_out.put_elem_blk_info(blk_id, elem_type, \
      threshold_num_blk_elems, num_elem_nodes, num_elem_attrs)

  blk_elem_ids = list(blk_elem_ids)
  blk_elem_ids.sort()

  threshold_blk_elem_ids = list(threshold_blk_elem_ids)
  threshold_blk_elem_ids.sort()

  blk_elem_id_map = []
  jelem = 0
  for ielem in xrange(num_blk_elems):
    if jelem < threshold_num_blk_elems and \
       blk_elem_ids[ielem] == threshold_blk_elem_ids[jelem]:
      blk_elem_id_map.append(threshold_blk_elem_ids[jelem])
      jelem += 1
    else:
      blk_elem_id_map.append(-1)

  (conn, num_blk_elems, \
   num_elem_nodes) = exo_in.get_elem_connectivity(blk_id)
  threshold_conn = []
  for ielem in xrange(num_blk_elems):
    if blk_elem_id_map[ielem] > 0:
      for iconn in xrange(ielem*num_elem_nodes, (ielem+1)*num_elem_nodes):
        threshold_conn.append(old_to_new_node_ids[conn[iconn]])
  exo_out.put_elem_connectivity(blk_id, threshold_conn)

  if num_elem_attrs > 0:
    exo_out.put_element_attribute_names(blk_id, \
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        exo_in.get_element_attribute_names(blk_id))
    attr = exo_in.get_elem_attr(blk_id)
    threshold_attr = []
    for ielem in xrange(num_blk_elems):
      if blk_elem_id_map[ielem] > 0:
        threshold_attr += attr[ielem*num_elem_attrs:(ielem+1)*num_elem_attrs]
    exo_out.put_elem_attr(blk_id, threshold_attr)

  elem_props = exo_in.get_element_property_names()
  for elem_prop in elem_props:
    prop_val = exo_in.get_element_property_value(blk_id, elem_prop)
    if elem_prop == "ID" and prop_val == blk_id:
      continue
    else:
      exo_out.put_element_property_value(blk_id, elem_prop, prop_val)

  exo_out.put_elem_blk_name(blk_id, exo_in.get_elem_blk_name(blk_id))

#
# transfer element ID map
#
threshold_elem_ids = list(threshold_elem_ids)
threshold_elem_ids.sort()

id_map = exo_in.get_elem_id_map()

old_to_new_elem_ids = {}
new_elem_id = 1

threshold_id_map = []
for elem_id in threshold_elem_ids:
  threshold_id_map.append(id_map[elem_id-1])

  old_to_new_elem_ids[elem_id] = new_elem_id

  new_elem_id += 1

exo_out.put_elem_id_map(threshold_id_map)

#
# transfer node sets
#
threshold_node_ids = set(threshold_node_ids)

if len(threshold_nset_ids) > 0:

  threshold_nset_ids.sort()

  for ns_id in threshold_nset_ids:
    (num_set_nodes, num_set_dfs) = exo_in.get_node_set_params(ns_id)
    node_set_nodes               = exo_in.get_node_set_nodes(ns_id)

    truths = []
    new_set_nodes = []
    set_size = 0
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    for old_node_id in node_set_nodes:
      if old_node_id in threshold_node_ids:
        new_set_nodes.append(old_to_new_node_ids[old_node_id])
        truths.append(True)
        set_size += 1
      else:
        truths.append(False)
    
    exo_out.put_node_set_params( ns_id, set_size, min(num_set_dfs, set_size) )
    exo_out.put_node_set( ns_id, new_set_nodes )

    if num_set_dfs > 0:
      set_dfs = exo_in.get_node_set_dist_facts(ns_id)
      new_set_dfs = []
      for idf in xrange(num_set_nodes):
        if truths[idf]:
          new_set_dfs.append(set_dfs[idf])
      exo_out.put_node_set_dist_fact( ns_id, new_set_dfs )

    exo_out.put_node_set_name( ns_id, exo_in.get_node_set_name(ns_id) )

    ns_props = exo_in.get_node_set_property_names()
    for ns_prop in ns_props:
      prop_val = exo_in.get_node_set_property_value( ns_id, ns_prop )
      if ns_prop == "ID" and prop_val == ns_id:
        continue
      else:
        exo_out.put_node_set_property_value( ns_id, ns_prop, prop_val )

