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ABSTRACT

Broadly applicable solutions to multimodal and multisensory fusion problems across
domains remain a challenge because effective solutions often require substantive
domain knowledge and engineering. The chief questions that arise for data fusion
are in when to share information from different data sources, and how to
accomplish the integration of information. The solutions explored in this work
remain agnostic to input representation and terminal decision fusion approaches by
sharing information through the learning objective as a compound objective
function. The objective function this work uses assumes a one-to-one learning
paradigm within a one-to-many domain which allows the assumption that
consistency can be enforced across the one-to-many dimension. The domains and
tasks we explore in this work include multi-sensor fusion for seismic event location
and multimodal hyperspectral target discrimination. We find that our domain-
informed consistency objectives are challenging to implement in stable and
successful learning because of intersections between inherent data complexity and
practical parameter optimization. While multimodal hyperspectral target
discrimination was not enhanced across a range of different experiments by the
fusion strategies put forward in this work, seismic event location benefited

substantially, but only for label-limited scenarios.






CONTENTS

Y S 1 = Y o SRR 3
ACIONYMS NG TOIMS ittt ettt e et et e e e e et e e e ae e e easeeebeeeseeeassaeenbeeeseeeanreeaans 8
R o (o Yo [ L] Ao} o SRS 9
2. Entropy Minimization ..ottt e 10
2.1, EMIN fOrmulation .ottt st 10
2.2. Multi-Attribute derivative EMIN .....oooieeeeee e 11
2.3. Student-Teacher EMIN ..o 12

3. UNESE Hyperspectral Imagery Multisensor target classification......cccccecvveeeeeunennn. 13
79 I [ oL oY [N To3 u o] o OSSR 13
3.2, Dataset CUIATION vt e e e nneeeas 13
3.2.1. Data LabeliNg oo 13

3.2.2. Spatial Point SampPling ... e 14

3.2.3. Spectral PreproCeSSING .ttt ettt ettt 15

3.2.4. Partitioning and Known Data ISSUES ..ccueeeeeveieieiieee e 16

3.3. UNESE experiment 1: EMIN multitarget classification .....cccecveeeeieeieecincnene 17
3.4. UNESE experiment 2: Hydra Models ... 19
3.5. UNESE experiment 3: Label limited EMIN .....coooiiiiciieieee e 21
3.6. UNESE experiment 4: EMIN as model finetuning......cceeeeeeceeicieecceecceeceee 22
3.7. UNESE experiment b: Student-Teacher Experiments.....cccccoeveeeieeecinciieecnens 24
3.8, UNESE DiSCUSSION wietiitieiiitieiesieeiesteetesteetesseeseessesseessesseessesneessesseensesseensessesnsessens 25

4. Seismic event [0Cation regreSSION ..o e 27
4.1. Direction (back azimuth) prediction ... 27
4.2. Distance prediCtion . 27
G TR DT - 1= SO 27
4.4, Baseline single-station location ModelS.....iiiiceeicieecieecee e 28
4.5. Experiment 1: Seismic EMIN MOdels .oouieeeiiiiieeeeceeeeceeeee e 28
4.6. Experiment 2: Semi-supervised seismic location ......cccceeveieecieicec e, 31
4.7, SEISMIC DISCUSSION weieitiiiieeieeiteesteecteeeteeteesae e st e st e ereesseesseesseesnseeseesseesaeesneesnreennes 32

ST B 1 £ o U111 o OSSR 33



B, 0N G U ST ON S ettt et e e e et et e e e e e e e e e e e e e e e e e e e e ettt e e e e e e e eeeeeaeeeeeeeee et —aaaaaeeeeaaaaaaaaes 35
R T O BN S et e ettt e e e e e e e e e e e e e e e e e —————— 36

D S D U O M ettt e e e e e ns 38

LIST OF FIGURES

Figure 1. Effects of minimizing entropy across two models for 3 different penalty

