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Introduction

The electric power grid provides roughly 4000 TWh of power pet yeat, delivering power to critical aspects of
America’s economy, transportation, water, emergency services, telecommunications, manufacturing, defense
facilities, and residences.

Transmission System (up to 500kV) transters power throughout the U.S.
° Real-time measurements (PMU, 1-3 second SCADA, etc.)

o State Estimation, Optimization, and Control

Distribution System (4kV — 35kV) connects to the customers
> Much less monitoring or control due to the size

o ~300,000 miles of transmission lines vs. ~6,000,000 miles of distribution lines

o ~20,000 substation transformers vs. ~200,000,000 service transformers

> Visibility into distribution system operations is limited, and models are prone to errors
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Electric Power Systems

Power Systems is a perfect application for Machine Learning due
to the complex systems and large amounts of data. This is made
possible recently due to:
> Advances in computing power for real-time learning and decision
making
> Additions of new sensing equipment such as smart meters and PMU

> New Artificial Intelligence algorithms to handle large datasets,
transferable learning, and physics-based algorithms

Distributed machine learning (ML) algorithms sense the grid
using local sensors and make real-time decisions to improve
power system reliability and resilience
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4 | Power System Protection

£ Increasing % of
non-synchronous
generation I

The protection system 1s designed to maintain safe operation and
reliable service

> Rapidly remove the fault and minimize the disconnection of customers
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> Relays measure voltage and current flowing through the line.
Conventional protection uses logic pre-determined by a protection
engineer to flag anomalous events (current is too high) for detecting faults
and opening a breaker to isolate the part of the system with the fault

> Relays are coordinated and provide backup using time delays depending
on the location of the fault.

Power System Protection is getting more significant and more e Is it possible t;bdetect faults

complicated: [N N Bl fast enough tolprevent arcing
. o _Lompunicaton - that starts wildfires?
o Inverter-based generation does not have the same fault characteristics

(o]

Protection challenges in downtown networked system

(o]

Electric faults causing wildfires in California

o

Fast-tripping protection schemes limited by communication networks

o

Cyberattacks (e.g., 2016 Ukraine) on relays could cause damage or
cascading outages
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5 | Distribution System Faults

* Different fault types and causes
* Importance of determining the

location of the fault Line-to-Line Fault

3-Phase Fault
(car accident hitting pole)
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6 | Machine Learning for Power System Operations
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Machine Learning for Fault Detection and Location

Three Phase
rauies #° to Ground

Normal

Machine Learning (ML) Fault Analysis

> Using ML for power system protection instead of relays
° Test approach on IEEE 123 Model (Matlab Simulink)

o Simulate 3 fault types at 19 locations with varying
resistances at different times of year

Fault 2

Line to Line

Faut1 4= | ine to Ground

Intelligent Decision Making with Support Vector
Machines

> Uses Sequence Current (I,,1;,1,) and Voltages (V,V,,V,) as
input features to SVM

o System specific learning that adapts

> ML at each breaker can distinguish faults inside its
protective zone/region
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8 | Machine Learning Embedded in Relays

SVM classified if there is a fault, fault type, and fault location. Tested on IEEE 123-node with 9 relays.

No false trips in yearlong testing with varying and dynamic loads

Correctly detects all fault events at different buses, resistances, etc.

100% accuracy for classifying the type of fault (SLG, LL, 3LG)

= Correct coordination (which relay trips first) for 99.6% of faults
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Hardware In the Loop Testing

The trained machine learning algorithm is placed into a Raspberry Pi1 for testing

Using an Opal-RT real-time hardware-in-the-loop simulator, the real-time voltage and
current signals from the system are fed into the analog inputs of the Raspberry Pi

SEL-751 hardware relays are also included with a standard time overcurrent curve for
comparison

The SVM detects the faults in 0.17 seconds in comparison to the time overcurrrent
of 1.94 seconds (11.4x faster)
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Field Testing of Machine Learning for Fault Detection

Training must be done using simulations because there are only a
few faults per year on a section of a distribution feeder, but there
can be discrepancies between how the electric power system may
operate in the real world vs. simulation training data

° Incorrect parameters/topology in the model, changes in the system

> Measurement noise, missing data, and differences in the fault

We trained an SVM classifier to identify faults and their type using
simulation data

° The training data set (PSCAD simulation data) has a total of 160,000
points 1.e. 40,000 points for each fault event

We then worked with Emera Technologies to install sensing and
apply faults throughout their microgrid on Kirtland Air Force Base

° The test data (captured from the actual system) has 400,000 data
points, 1.e. 100,000 data points for each fault event

The SVM multi-class algorithm embedded in the relay classified
the faults with an accuracy of 99.943%.
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11 | Conclusions

Electric distribution system protective relays equipped with machine learning (ML) algorithms can improve
power system reliability and resilience by performing an automated and self-learning monitoring and
decision making analysis.

ML algorithms can be trained oftline using fault simulations of the system and location they are going to
be installed. The trained algorithm is then embedded inside each relay to provide decision making support
based on the grid measurements.

The results showed that the algorithm deployed inside each relay could accurately classify three fault
conditions that occur anywhere on the feeder, estimate the fault’s region, and define a specific action for
the relay switch.

This assessment indicates that advanced, data-driven relay analysis could provide value in a typical feeder.
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Questions?

Matthew Reno
mjreno@sandia.gov

@ Sandia National Laboratories
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