#
# transfer side sets
#
threshold_elem_ids = set(threshold_elem_ids)

next_ss_id = 1

ss_names = set()

if len(threshold_sset_ids) > 0:

  threshold_sset_ids.sort()

  next_ss_id = threshold_sset_ids[-1] + 1

  for ss_id in threshold_sset_ids:
    (num_set_sides, num_set_dfs) = exo_in.get_side_set_params(ss_id)
    (elem_list, side_list)       = exo_in.get_side_set(ss_id)

    new_elem_list = []
    new_side_list = []
    new_num_set_dfs = 0
    set_size = 0
    for iside in xrange(num_set_sides):
      old_elem_id = elem_list[iside]
      if old_elem_id in threshold_elem_ids:
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        new_elem_list.append(old_to_new_elem_ids[old_elem_id])
        new_side_list.append(side_list[iside])
        set_size += 1

    new_num_set_dfs = 0
    new_set_dfs = []
    if num_set_dfs > 0:
      set_dfs = exo_in.get_side_set_dist_fact()
      node_list = exo_in.get_side_set_node_list(ss_id)
      for inode in xrange(len(node_list)):
        if node_list[inode] in threshold_node_ids:
          new_set_dfs.append(set_dfs[inode])
          new_num_set_dfs += 1  

    exo_out.put_side_set_params( ss_id, set_size, new_num_set_dfs )
    exo_out.put_side_set( ss_id, new_elem_list, new_side_list )

    if new_num_set_dfs > 0:
      exo_out.put_side_set_dist_fact( ss_id, new_set_dfs )

    ss_name = exo_in.get_side_set_name(ss_id)
    ss_names.add(ss_name)
    exo_out.put_side_set_name( ss_id, ss_name )

    ss_props = exo_in.get_side_set_property_names()
    for ss_prop in ss_props:
      prop_val = exo_in.get_side_set_property_value( ss_id, ss_prop )
      if ss_prop == "ID" and prop_val == ss_id:
        continue
      else:
        exo_out.put_side_set_property_value( ss_id, ss_prop, prop_val )

#
# transfer time steps
#
times = exo_in.get_times()
copy_steps = []
num_copy_steps = 0
if options.keep_all_steps:
  for istep in xrange(num_steps):
    exo_out.put_time( istep+1, times[istep] )
    copy_steps.append(istep+1)
    num_copy_steps += 1
else:
  exo_out.put_time( 1, times[options.step-1])
  copy_steps = [options.step]
  num_copy_steps = 1

#
# transfer global variables
#
num_gvars = exo_in.get_global_variable_number()
if num_gvars > 0:
  exo_out.set_global_variable_number(num_gvars)
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  gvar_names = exo_in.get_global_variable_names()
  for iname in xrange(num_gvars):
    exo_out.put_global_variable_name( gvar_names[iname], iname+1 )

  for istep in xrange(num_copy_steps):
    exo_out.put_all_global_variable_values( istep+1, \
        exo_in.get_all_global_variable_values(copy_steps[istep]) )

#
# transfer nodal variables
#
threshold_node_ids = list(threshold_node_ids)
threshold_node_ids.sort()

threshold_inodes = [node_id-1 for node_id in threshold_node_ids] 

num_nvars = exo_in.get_node_variable_number()
if num_nvars > 0:
  exo_out.set_node_variable_number( num_nvars )

  nvar_names = exo_in.get_node_variable_names()
  for ivar in xrange(num_nvars):
    exo_out.put_node_variable_name(nvar_names[ivar], ivar+1)

    for istep in xrange(num_copy_steps):
      vals = exo_in.get_node_variable_values( nvar_names[ivar], copy_steps[istep] )
      new_vals = [vals[inode] for inode in threshold_inodes]
      exo_out.put_node_variable_values( nvar_names[ivar], istep+1, new_vals )