VAIUBS. ettt ettt et et e b e et e et e et e e b e e beeaaeeeaeeeateeabe e aeeateeaaeeeaneeareereeareenns 11
Figure 2. Example manually annotated polygons around the P-tunnel apron. ........... 14
Figure 3. Sample atmospheric transmission profile......cccccieoiecciiecicciececceecee e, 16

Figure 4. Variable spatial alignment of annotated target polygon with VNIR and

SWIR data modalities. .ot 16
Figure 5. Distribution of the number of modalities available per sample.................... 17
Figure 6. Performance and results from UNESE experiment 1.....coocooiecieciieeccveeenen. 19
Figure 7. Hydra model architeCtUre. .o 20
Figure 8. UNESE Hydra Baseline and Gaussian Entropy Minimization results........... 20
Figure 9. Learning dynamics for variable a after 2,000 training epochs......cccceuenee. 21
Figure 10. UNESE label attrition reSults. . 22
Figure 11. Overall test performance for pre- and post-EMIN finetuning. .................... 23
Figure 12. Per modality delta accuracy resulting from EMIN finetune.....c.ccoveeunennne.e. 23
Figure 13. Student-Teacher based EMIN regularization results. ....ccccovevvevieeicencnnneens 25

Figure 14. Location error in km for catalog subsets. Panels are broken into
subsections of the catalog based off standard deviation of location errors in
km. a: 1 std = ~40 km, b: 1std = 88.9% of the catalog, c: 2std = 5.6%, d: 3std =
2.2%, €1 ASTA = 3190 weeiuieieee e et nae e 30
Figure 15. SSML EMIN location error normalized by observation distance (a) and
with different label counts (b). Models with labels counts above 500 are
assumed to have sub-optimally explored HP based on their lack of decrease in
model error given additional labels. This is due to the time available to
continue to perform model experiments for this study. ..cccoveeeeceeiicceceee e, 31

Figure 16. Model location ellipses for baseline models (grey) and EMIN models



LIST OF TABLES
Table 1. UNESE multiclass sample statistics. ..ooiiieiieeecieceeeeeeecee e 15

Table 2. Baseline hyperparameter ranges and distributionS......cccceceeeceeeceecieeccveecnen. 17



This page left blank



ACRONYMS AND TERMS

Acronym/Term Definition
CNN Convolutional Neural Network
DNN R&D NNSA Defense Nuclear Nonproliferation Research and Development Office
EMIN Entropy Minimization loss objective
HSI Hyperspectral Imagery
RGB Red-Green-Blue
SWIR Short Wave Infrared
UNESE Underground Nuclear Explosion Signatures Experiment
VNIR Visible through Near Infrared

10



1. INTRODUCTION

Data fusion remains a persistent challenge for many domains because the optimal
exploitation of data across scales, resolutions, and phenomenologies depends
uniquely on data characteristics. ldeal data fusion strategies maximize the available
information across available data modalities and effectively prioritize it for informed
decision making. Data sharing early in the modelling process (such as feature fusion
and parameter sharing) reduces downstream complexity because the effective
combination of disparate data sources is calibrated through the modeling process.
Alternatively, independent modeling can solve limitations that early data sharing
experiences at the expense of more nuanced and challenging decision fusion later.
Both approaches and the myriad variations of each that have evolved can be highly
effective for specific use cases. Despite the abundance of ideas and the rapid pace
of research in data fusion, the most effective solutions on one problem or domain
rarely provide similar gains broadly. The goal of this work was to explore a model
training paradigm that could be applied broadly across domains by remaining
agnostic to input representation and output decision-making. Conceptually, our goal
was to maximize the predictive competence for situations, samples, and phenomena
where multiple examples were available and when shared context would result in

more robust and informative representations and task performance.

