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I. Executive Summary 
This report contains key findings from a project titled Big Data Synchrophasor Monitoring and 
Analytics for Resiliency Tracking (BDSMART), which was carried out through a collaborative 
effort of a team of researchers from Texas A&M Engineering Experiment Station, Temple 
University, and Quanta Technology, LLC. The in-kind support came from OSIsoft (acquired by 
AVEVA), which provided their PI Historian software to demonstrate the use case of streaming 
PMU data.  
The first section of the report describes the project goals and objectives related to the development 
of Machine Learning (ML) models capable of detecting and classifying events by processing 
phasor measurements captured in the field by Phasor Measurement Units (PMUs). The data for 
this study was contributed by the utilities/ISOs from the Western and Eastern interconnects and 
ERCOT, further referred to as Interconnect B (IC B), Interconnect A (IC A), and Interconnect C 
(IC C), respectively. The approach that the BDSMART Research Team proposed and the key 
research tasks defined by the team are outlined in this section. 
The next section describes the technical approach. We first discuss the data constraints related to 
the PMU measurements and data interpretation constraints imposed by the data contributors. They 
provided neither the topological information of the grid nor PMU placement locations and captured 
recorded data at very few locations in the system with the reporting rate of either 30 or 60 fps. The 
recordings are mostly positive sequence voltage, frequency, and ROCOF, and in some limited 
cases, three-phase voltages and currents. We then reflect on the bad data issues that stem from 
poor recording practices and vague definitions of the PMU status bits to supposedly be used for 
bad data identification. Finally, the data discovery points to imprecise time stamps with incomplete 
event start/end time, as well as inconsistent and incomplete event labeling, which combined make 
the implementation of the data models using supervising learning quite challenging. Following the 
data discovery study, we hypothesize that because the IC B data has the most complete labels, we 
should focus our model development on that data and then test it on data from other interconnects. 
We also define the common metrics used to evaluate the results from the ML algorithm tests. We 
concluded this section by summarizing the common ML models we used and explaining how we 
implemented and tested them. The issues from this section are expanded in the Training Dataset 
Report from this project. 
The final section of this report deals with the accomplishments and conclusions. As the 
accomplishments, we formulate the problem we are solving and what is achieved by solving the 
problem. We then reflect on each of the analytics tools we developed and point out the performance 
of each tool when applied to solving the mentioned problems. We reference this work for further 
details to the papers we published on each tool. In the conclusions, we give recommendations on 
how to improve future PMU recording practices to facilitate the ML algorithm implementation 
and guidance for the future standardization work aimed at clarifying the ambiguities associated 
with the PMU status bits. We finally list future tasks that can bring about further improvements in 
the proposed algorithms. The issues from this section are expanded in the Training, and Test 
Dataset Report filed at the project completion date. 
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II. Objectives 
This section discusses the goals and objectives stated in FOA 1861 and then reflects on how the 
proposers have defined the objectives of their project activities together with the software 
implementation framework, project scope, and tasks. 
II-a. The Goal of FOA 1861 
According to FOA 1861, “The goal of this funding opportunity announcement (FOA) is to explore 
the use of big data, artificial intelligence (AI), and machine learning technology and tools on PMU 
data to identify and improve existing knowledge, and to discover new insights and tools for better 
grid operation and management. Applicants selected for the award will receive pre-packaged 
datasets assembled exclusively for their use executing awards resulting from this FOA. Applicants 
selected for the award will be asked to address specific questions and research areas regarding the 
data. Applicants selected for the award will publicly present their analytical results at a DOE-
sponsored event to inform stakeholders in the electricity sector who develop and use analytical 
and decision-making tools on PMU and other power system data.” 
II-b. The Objectives of FOA 1861 
The study assumed that synchrophasor field data collected in the Eastern and Western interconnect 
and ERCOT would be shared by PNNL with the contracted teams. PNNL received the data from 
utilities/ISOs in the mentioned interconnects – then organized it into two datasets. (a) Training 
dataset covering approximately ¾ of the recordings from two years of data. (b) Test dataset that 
was obtained by cutting out sections of the overall dataset and packaging them for data model 
testing purposes. 
The FOA 1861 further stipulated that “Applicants selected for the award will analyze the data 
provided looking for key patterns and insights, potentially including but not limited to several of 
the following purposes: 

1. Identify key events within each interconnection-specific dataset 
2. Identify unusual or anomalous events and patterns that did not appear in the state estimator 

and event log. 
3. Catalog of the “signatures” (identifying patterns), including events (e.g., faults, tree 

contacts, frequency excursions/oscillations, fault-induced delayed voltage recovery 
(FIDVR), wind ramps, clouds over photovoltaic (PV), cyber attacks, time-signal problems, 
or oscillations), harmonics, and asset problems (e.g., deteriorating equipment, erroneous 
machine settings) that can be used for reliable identification and diagnosis of different 
events and conditions on the grid. 