#
# transfer element variables
#
num_evars = exo_in.get_element_variable_number()
if num_evars > 0:
  exo_out.set_element_variable_number( num_evars )

  truth_table = exo_in.get_element_variable_truth_table()
  new_truth_table = []
  for iblk in xrange(len(blk_ids)):
    blk_id = blk_ids[iblk]
    if blk_id in threshold_blk_ids:
      for ivar in xrange(num_evars):
         new_truth_table.append(truth_table[iblk*num_evars + ivar])
  exo_out.set_element_variable_truth_table(new_truth_table)

  evar_names = exo_in.get_element_variable_names()
  for ivar in xrange(num_evars):
    exo_out.put_element_variable_name(evar_names[ivar], ivar+1)

  elem_id = 1
  for iblk in xrange(len(blk_ids)):
    blk_id = blk_ids[iblk]

    (elem_type, num_blk_elems, \
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     num_elem_nodes, num_elem_attrs) = exo_in.elem_blk_info(blk_id)

    blk_elem_ids = set()
    for ielem in xrange(num_blk_elems):
      blk_elem_ids.add(elem_id)
      elem_id += 1

    if blk_id not in threshold_blk_ids:
      continue

    threshold_blk_elem_ids = threshold_elem_ids.intersection(blk_elem_ids)

    blk_elem_ids = list(blk_elem_ids)
    blk_elem_ids.sort()

    threshold_blk_elem_ids = list(threshold_blk_elem_ids)
    threshold_blk_elem_ids.sort()

    threshold_num_blk_elems = len(threshold_blk_elem_ids)

    do_copy = []
    jelem = 0
    for ielem in xrange(num_blk_elems):
      if jelem < threshold_num_blk_elems and \
         blk_elem_ids[ielem] == threshold_blk_elem_ids[jelem]:
        do_copy.append(True)
        jelem += 1
      else:
        do_copy.append(False)
      
    for ivar in xrange(num_evars):

      if truth_table[iblk*num_evars + ivar] == False:
        continue

      evar_name = evar_names[ivar]

      for istep in xrange(num_copy_steps):
        vals = exo_in.get_element_variable_values( blk_id, evar_name, 
copy_steps[istep] )

        new_vals = []
        for ielem in xrange(num_blk_elems):
          if do_copy[ielem]:
            new_vals.append(vals[ielem])

        exo_out.put_element_variable_values( blk_id, evar_name, istep+1, new_vals )

#
# close out the exodus databases
#
exo_in.close()
exo_out.close()
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A.4. Python script used to convert facet-based geometry to ACIS geometry
#!python

#This script uses an ASCII-based facet file to create ACIS geometry 'from the ground 
up' in Cubit.
#This script expects the facet file to define a single enclosed volume.
#This script does *not* perform well as the size of the facet file increases.
#Larger files may take significant time and cause Cubit to crash when memory fills.
#The format of facet or stl files varies a bit, you can use this as an example.
#As with all examples, your mileage may vary.
#Originally written by Kevin Pendley March, 2009 based on earlier scripts dating from 
June, 2006.
#Newer version uploaded by cubit-help - Feb 2017

#This script expects the facet file to be in the following format:
# <Vertex_count>
# <Vertex_ID> <tab> <X_coord> <tab> <Y_coord> <tab> <Z_coord>
# ...
# <Facet_count>
# <Facet_ID> <tab> <Vertex_ID_1> <tab> <Vertex_ID_2> <tab> <Vertex_ID_3> 
(Optional:<tab> <Vertex_ID_4>)
# ...