The training method we explored reduces the disagreement (or entropy) between
model outputs on a given sample when multiple data sources, channels, or
modalities exist for that sample. We call the objective entropy minimization or EMIN
henceforth and apply it to problems in two domains. The first domain is a set of
Hyperspectral Imagery (HSI) collections over a specific geographic location. The
data collection in this region is characteristic of temporal, geographic, and dynamic
ambient conditions that make data fusion challenging. The second domain we
explore is the challenging task of single-station event location from different seismic
sensor types. In the first domain EMIN is applied directly with labeled loss in a
multiclass prediction task. In the second domain EMIN is applied to a transform of
the multitask regression targets. Our experiments inform how modelling paradigms,

multiple objective weighting, and inherent data complexity and quality all influence
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the practical value of EMIN on data fusion problems that resemble the scenarios

explored here.
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2. ENTROPY MINIMIZATION

The goal of multi-modal decision fusion is to make better overall predictions by
utilizing multiple observations of the same event/phenomena to corroborate
evidence towards a single prediction. One popular method of achieving this is to
have independent models that have been optimized to give high performance for
each modality. For a given event, all model predictions can then be fused together to
form a better estimate. One drawback of this method is that without an additional
calibration scheme, fusion of the individual model predictions is an additional issue
that must be solved; a ‘high’ estimate from one model may be within a different
range of another model’s ‘high’ estimate, resulting in a non-trivial fusion problem
which has been addressed in the literature (Anderson et al., 2007; Simonson, 1998).
Alternatively, fusion could be a much easier task if individual models tended to
agree with each other when appropriate (e.g., be similarly calibrated). We
hypothesized that encouraging the agreement of models when individual modalities
observe the same phenomena as an objective during the learning process would

improve fused predictive performance.

2.1. EMIN formulation

Expanding on previous work (Michalenko et al., 2020), we matured the concept of
EMIN by formulating a generic loss function and variants based on the principle that
multi-modality outputs should typically agree with one other. Our approach assumes
that multi-modality outputs are independent identically distributed draws from a
gaussian distribution with known mean and unknown variance. We then used
standard parameter estimation techniques to estimate the unknown parameters and
compute distributional entropy as a proxy variable of agreement between models.
The resulting proxy variable is then used as a regularization loss term to a

supervised loss while training gradient-based models such as neural networks.

More concretely, let A = ag,aq,...,ap With a,, € RP and let D =1 (for simplicity, but
extended in section 2.2) be the scalar outputs from a set of M multi-modal models.
This is the case for a regression function f where the output of the my, model is
scalar value a,, = f(x,, | ©,,) where x,,, and @,, are the inputs and parameters of the

m,, model respectively. We want to place assumptions over A such that the M
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models must adhere to what we believe will result in better overall model
performance. If A is a random variable (RV) and as are realizations of A, we can
compute statistics of A that are of interest. To make modeling easier, we also say
the as are independent draws of the same distribution, which can make an initial
formulation more tractable. We note that a,,, has a deterministic relation to x,, and

although it is likely that x, are not independent, we will assume this for simplicity.

We desire that A has low entropy H'(A), or 'surprise’. If draws of A are similar and
typically on the same order as each other, decision fusion becomes easier because
separate models will output similar values for different x, inputs. Calculating entropy
typically requires knowledge of the full distribution of A. For a well-behaved
parametrized distribution such as A ~ ¥ (u = p,,0%) with known y, and unknown o
we can estimate the unknown o using standard parameter estimation techniques

like maximum likelihood and subsequently compute H'(A).

One of the easiest estimation techniques is to evaluate the likelihood of £(62[4) = p
(A = {ag,a1,...a}) | 62,0 = p,) and find the value o2 that maximizes it. Since A ~ '
(1= p,,0%) we can write out the likelihood function, take the gradient w.r.t. 02, set
V.:(p(A]| 02u=p,)) = 0 and solve for 62. The solution, o2 =%Z (a; —@)? is the
Maximum Likelihood Estimate (MLE) of 02 where @ is the sample mean.