4. Identify precursor conditions that warn about events that occurred after the associated 
conditions. 

5. Identify patterns that reveal the condition of power system equipment and any insights into 
equipment modeling or predictive or condition-based maintenance on assets, including the 
PMUs themselves. 

6. Identify apparent ground-induced currents (GIC) relating to geomagnetic disturbances, 
along with any potential impacts of GICs on asset conditions. 

7. Predict the performance of power plants and other assets. 
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8. Identify actual load events and patterns, including potential detection of power sources 
such as distributed generation or storage located on or below the distribution system. 

9. Identify factors that can improve wind integration and solar integration. 
10. Identify factors that reflect weather and seasonality without using site-specific weather 

data. 
11. Identify anomalies that may reflect cyber security issues and events rather than grid 

performance.” 
II-c. The Approach Proposed by the Research Team 
In response to FOA 1861, Texas A&M Engineering Experiment Station (TEES) submitted a 
proposal in collaboration with Temple University, Quanta Technology, and OSIsoft (non-funded 
partner) titled “Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking” 
(BDSMART).  
The following were detailed objectives of the BDSMART project: 

• Implement software embedded in a commercial OSIsoft platform that will allow automated 
analysis, classification, and prediction, and develop techniques to analyze recorded PMU 
data files to differentiate the ones that are well defined and correlated with particular power 
system events from the ones that need further assessment to better understand the causes 

• Develop a precise and fast event classification algorithm capable of taking PMU files as 
inputs and identifying the potential cause of disturbance in real-time as outputs 

• Develop a prediction framework for estimating the probability of multiple types of events 
in the near future using disturbance precursors  

To meet the objectives, we proposed to follow a three-step software implementation framework: 
1. Analysis: To create a data analytics platform capable of integrating any data source of 

interest into the database. This will ensure an environment that can support ingestion, 
curation, feature extraction, and visualization of large amounts of historical data and real-
time data streams.  

2. Classification: The purpose of this step was to provide event type labels for each 
synchrophasor recorded disturbance. The focus will be on assuring – (1) postmortem 
identification of every historical disturbance class and (2) real-time automated 
classification of event types using previously acquired knowledge about classes. 

3. Prediction: This step was to determine the probability of various events in the near future 
after the occurrence of one or more precursor events recorded by the synchrophasor system. 

To deal with the research tasks, we proposed the following set of project tasks: 

• Task 1.0 - Project Management and Planning (Lead: TEES) 
• Task 2.0 - Raw Dataset Clarification and Initial Results Evaluation (Lead: Quanta 