cluster_ids = ["chama", "uno", "serrano", "ser", "ghost", "gho",
                   "eclipse", "ec", "skybridge", "sb", "cayenne",
                   "jemez", "pecos"]
import os
import socket
import sys
host_name = socket.gethostname()

if [cluster_id for cluster_id in cluster_ids if cluster_id in host_name]:
    location = "cluster"

elif "cee" in host_name:
    location = "cee"

else:
    # Assume sierra remesh is running on the amech LAN
    location = "amech"

if location == "cluster" or location == "cee":
    path = "/projects/cubit/claro.Lin64.beta/bin"
elif location == "amech":
    path = "/apps/Cubit/claro.Lin64.beta/bin"
if path:
    try:
        sys.path.insert(1, path)
        os.environ["PYTHONPATH"] = path + os.pathsep + os.environ["PYTHONPATH"]
    except KeyError:
        os.environ["PYTHONPATH"] = path
print os.environ["PYTHONPATH"]
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import cubit
cubit.init(['cubit','-nojournal'])

#Update below with the correct path/filename
infacetfile = "v1.fac"
infile = open(infacetfile,"r")
line = infile.readline()
words = line.split()
vertex_count = int(words[0])
print "Number Vertex = ", vertex_count

d_ids = {}
for n in range(vertex_count):
  line = infile.readline()
  words = line.split()
  v_id = int(words[0])
  x_val = float(words[1])
  y_val = float(words[2])
  z_val = float(words[3])
  command = "create vertex " + str(x_val) + " " + str(y_val) + " " + str(z_val)
  print command
  cubit.cmd(command)
  print 'a'
  d_ids[v_id] = cubit.get_last_id("vertex")
  print 'b'

line = infile.readline()
face_count = int(line)
print "Number Faces = ", face_count
for n in range(face_count):
  line = infile.readline()
  words = line.split()
  nw = len(words)
  if nw == 4:
    facetID = int(words[0])
    coord1 = int(words[1])
    coord2 = int(words[2])
    coord3 = int(words[3])
    command = "create surface vertex " + str(d_ids[coord1]) + " " + str(d_ids[coord2]) 
+ " " + str(d_ids[coord3])
    cubit.cmd(command)
  elif nw == 5:
    facetID = int(words[0])
    coord1 = int(words[1])
    coord2 = int(words[2])
    coord3 = int(words[3])
    coord4 = int(words[4])
    command = "create surface vertex " + str(d_ids[coord1]) + " " + str(d_ids[coord2]) 
+ " " + str(d_ids[coord3]) + " " + str(d_ids[coord4])
    cubit.cmd(command)
  else:
    print "Bad facet read."

#cubit.cmd('create volume surface all heal ')
#cubit.cmd('delete vertex all ')
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cubit.cmd('export acis "surface1.sat" overwrite')
exit

A.5. Sample Journal file for Alignment of deformed can geometries

# Start Fresh
reset
reset aprepro

########### Define variables Begin ###########

#{dim_scale = .0254} #inch into meter
#{scale_exp2sim_dim = 0.001} #scale exp. to consistent unit with sim scale
########### Define variables End ###########

########### Import ACIS Deformed Shape (.stp) Files Begin  ###########

# Simulated Result File 
import step "/home/xlao/Downloads/cansim_v2.stp" heal

# Experimental Result File
import step "/home/xlao/Downloads/Unit 6-2.stp" heal

# Reference undeformed base-line geometry for simulation
#import step "/home/xlao/ductile_failure/PeEM/can_crush_model/Can_One Piece.STEP" heal

########### Import ACIS Deformed Shape (.stp) Files End  ###########

########### Scale Exp. Result to Consistent Dim. of Sim. Result Begin  ###########

vol 8 scale {scale_exp2sim_dim}

########### Scale Exp. Result to Consistent Dim. of Sim. Result End  ###########

########### Alignment Process Begin  ###########

# Get correct consistent orientation in space
# Note: Exp. Result oriented such that bottom flat surface of the can is on the global 
XY plane; +X is along the length (long side) of the can
# +Y is point from the 'straight' edge length towards the 'curve' edge length; global 
+Z is towards the top of the can

# Reorient the Sims. Results to orientation of the Exp. Results
rotate Volume 1 to 7 angle 30  about X include_merged preview 
rotate Volume 1 to 7 angle 30  about X include_merged 
rotate Volume 1 to 7 angle 45  about Y include_merged preview 
rotate Volume 1 to 7 angle 45  about Y include_merged 
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# since the exp. results consisted of 1 volume, it is best to align it with the sim 
results (which consist of 7 volumes)