Once we have 2, we know A ~N(u = ,,0% = cAZ) and can now calculate #£(A) =%

log (ch;z) +%. In this case, we can see that treating entropy as a loss term in the
minimization problem min H'(A) means minimizing o? =%Z (o; — @)?since the log is
monotonic in <;2. Therefore, under the Gaussian assumption, minimizing entropy is
the same as minimizing variance across different model outputs. This is shown in
Figure 1 for a decision fusion problem with 2 separate models. Each plot represents
the same model and data trained 200 epochs on a toy decision fusion problem with
varying levels of EMIN enforced upon the models. Each point in the scatter plot
represents two model predictions over the same event for two inputs. The left plot
represents no EMIN applied to the model, the middle plot represents a moderate
penalty, and the right plot represents a high EMIN penalty applied to the model. As
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the EMIN penalty is increased, individual model outputs become more correlated
which is the expected effect when minimizing entropy. Simple use case examples
and EMIN objectives as formulated and used in this work can be found at

https://innersource.sandia.gov/portal.

Emin=0 Emin = 0.5 Emin = 0.95

Model 2 Predictions
Model 2 Predictions
Model 2 Predictions

Model 1 Predictions Model 1 Predictions Model 1 Predictions

Figure 1. Effects of minimizing entropy across two models for 3 different penalty values.

2.2. Multi-Attribute derivative EMIN

The D =1 formulation can be extended to the multidimensional case. A
straightforward formulation leveraging uncorrelated multivariate assumptions treats
A~ N(p=p,la?) where parameter estimation of each dimension can be performed
independently. This formulation is feasible when M is small as it keeps the number
of parameters to estimate less than the number of observations. This formulation
was used in most of the seismic and HSI experiments described in following

sections.

In the UNESE HSI experiments, up to 6 models estimate a classification value in a
10-class prediction task. In the seismic event location experiments, 2 models
estimate 2 regression targets each. EMIN is applied to a differentiable transform of
the model predictions where D = 2. The transform conveys directional and distance
attributes to positional attributes, specifically latitude and longitude (in radians),

which EMIN then is applied to (see Equations 2-3 in Section 4.5).
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2.3. Student-Teacher EMIN

In practice, we may encounter scenarios in which one or a subset of modalities are
much higher performing than the complement set. This may be the case in which
one sensing modality is able to capture more event information than other
modalities at our disposal. In such settings the practical effect of EMIN is an
increase in performance for the poor performing modality at the cost of decreasing
performance for the higher performing modalities. A student-teacher framework can
be used to address this setting, where the teacher model(s) predictions a;egeper are
used in the estimate of ain O'ZI\MLE =%Z (a; — @)? but are excluded from the set «; .
With this method, EMIN gradients with respect to model parameters from the
teacher models are zero, while EMIN gradients with respect to student model
parameters are still non-zero. The effect is that teacher models are unaffected by
the EMIN training process and student models are pulled in the direction of teacher
model outputs with the assumption teacher models are higher performing. Student-

teacher learning experiments are explored for both HSI and seismic cases.

16



3. UNESE HYPERSPECTRAL IMAGERY MULTISENSOR TARGET
CLASSIFICATION

3.1. Introduction

This section describes experiments for multi-sensor target classification leveraging
the UNESE U12 Hyperspectral Imagery (HSI) collections focused around the P-
tunnel apron and mesa above the Disko EIm test in area 12 of the Nevada National
Security Site (UNESE, 2018). These data were collected as part of the Underground
Nuclear Explosion Signatures Experiment (UNESE) multi-lab venture funded by
DNN R&D. The UNESE data used in the EMIN experiments described below
consists of six total modalities: three visible-through near infrared (VNIR) and three
short wave infrared (SWIR) pseudo-reflectance hyperspectral images. Each image
was collected at a different time and has a unique spatial footprint that does not
completely overlap with the five other collections. This chapter describes curation of
a multi-modality, multi-class classification dataset from this source data and a

sequence of EMIN fusion experiments conducted against this dataset.