Technology) 
• Task 3.0 Event Analysis (Lead: TEES) 
• Task 4.0 Event Labeling/Categorization (Lead: Temple University) 
• Task 5.0 Event Prediction Based on Precursor Conditions (Leads: TEES and Temple) 
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• Task 6.0 – Evaluation (Lead: Quanta Technology) 
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III. Technical Approach 
The technical approach was driven by the data constraints discovered in the first year of the project 
– followed by the hypothesis – and various experimental studies with a variety of data model 
approaches tailored to the specific data properties – discovered by inspecting the data provided by 
PNNL and contributed by utilities/ISOs. 
III-a. Data Constraints 
The data constraints driving the technical approach relate to the quality of PMU measurements, 
data wrangling, and other considerations. 
III-a.1. PMU Measurements 
No information on power system topology. The datasets were not referenced to any particular 
power system topology, so it is unclear where the data is collected (buses, voltage levels, specific 
grids, etc.). We did receive information on what interconnect the data is coming from, but 
everything beyond that had to be speculated or estimated. This created an inability to develop any 
physical system models that could be used to correlate the measurements or simulate the events, 
except for fault simulations, which were feasible since they could be performed on a small size 
generic model and still be reasonably accurate since fault waveforms have limited correlation with 
the voltages and currents in the parts of the system that are distant from the fault. 
Unknown PMU locations. Since the PMU location is unknown, and events are not labeled with 
the specific location in a power grid, we do not know how far from the occurrence of an event a 
PMU is located. For the local events such as faults, some electrical signal properties caused by 
event occurrence are far less prominent measured at a distance from the event occurrence. A typical 
example is recording the changes in the current and voltages at the PMUs not close to the faulted 
line, which is very hard to differentiate from normal operation or some other unrelated events. Not 
knowing the PMU locations creates a challenge in correlating such measurements from multiple 
PMUs to determine whether the measurements can be used to detect the same event from multiple 
local measurements.  
Excessive measurement sparsity. The number of buses in the Eastern Interconnect (IC C), Western 
Interconnect (IC B), and ERCOT (IC A) is approximately 70,000, 20,000, and 4,500, respectively. 
We are dealing with only 188, 43, and 212 PMUs in the mentioned interconnects, respectively, 
which makes the measurement sparsity problem obvious. PMU data provided by DOE may have 
come from more densely located PMUs within several smaller areas in an interconnect if data 
providers are from a few data-contributing utilities in that interconnection, which at the scale of 
the whole interconnect, makes the sparsity uneven over the geographical area of the interconnect. 
Incomplete measurement signal set. A power system typically has three phases fully characterized 
by three voltages, three currents, and aggregate frequency. In some PMUs (very few), all such 
signals are measured and sent, but in many others, only positive sequence voltage (sum of all three 
phases), frequency, and rate of change of frequency (ROCOF) are sent. This  PMU output 
configuration  is decided by the users. In general, PMUs always compute synchrophasor 
measurements for all three phases. These measurements are then used to calculate the positive, 
negative, and zero sequence Synchrophasors. Which signals to send out is entirely up to the user 
to decide by selecting appropriate PMU output configuration settings. Some events (i.e., faults) 
require three-phase information for full characterization of the event, so the use of positive 
sequence voltages and currents does not allow for fully characterizing such events. 
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Variable phasor reporting rate. The phasor reporting rate is NOT the same as the sampling rate. 
The sampling rate is associated with the waveform sampling for analog to digital (A to D) 
conversion, which typically could be in the order of several hundreds to millions of samples per 
second. The phasors are calculated based on a data window containing many waveform samples 
and reported at 30 (or more) frames per second (fps). In the DOE-provided data, some were 
reported at 30 fps and some at 60 fps. This created a need to re-sample some data to make the 
reporting rate consistent across a dataset used for model development. 
Data files of large size and restraining format. The size of the historical data received for the 
Eastern and Western Interconnect and ERCOT is 16.3TB, 6.87TB, and 4.1TB, respectively. The 
data has been imported and kept in the parquet format on a high-performance research computing 
(HPRC) cluster at Texas A&M University. This format turned out not to be the most efficient 
format to run the experiments, and sometimes it took days to complete specific data model 
evaluation tasks making the experimental part of the project rather tedious, time-consuming, and 
computationally inefficient. 
III-a.2. Data Wrangling 
Missing information. Criteria used to decide which events are included in provided PMU datasets 
are unknown to us. For the test datasets provided from different interconnects, it is an expectation 
that our study would find out how many events the PMUs have captured. But even for the training 
datasets, the number of events in these datasets is more than the number of events in the event logs 
that DOE provided. This is because (1) the DOE dataset did not provide event logs for any other 
events in the IC A but the generator tripping events and did not include all events of the original 
event log in the updated event log with improved labeling for IC C; (2) Events that do not involve 
major switching operations likely are not logged by utilities; and (3) A utility that provides the 
data will not log events in its neighboring utilities even though its PMUs will be able to “see” those 
events. This makes it difficult to evaluate the model accuracy since there is no reference to an 
actual set of events that could be detected to compare the results to.  
Bad and imprecise data. By performing manual inspection and observing PMU data quality bit 
indicators and/or thresholding, one can conclude that there is a large percentage of bad data. Since 
PMU types are unknown, the measurement accuracy may be imprecise for given events, and bad 
data is not equally present in a dataset and among PMUs. This created an issue with implementing 
automated bad data detection approaches since the information about the measurement system is 
not known, and the interpretation of the PMU status bit as indicators that are supposed to recognize 
errors is not possible.  
Complex feature engineering. The electrical system exhibits dynamic signals caused by the various 
events that are in different frequency ranges from a fraction of a Hz to 60 Hz (nominal) and many 
multiples of the fundamental frequency. Many time-domain and frequency domain features may 
be extracted, and a limited number of features is used in our study. Guidance of what features are 
most prominent for which type of signal and the related event was not a trivial task, so some 
attempts at feature engineering that looked promising early on have proven difficult to utilize in 
some other cases. 
Vague labeling. The labels in the provided event logs are assigned manually and hence may be 
imprecise, incomplete, or totally wrong. They are also not very accurately time-stamped. In some 
event instances, they are simply missing. Several practices led to the problems we see in the 
datasets and the accompanying event logs, and such practices are related to the system or process 