# We will start the alignment process in the +XY plane projection
# Create TEMP. geometries to help facilitate the alignment process
    # Create temp. center vertices of the screw tabs 
    # create temp. plane to assist in drawing pin hole of exp.
    create surface rectangle width .25 zplane 
#    move Surface 3209  x 0 y 0 z -.02 include_merged 
    # Since there are curves surface on the screw tabs, create 'circle' of the screw 
tab hole by projection of the curves
    # closed perimeter of the screw tab hole shalft
 
    #As few from Top, Farthest screw tabs (opposite contact point), CCW to other screw 
tabs
    project curve 35000 34861 34863 34864 35003 35145  onto surface 25610 
    project curve 36065 35681 36079 36282 36064 36061  onto surface 25610 
    project curve 38075 38270 38463 38284 38092 37897  onto surface 25610 
    project curve 39808 39807 39913 39665 39524 39812  onto surface 25610 
    project curve 36643 36429 36435 36204 35986 35797 35989 36208  onto surface 25610 
    project curve 37584 37585 37780 37774 37572 37365  onto surface 25610 

    #Create corresponding circle sheet and its center vertex at the screw tabs (same 
ref. as above)
    create surface circle vertex 14399  14392  14395
    create vertex center curve 40043

    create surface circle vertex 14402 14410 14403
    create vertex center curve 40044

    create surface circle vertex 14418 14412 14422
    create vertex center curve 40045
     
    create surface circle vertex 14426 14435 14434
    create vertex center curve 40046
    
    create surface circle vertex 14453 14458 14463
    create vertex center curve 40047
   
    create surface circle vertex 14441 14444 14438
    create vertex center curve 40048

    #Delete no longer needed temp geometric entities
    delete curve 40005 to 40042
    delete body 9 to 15

  #Create corresponding circle sheet and its center vertex at the screw tabs (same 
ref. as above)
  # Sim Results
   create surface circle vertex 2226  2140  2137  
   create surface circle vertex 842  1030  998  
   create surface circle vertex 679  607  703  
   create surface circle vertex 165  341  249  
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   create surface circle vertex 1828  1713  1770  
   create surface circle vertex 1305  1414  1303  

   # Create ref. center vertex of screw tabs (sims results)
    create vertex center curve 40049
    create vertex center curve 40050
    create vertex center curve 40051
    create vertex center curve 40052
    create vertex center curve 40053
    create vertex center curve 40054
  
   # Delete not needed temp. geo. entities
   delete body 16 to 21

   compress all

    #Rename nodes to diff
    # Exp. can geo
    vertex 14384 rename "EC_N1"
    vertex 14385 rename "EC_N2"
    vertex 14386 rename "EC_N3"
    vertex 14387 rename "EC_N4"
    vertex 14388 rename "EC_N5"
    vertex 14389 rename "EC_N6"

    # Sim. can geo
    vertex 14390 rename "SC_N1"
    vertex 14391 rename "SC_N2"
    vertex 14392 rename "SC_N3"
    vertex 14393 rename "SC_N4"
    vertex 14394 rename "SC_N5"
    vertex 14395 rename "SC_N6"

# Move exp results to align with sim results
move Volume 8  x 0.0846175858524 y 0.00980401743392  z 0.06959668920402  include_merged 
move  Vertex EC_N1 EC_N2 EC_N3 EC_N4 EC_N5 EC_N6 x 0.0846175858524 y 0.00980401743392  
z 0.06959668920402  include_merged 
 
#More fine tune alignment via eye-ball test
# Z-X plane
rotate Volume 8 angle .25  about vertex 14386  14395  include_merged 

#Y-Z plane
rotate Volume 8 angle .25  about X include_merged 

#After 'good' enough alignment delete not needed temp geo. entities
delete vertex EC_N1 EC_N2 EC_N3 EC_N4 EC_N5 EC_N6 SC_N1 SC_N2 SC_N3 SC_N4 SC_N5 SC_N6
########### Alignment Process End  ###########
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