There were five experiments for the UNESE classification dataset. The first
experiment (Section 3.3) executed against the UNESE dataset consisted of treating
each of the six HSI flights (3 VNIR, 3 SWIR) as independent modalities. For each of
the six modalities, an independent feedforward neural network was trained to make
optimal predictions over that modality. This experiment represented a direct
application of the EMIN methodology to an independent multi-sensor scenario for
multi-class classification. The second experiment (Section 3.4) developed a single,
cross-modality model for all six modalities to decrease the hyperparameter tuning
difficulty. The third experiment (Section 3.5) tested how well EMIN performs in
different label scarce scenarios. The fourth experiment (Section 3.6) explored how
EMIN performed as a fine-tuning step in model training. The final fifth experiment

(3.7) tested how a student-teacher version of the EMIN objective performed.
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3.2. Dataset curation

3.2.1. Data Labeling
The UNESE HSI data collection was unlabeled, providing only spatial-spectral

measurements without annotations. The scene was manually annotated with a
series of polygons indicating known or discernable materials of interest (asphalt
road, aluminum, stemming sand, etc.). In total, 29 individual targets across 206
distinct polygons were manually annotated. All annotations were performed against
the RGB orthomosaic, which provided the greatest spatial accuracy of all collected
imagery products. The bulk of annotations were performed around the P-tunnel and
T-tunnel aprons, which featured several anthropogenic artifacts and structures (see

Figure 2). Photos collected from on the ground as part of the data collection

campaign were referenced in manually identifying annotated polygons.

HJ »
%5
-4

Figure 2.Eap|e maually annotated oyons around the P-tunnel apron.
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3.2.2.  Spatial Point Sampling

The labeled polygons and original hyperspectral source rasters were conflated to
generate a much smaller and more digestible spectral classification dataset. First,
the 10 most populous class types were selected for sampling. The polygons
corresponding to these 10 class types were then used to generate random points
within the polygons. Target points were generated by sampling a point density of 5
pts / mZ within target polygons and at a density of 0.025 pts / m2 outside polygons
to generate “background” points. Each target class was then downsampled to 2,000
pts/target. Using these randomly generated points, the spectra were sampled at
each point for the 6 hyperspectral raster images. Many points did not overlap with
specific hyperspectral images and these “empty” spectra were dropped from the
analysis, resulting in a non-uniform distribution of target classes per raster. See

Table 1 for statistics on the sampled dataset, resolved by raster and class.

Table 1. UNESE multiclass sample statistics.

Target VNIR1 VNIR2 VNIR3 SWIR1 SWIR2 SWIR3
Asphalt 66 790 1531 27 1519 1515
road
Background | 747 1206 514 504 1488 694
Concrete 1506 503 9 1401 1635 8
Graded Dirt | 1220 293 55 598 1318 139
Road
Pad Muck 580 2000 232 507 580 0
Rusted 333 1073 916 518 416 72
Metal
Sheet Metal | 114 1886 873 568 114 0
Tailings 91 1485 0 956 1237 1485
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Target VNIR1 VNIR2 VNIR3 SWIR1 SWIR2 SWIR3
Stemming 0 411 0 63 0 0
Gravel
Stemming 0 697 0 595 0 0
Sand
Total 4657 10344 4130 5737 8307 3913
% Missing 70.9 35.4 74.2 64.1 48.1 75.5

3.2.3.  Spectral Preprocessing

Two preprocessing steps were used to condition the data for classification. The data
were notionally corrected to reflectance, meaning theoretically that it should take on
values between [0, 1]. However, necessary assumptions made during the
reflectance calibration process mean this was not the case. The differences in
collection times-of-day as well as the reflectance calibration methodology used
suggest that there are meaningful and systematic differences, even between
collections made with the same sensors. The preprocessing steps employed were as
follows:
1. Mask “bad” bands, with poor sensor responsivity, low atmosphere
transmittance (see Figure 3), etc. Specifically:
a. Limit VNIR data to 400 - 900 nm
b. Limit SWIR data to 900 — 2500 nm, drop bands with atmospheric
transmission < 0.25, drop bands for 1900 nm and 2050 nm.
2. Clip data to a range of [0, 1.5]. Clipping the data mitigates the effects of
outliers from poor calibration but retains the overall shapes and reflectance
profiles. This is desirable over standard normalization since the data is

already primarily within the requisite range.
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Figure 3. Sample atmospheric transmission profile.