10 
 

used to characterize the events, which in most instances is the Energy Management Systems (EMS) 
Supervisory Control and Data Acquisition (SCADA) rather than the Synchrophasor system. This 
created a situation where a less accurate system (SCADA) is used to characterize a more accurate 
system (Synchrophasors), which is opposite to the practical and theoretical requirements used in 
the measurement and instrumentation industry.  
Imprecise time stamps. Utilities generally log an event when switching operations are involved 
with major components (i.e., lines, transformers, generators, etc.) in the system. EMS/SCADA 
databases were likely the main source of records of such events as all breaker status changes are 
logged there. This could also explain why the event time is not very accurate, as EMS/SCADA 
does not use an accurate time clock, and the time stamp from such databases can be imprecise. 
Oscillation events are recent addition that may not involve any switching actions.  
Inconsistent labeling practice. Most likely, the three interconnects may not have any mandatory 
requirements for labeling the events uniformly and consistently. This may have resulted in each 
utility labeling the events in their own ways. At least we know this was not consistent between 
Eastern and Western interconnects. It is possible that this may not be uniform and consistent even 
within one interconnect (especially for the Eastern interconnect, which has multiple reliability 
coordinators.).  
Misinterpretation of events. Each utility only logs events involving major switching operations 
within its own control area, but their PMUs should be able to “see” similar events occurring in 
their neighboring utilities. Since many more PMUs have been installed and operating in these 
interconnects today than what was used to provide data for this study, it means that not all the 
utilities have provided their PMU data. This could lead to the inclusion of the events that can be 
“seen” in the datasets but not correspond to events in the provided event logs if the events occurred 
outside the areas of utilities that provided the data.  
Limited analysis practice to confirm the historical events. One may assume utilities always do a 
detailed post-event analysis for every event before they label the event. However, they may not be 
able to always positively determine the causes of the event for various reasons, such as lack of 
high resolution (e.g., point-on-wave) historical data preceding the event. Without any reference to 
how the events are analyzed to assign labels, it is not clear whether the labels are consistently 
assigned. 
III-a.3. Other Considerations 
Unknown PMU compliance with the standards versions. PMUs are calculating phasors based on 
samples of a time-domain electrical signal. By the nature of the measurement model, many 
components of the time-domain signal are filtered out. PMUs are filtering the time-domain signal 
differently based on the measurement performance requirements. In the 2005 PMU standard, there 
were two levels (0 and 1) of measurement performance requirements, which were changed to P 
and M classes in the 2011 standard. Many PMUs deployed earlier and even during DOE’s ARRA 
projects (2010-2012) are based on the 2005 standard. Not knowing the type, model, and vintage 
of PMUs being used and which PMU standard version they are complied with created difficulties 
in making assumptions about the measurement model and interpreting the exact meaning of STAT 
bits. 
Limited synthetic model availability. For fault studies, we used a small size generic model of a 
power system that does not represent many typical components and is incapable of accurately 
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representing various power system-wide disturbances. Despite its lack of generality, it has some 
value for fault studies. We used it to generate PMU data with simulated fault related events that 
we then used to train the data models in addition to train these models with field recorded data. 
Unknown event causality. The dataset descriptors provided neither causality of the events nor their 
interdependencies. We also do not know whether or what automatic equipment or operator action 
was taken in response to an event or sequence of events. In many instances, we do not know the 
event length (time window) either. Lacking the information that suggests causality of the recorded 
events or any indication that correlates the recorded events to the power system topology and PMU 
placements, the ability to develop the causality models was significantly constrained. We reached 
out to an additional option of determining the causality by correlating the recorded events to the 
severe weather events in the region when the recordings were made and were able to discover 
causalities between bad weather occurrences and subsequent faults. 
Variable data window. Visual inspection of events confirmed that different types of events have 
different durations. Certain events, such as local line fault events, are typically short, whereas other 
system-wide events, such as frequency oscillation events, can last significantly longer. Event 
durations range from <1 sec up to several hours. Consequently, such a variety in the event durations 
considerably hinders their detection with a universal data model. Furthermore, the start and end 
times of events in some instances are missing in the event log, making the problem of event 
detection and data window-size selection even more difficult. Therefore, various window sizes are 
required to address the issue of different event durations. This problem is compounded by the fact 
that large window sizes might contain overlapping events. 
III-b. Hypothesis 
The hypothesis was developed based on the discovery that IC B data has the most complete labels, 
and its data quality was reasonably well understood after an extensive study of the data files. The 
hypothesis discussion has two aspects, namely the hypothesis formulation and the hypothesis 
evaluation metrics and process. 
III-b.1. Hypothesis Formulation 
After inspecting the data, we realized that the most complete dataset was from IC B. We also 
discovered that the data quality shows outliers, which in more controlled data recording practices 
should be eliminated. As a result, we postulated the following assumptions that can contribute to 
the hypothesis formulation: 

• If it is possible to develop models using labeled data from the best dataset, the hypothesis 
is that such models will be quite useful since the practices from the labeling can be 
propagated to other interconnects to achieve better results in those interconnects 

• Since we had to deal with imprecise and inaccurate labels, we assumed that a domain expert 
can inspect the labels visually to improve them, so we hypothesized that the improved 
labels through such a process would yield better results than without such a process being 
followed 