3.2.4. Partitioning and Known Data Issues

Data were split into stratified (by class) 5-fold cross validation, with folds 1-4 used
for leave-one-set-out cross validation and fold 5 withheld for test evaluation after

training and model selection.

The resulting processed multi-class classification dataset consists of several known
issues. The first and biggest issue is that of spatial alignment, which can degrade
the correctness of labels. Each underlying hyperspectral image has variable spatial
alignment errors to the labeled polygons. For example, see Figure 4, which shows
how the same “concrete” label polygon sits atop the original RGB, a VNIR image,
and the SWIR image. Steps were taken to partially mitigate this by applying an

interior buffer, preventing sampling of points along polygon edges.
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SWIR

0 10 20 m

Figure 4. Variable spatial alignment of annotated target polygon with VNIR and SWIR data
modalities.

The second known issue is that of data calibration and shadows. The data
reflectance calibration is poor, and the data does not align well to known spectral
libraries. These issues are further compounded by the exceptionally steep
topography in the region, which induces angular bi-directional reflectance
distribution function (BRDF) differences into measured spectra, as well as deep

shadows dependent on collection time.

As described previously, the collection footprints for each of the 6 hyperspectral
images vary widely, resulting in a sparse set of modalities per spectral point used in
the dataset. The histogram of the number of modalities present in each data sample
is shown in Figure 5; there are no samples observed by more than 4 modalities. The
combinations of modalities present in samples is highly biased, as it is based on the
spatial overlap of collection footprints. Thus, not all combinations of all modalities

are observed in the data.
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Figure 5. Distribution of the number of modalities available per sample.

3.3. UNESE experiment 1: EMIN multitarget classification

A baseline fusion approach was established by averaging softmax-normalized
predictions from six independently trained models. Each model was selected from a
fully connected network architecture, which consisted of 2-4 layers with 10-120
units per layer. Dropout was applied to each layer (dropout probability was sampled
as a hyperparameter) and ReLU non-linear activations and batch normalization were
applied between each layer. A summary of the hyperparameter distributions is
shown in Table 2. Runs were executed using early stopping with a patience of 500
epochs applied to validation macro accuracy. Two hundred and fifty runs were

sampled for each modality.

Table 2. Baseline hyperparameter ranges and distributions.

Parameter Sampling Distribution
Number of layers Uniform integers on [2, 4]
Layer sizes Uniform integers on [10, 120]

Dropout probability Uniform on [0, 0.35]

Batch size Uniform integers quantized to 50 on [50, 1000]
Learning rate Log-uniform on [1le-5, le-2]
Weight decay Log-uniform on [1le-8, le-1]
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Analysis of the validation accuracy during hyperparameter sampling revealed that
dropout and weight decay both negatively impacted performance. Both were
disabled for a second round of 250 runs/modality hyperparameter tuning that was
used for final fused results. The best run per modality was selected using validation
macro accuracy performance (across 4 replicate cross-validation iterations).
Hyperparameter configurations for each best selected run were then re-run 5 times
with different seeds. This resulted in 6 modalities x 5 replicate runs / modality to
define the baseline. Cross-modality runs were randomly selected to fuse into 5
distinct baselines. For a given baseline set of models, post-softmax predictions were
averaged by sample ID (for the modalities that observed a particular sample) and

argmax was used over the averaged softmax scores for class predictions.

Entropy minimization was applied very similarly as in the baseline, with the core
difference being that all six modalities were trained simultaneously and linked via
the Gaussian Entropy Minimization method. These EMIN based runs used the same
range of model architecture parameters as were used for the baseline. Dropout and
weight decay were disabled based upon baseline results, and batch size, learning
rate, and network sizes were sampled from the same distributions as in the

baseline.