• We recognized that the data window that captures and differentiates various events is a 
crucial component of the model development, so we hypothesized that using a sliding data 
window would lead to improved results 
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• We also noticed that the data contained records of power system faults, which we assumed 
are hard to characterize due to the fact that the PMUs that captured the waveforms were 
far from the fault occurrence, so we made a hypothesis that supplementing the training 
process with the fault data from a synthetic system that have virtual PMUs placed close to 
the location of simulated faults may improve the results obtained by the models aimed at 
fault detection and classification 

• We assumed that the events in the various power systems might be characterized by some 
generic waveform signatures – so we also hypothesized that transfer learning model 
application from one interconnect with good labels to another with less labeled data will 
enable accurate event detection and classification in interconnecting with poorer labels  
 

III-b-2. Evaluation Metrics and Process 
The following evaluation metrics were used to assess and quantify the performance of the ML 
algorithms: (1) The Area Under the Receiver Operating Characteristic (AUROC), (2) The Area 
Under the Precision-Recall curve (AUPRC), (3) Precision, (4) Recall, (5) F1-score, (6) Matthews 
Correlation Coefficient (MCC), and (7) Accuracy. Results reported were obtained by computing 
the aforementioned evaluation metrics based on categorizations and/or detections of time 
windows. Event detection algorithms were trained using a portion of the training dataset of IC B 
and IC C, and tested on the remaining part of these datasets. We also refer to test data as a subset 
of the training data of IC B, IC C, and IC A used to evaluate the algorithms. The Test instances 
were not seen by the detection algorithms while training. Hence, the model was trained and tested 
on different time intervals of recorded data. Labels of predicted time windows were compared to 
the ground truth labels to quantify the performance of the algorithms.  
In the process of data model development, we used different methods of splitting the data into 
training and test subsets. Some of our event detection algorithms were trained on time windows 
from IC B data from 2016 to predict future instances from 2017. In this setting, the model learned 
the relationships based on instances collected from 2016 without incorporating any instances from 
2017 during learning to assess how well the algorithm would perform on future instances. Other 
event detection algorithms used the conventional way of splitting the training and test datasets, 
which is ~70% training and 30% testing. In this setting, 70% of the data were randomly selected 
for training, and the remaining 30% were used to evaluate the algorithms. Furthermore, Stratified 
K-folds Cross-validation was also used. Similarly, this setting learns on multiple proportions of 
training data instances and used different proportions of test data while preserving the percentage 
of instances of each class. All settings ensure that there were no information leaks between training 
and test instances for an accurate model evaluation.  
The developed algorithms were also tested on the test data provided by PNNL on behalf of DOE. 
We had no accesss to testing event logs and therefore we applied the developed algorithms to 
classify or detect events, and detected events were ordered by their probabilities, indicating how 
likely is a time window to contain an abnormal behavior or to belong to a certain event type. Then 
a domain expert in our team manually inspected the results of each algorithm to assess their 
performances. 
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III-c. Data Model Approaches 
The data model approaches relate to the algorithm selection and evaluation process. Since we 
decided to demonstrate the algorithm performance primarily on the dataset that has the most 
reliable and descriptive labels (IC B), the comments and results are primarily related to the model 
performance on the IC B data, even though we also tested some models on the IC C and IC A data 
to show the variation in performance when data with poorer labels and worse quality are used.  
III-c.1. Algorithm Selection 
Several traditional supervised learning methods (RF, CB, SVM, LR, and MLP) for line faults, 
transformer faults, and frequency events detection that rely on knowledge-based feature selection 
were developed. This is compared to automated representation learning based on several deep-
learning-based alternatives. To mitigate the challenge of learning infrequent fault types, simulated 
data was also used together with field recordings. A summary of developed algorithms is presented 
in Figure 1. Table 1. presents an overview of algorithm characteristics that illustrates the setup of 
each model. 

 
Figure 1. A summary of event detection/cataloging algorithms used in this study. 
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Table 1. An Overview of the Algorithm Characteristics 

Subtask Algorithm 
Characteristics 

Input 
signal(s) Goal Supervision Feature 

extraction 
Window 

size Labels Int. 

4.1 and 
4.2 

Supervised 
Classification 

(RF, CB, 
SVM, MLP, 
LR) based on 

RA * 

Voltage, 
frequency 

Event 
Detection 
(line and 

transformer 
faults, 

fundamental 
frequency 

events) 

Supervised Rectangle 
Area 

3 min, 1 
min, 30 

sec, 10 sec, 
5 sec, 2 sec 

Event Log/ 
Inspected 

by a 
domain 
expert 

A, B, C 

5.1 and 
5.2 

SC-CNN * 
Voltage or 
current or 
frequency Line fault 

detection Supervised  Soft-DTW 1 min 
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III-c-2. Algorithm Evaluation 

The model evaluation was done in several settings, some prescribed by PNNL and some 
introduced by the project team: 

• Model Training Using Field-recorded Data. PNNL provided a dataset called the Training 
Dataset, which contained the first six weeks segments of PMU recordings from each eight-
week chunk of year 2016-2017, depending on the interconnect in question. The team was 
asked to train the algorithm using such a dataset and report on the findings. We used year 
2016 part of the Training Dataset to develop models and year 2017 part is used to evaluate 
the accuracy. The visual inspection on the given training dataset has resulted in a number 
of observed patterns and signatures. Based on the conclusions of visual inspection, a one-
minute data window for event detection and classification was selected. Various machine 
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learning types were used for fast event and fast frequency detection. The detailed results 
were provided in the Training Dataset Report submitted to the DOE website on June 30, 
2022.  

• Model Testing Using Field-recorded Data. Another dataset provided by PNNL was called 
the Test Dataset, which consisted of the last two weeks segments taken from each eight-
week chunk of PMU recordings from 2016-2017 . The team was asked to test algorithms 
using the Test Dataset, as well as a combination of the Test Dataset and Training Dataset, 
which combined was a complete dataset of the PMU recordings across all three 
interconnects. The results were provided in a required Training, and Test Dataset Report 
submitted to the DOE website on June 30, 2022. Each of the published paper listed in 
Appendix A contains an aspect of the model testing results, which are also discussed in the 
Accomplishments and Conclusions section of the report.  

• Model Testing Using Simulated Synthetic Network Data. For the development of the data 
models aimed at detecting and classifying power system faults, which are local events, the 
team explored the use of simulated data from a synthetic network, which has the advantage 
of being precisely labeled since the simulations are set up by the experiment staff. We 
reported the results of such model training when compared to the model training performed 
using field recorded data. This was done since the PMUs were located away from the event 
occurrence locations, so the waveform signatures were not prominent enough to fully 
differentiate faults events from normal events and properly classify them, which created 
many challenges for model development. Further details are discussed in the following 
section of this report. 
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IV. Accomplishments and Conclusions 
The Project accomplishments are summarized through a discussion of the various publicly 
disseminated results and conclusions through the recommendations that came out of completing 
various project tasks. 
IV-a. Accomplishments 
The accomplishment discussion is divided into general accomplishments and specific analytical 
tool developments. 
IV-a.1. General accomplishments 
The general accomplishment may be summarized as follows: 

• Developed a supervised learning method for local and system-wide event detection in power 
grids using sparsely placed PMUs 
Problem: Develop a scalable, automated event detection system that doesn’t rely on the 
extensive manual study of data and feature engineering. Utilize a sparse set of PMUs that 
don’t necessarily cover all geo areas. Handle noisy data and unknown event locations.  
Accomplishments: Automated data preprocessing steps and three CNN-based detection 
models were introduced. Data from western interconnection were used (2016 for training 
and 2017 for testing). Robust event detection is achieved in multiple settings, but multi-
channel hierarchical CNNs outperformed alternatives. Curating event logs leads to 
increased detection accuracy. Fully inspecting at least two months of data is suggested. 

• Developed a line fault, frequency, and transformer event detection method based on transfer 
learning techniques 
Problem: Detect events based on minimal labeled time windows by leveraging related 
labeled instances from another domain without relying on event logs of PMU data.  
Accomplishments: The transfer learning method yielded ~13% improvement in AUROC 
when compared to supervised learning algorithms based on only 20 labeled time windows 
incorporated. 2-seconds time window yielded an approximately 7% increase in AUROC 
compared with 1-minute windows.  

• Developed line faults classification using ML on three-phase voltages  
Problem: Classify line faults when field recordings have insufficient observations of a certain 
type (e.g., PP, PPG,3P, and 3P-G faults). 
Accomplishments: A classification model trained on integrated simulations and field-
recorded data resulted in 98.5% accuracy. This significantly improved over 87.17% 
accuracy obtained by relying on the field-recorded data alone. 

• Developed voltage level-aware CNN classifier based on sliding window technique 
Problem: Classify events as normal, line, and frequency events using PMU measurements 
split into voltage levels (134kV, 240kV, 345kV, 500kV). 
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Accomplishment: A 30s sliding window is subsampled from the preprocessed data, and those 
sub-windows are used as CNN classifier inputs. A split into voltage levels is beneficial when 
classifying signals originating from multiple sub-networks and sources of different scales.  

IV-a.2. Analytical tools 
Several analytical tools have been developed and reported in various publications as listed in the 
appendix: 
R. Baembitov, T. Dokic, M. Kezunovic and Z. Obradovic, “Fast Extraction and Characterization 
of Fundamental Frequency Events from a Large PMU Dataset Using Big Data Analytics,” 
Proc. 54th IEEE Hawaii International Conference on System Science (HICSS-54), Hawaii, 
USA, January 2021. pp. 3195-3204, doi: 10.24251/HICSS.2021.389. 
Algorithm: Fast extraction and characterization of fundamental frequency events. Catboost and 
Random Forest classifiers were used for extraction, and Minimum Volume Enclosing Ellipsoid 
(MVEE) was used for characterization. 
Problem: Enable the fast extraction of fundamental frequency events from extremely large 
historical PMU datasets. Next, develop an algorithm that accurately characterizes the event 
duration for the extracted events. 
Performance: Based on the Area Under the Receiver Operating Curve (AUROC) Catboost 
performed best at 98% accuracy. MVEE successfully characterized 93.72% of these events, 
revealing an average duration of 9.93 seconds. 
M. K. Alqudah, M. Pavlovski, T. Dokic, M. Kezunovic, Y. Hu and Z. Obradovic, "Fault 
Detection Utilizing Convolution Neural Network on Timeseries Synchrophasor Data From 
Phasor Measurement Units," in IEEE Transactions on Power Systems, doi: 
10.1109/TPWRS.2021.3135336. 
Algorithm: Convolutional Neural Network end-to-end supervised learning tool with automated 
feature learning trained from sparse PMU data 
Problem: The model is developed for the purpose of fault detection. In addition, the model 
addresses the issue of automated feature learning from multiple PMU signals by learning high-
order features without the need for manual feature engineering, which can further be used for 
downstream tasks such as fault detection. 
Performance: On western interconnection data, results showed robust detection accuracies (AUC 
of 83%), when trained on 2016 and evaluated on 2017 data. 
M. Pavlovski, M. Alqudah, T. Dokic, A. A. Hai, M. Kezunovic and Z. Obradovic, "Hierarchical 
Convolutional Neural Networks for Event Classification on PMU Measurements," in IEEE 
Transactions on Instrumentation and Measurement, vol. 70, pp. 1-13, 2021, Art no. 2514813, 
doi: 10.1109/TIM.2021.3115583.  
Algorithm: Hierarchical Convolutional Neural Network tool for multi-class event classification 
utilizing automated feature learning 
Problem: This model aims to discover the effects of the quality of labels on multi-class 
classification models using sparse PMUs. 
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Performance: Using 2016 western interconnection data for training and 2017 for evaluation, 
accuracy of 89% to 94% is obtained using this tool. The study showed that by manually inspecting 
2 months of data, satisfactory classification results could be obtained, and inspecting 8 or more 
months of data can yield improved detection results, but at the cost of significantly increased 
labeling efforts. 
Abdel Hai, T. Dokic, M. Pavlovski, M. Alqudah, M. Kezunovic, Z. Obradovic, “Transfer 
Learning for Event Detection from PMU Measurements with Scarce Labels,” IEEE Access, 
Vol. 9, 127420–127432, September 10 2021, doi: 10.1109/ACCESS.2021.3111727. 
Algorithm: Event detection tool based on the Transfer Learning technique 
Problem: The tool was developed to address the limitations of automating event labeling in high-
volume PMU measurements. Existing historical event logs created manually do not correlate well 
with the corresponding PMU measurements due to scarce and temporally imprecise labels. Trying 
to overcome this problem by extending event logs to a complete set of labeled events is very costly 
and often infeasible. Thus, this method reduces the need for additional labeling by leveraging 
related labeled data instances available from a small number of well-defined event detection tasks. 
Performance: Results show that this method can significantly improve event detection based on 
PMU measurements when extensive labeling is costly or infeasible to obtain - with only 20 labeled 
time windows, this method achieved 0.93 AUROC. 
H. Otudi, T. Dokic, T. Mohamed, Y. Hu, M. Kezunovic, Z. Obradovic, “Line Faults 
Classification Using Machine Learning on Three Phases Voltages Extracted from Large 
Dataset of PMU Measurements,” Proc. 55th IEEE Hawaii International Conference on System 
Science (HICSS-55), Hawaii, USA, January 2022. DOI: 10.24251/HICSS.2022.425. 
Algorithm: Three-Phase Line Fault Classification algorithm is developed to supplement field-
recorded PMU data with simulated data 
Problem: The model is used to supplement field-recorded PMU data with simulated data where 
the number of certain types of events is insufficiently observed in the field recordings. Moreover, 
the same algorithm is applicable when some fault types are difficult to distinguish in field 
recording data. 
Performance: The results after training this model with the combined dataset showed a 
classification accuracy of 98.58%, which is a significant improvement compared to the 86.87% to 
87.17% accuracy obtained by relying on the field-recorded dataset alone. 
Z. Cheng, Y. Hu, Z. Obradovic, M. Kezunovic, “Using Synchrophasor Status Word as Data 
Quality Indicator: What to Expect in the Field?”, IEEE Smart Grid Synchronized Measurement 
and Analytics Conference, SGSMA 2022, Split, Croatia, May 2022.  
Algorithm: A point-by-point data quality issue, and STAT bit flags identification and counting 
algorithm. At each time point, the data quality issues such as missing data, unreasonable values, 
erroneous time tags, and many other issues are identified and counted, and the STAT bits, if they 
are not zero, are interpreted and counted for every PMU. 
Problem: Field recorded PMU data contain various types of data quality issues that could impact 
AI/ML algorithms. If data quality issues are not thoroughly identified and counted, their potential 
impact to AI/ML algorithms cannot be properly evaluated for taking appropriate actions to mitigate 
their adverse impact. 
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Performance: All data values and STAT bits in the DOE-provided datasets have been scanned, 
and all identified data quality issues are counted. It was determined that the STAT bits are not a 
reliable indicator due to inconsistencies in bit setting and mismatch between the STAT bits and 
actual data quality issues of the data. The results have helped successful AI/ML algorithm 
development and testing in this project. 
T. Dokic, et. all, “A Single-Feature Machine Learning Method for Detecting Multiple Types of 
Events from PMU Data,” IEEE Smart Grid Synchronized Measurement and Analytics 
Conference, SGSMA 2022, Split, Croatia, May 2022.  
Algorithm: A single-feature event detection algorithm. The single feature is called rectangle area 
(RA), extracted using the maximum and minimum values of positive sequence voltage and 
frequency. 
Problem: Historical PMU measurements form extremely large datasets that usually contain data 
quality issues such as missing, duplicated, or out-of-range data. The challenge is developing a 
machine learning algorithm that can perform well using this data and quickly extract events 
without the need for several data preprocessing steps. 
Performance: The Random Forest classifier performed best using the RA feature. The maximum 
accuracy of event detection reached initially was 0.931. The accuracy increased to 0.991 after 
improving the provided labels further through visual inspection. 
Various aspects of the application of the models developed to detect and classify faults were 
published in the following papers: 

• M. Kezunovic, et al. “Automated System-wide Event Detection and Classification Using 
Machine Learning on Synchrophasor Data,” CIGRE General Session, Aug. 28-Sept 2, Paris, 
2022.  

• M. Kezunovic, et. al. “Use of Machine Learning on PMU Data for Transmission System 
Fault Analysis,” CIGRE General Session, Aug. 28-Sept 2, Paris, 2022.  

IV-b. Conclusions 
The overall conclusions fall into three categories of recommendations related to improved PMU 
recording practices, future standardization work, and Opportunities for further data model 
developments and improvements. 
IV-b.1. Improved PMU recording and labeling practices: 
The recommendations are as follows: 

• Many data quality issues result from practices where the quality of field data is not checked 
regularly. Implementing a method for continuous data quality checks will eliminate this 
nuisance that deeply affects the development and use of the data models 

• Proper labeling can significantly improve the data model selection and accuracy. Data 
labeling should be done not only based on SCADA data but also based on data from other 
recording systems, including GPS time-stamps 

• The lack of the power system topology and PMU placement information significantly 
impairs the data model development and selection. It is essential to synergistically combine 
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machine learning models with power system domain knowledge since data-based models, as 
powerful as they are, will not be sufficient  

IV-b.2. Future standardization work: 
The recommendations are as follows: 

• The unique meaning of the status bits that reflects the PMU errors in data recording is not 
consistently implemented in various PMU brands and vintages. Defining the status bits with 
no possibility of misinterpretations and certifying the full compliance of a PMU to standard 
definitions by third-parties will be very helpful 

• The event labels syntax and semantics are inconsistent across different recordings from 
various data contributors. Standardizing the event labeling is expected to tremendously 
improve the model selection and training 

• The selection of times stamps for designating the event start and end time is made using a 
rather inaccurate timing source. Agreeing on which timing sources should be used would 
bring major improvement to the event characterization, which is a precursor for the 
successful implementation of data models 

IV-b.3. Opportunities for further data model developments and improvements 
The recommendations are as follows:  

• Off-the-shelf machine learning models, while certainly a good starting point for education 
and training, are not going to achieve good performance for PMU data analytics without 
significant tuning 

• The key challenges of AI/ML methods when it comes to analyzing power system data is in 
automating the data labeling, including time-stamping, as well as in capturing long data 
history  

• The low-cost steps for utilities to take now to make the AI/ML approaches ready for big data 
analytics 2 or 3 years from now is to amend and open the field-recorded datasets for AI/ML 
experts to use for further studies. 
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