The EMIN runs balanced the EMIN and cross entropy loss terms using an «

parameter as follows:

L=aL. + (1 - a)Lemin EQUEJ’ZL/.OH
7

Exploratory experiments highlighted the importance of carefully selecting this a: too
large and the models were identical to the baselines (EMIN had no effect) and too
small and the models experienced mode collapse by optimizing only for entropy
minimization and not classification performance. To address this, two different

selection strategies were implemented and subsequently sampled over. First, a
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simple sampling strategy employed by simply randomly sampling a. Second, a
strategy for Pareto front optimization was used to dynamically adjust a during each
training step using the Multiple Gradient Descent Algorithm (MGDA) (Equation 4 for
two-term multi-objective optimization (Sener & Koltun, 2018)). The use of gradient
normalization in the MGDA formulation was additionally sampled with a 25%
probability. The decision to use the random sampling strategy or MGDA was

sampled over during hyperparameter tuning with equal weight for each.

The MGDA-based Pareto front optimization provided an elegant solution to the
selection of a by selecting a value and taking optimization steps that are guaranteed
to improve both the cross entropy and entropy minimization losses. However, this
selection strategy is predicated on the idea that optimizing cross entropy and
entropy minimization are equally important. The overarching goal of EMIN based
regularization was improved prediction performance in fusion-based scenarios: it
does not follow that it was appropriate to equally weight these loss terms to achieve
this goal. Indeed, many of the training loss curves from MGDA showed a very
minimally decreasing cross entropy loss to simultaneously decrease cross-modality
entropy. These runs often resulted in inferior final performance to models trained by

simply randomly sampling a fixed value of a.

The best runs for both baseline and EMIN were selected (per modality in the case of
baseline) based upon validation set performance. Test set macro error rates from
selected models are shown in Figure 6. These results showed no statistically
significant difference in overall performance between baseline and EMIN and
showed a degradation in some individual modalities from EMIN. However, the
overall performance from the baseline was quite good and may reflect the Bayes
error rate due to data issues inherently present in the data (see Section 3.2.4). This
experiment appeared to provide little to no headroom for EMIN to improve fusion

performance over the baseline.
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Figure 6. Performance and results from UNESE experiment 1.

3.4. UNESE experiment 2: Hydra Models
Throughout the hyperparameter tuning of UNESE experiment 1 it became apparent

that training all six modalities at the same time greatly increased the tuning
difficulty. Hyperparameter search expands combinatorically in the number of
parameters and linking the parameters across modalities vastly expanded the
search. In total, 1000 unique hyperparameter runs were executed for EMIN. To
address this issue, a new multi-headed feed forward architecture was designed
such that it could accept input from any of the six spectral modalities while also
allow for systematic differences between the modalities. The resultant architecture,
named the “Hydra model”, employed a modality-specific input (only the requisite
input layer was used for any given spectra), with a common feedforward backbone
to all input layers. This architecture, illustrated in Figure 7, allowed for modality
specific learning in the input layer but aggregate learning in the backbone. Multi-
modality predictions (outputs) were averaged into a single softmax normalized

output for final class predictions.
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Figure 7. Hydra model architecture.

The Hydra model was hyperparameter tuned over the same parameter ranges used
in UNESE experiment 1. Each baseline and EMIN regularized run was defined by a
single hydra model rather than 6 individual models as before. MGDA was not
employed for EMIN a selection as it did not produce useful results in UNESE
experiment 1. Hyperparameter tuning of the singular Hydra baseline and EMIN
based models yielded the test macro error rate shown in Figure 8. The EMIN
regularized model did not improve results over the baseline. The overall hydra
performance was commensurate with observed performance during UNESE

experiment 1, whilst proving far easier to conduct effective hyperparameter tuning.
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Given the observed difficulties in the selection of the a during UNESE experiment 1,
the learning dynamics of the best performing hyperparameter settings were
observed over a grid of a values (see Figure 9). By examining the evolution of model
predictions for specific samples dynamically during the training process, it was
observed that for a large range of a values EMIN seemed to have little to no effect
on training, had a very fine range in which it changed the dynamics, and then quickly
fell off into a degenerate condition that prevented any model learning whatsoever
from cross entropy (the supervised classification loss), which strongly regularized
models to the initial predictions. From these observations, it seemed possible that
the resultant selected best hyperparameters from UNESE experiment 2 had selected
a mode for which the value of « yielded no difference from EMIN regularization,

hence the equivalent performance with baselines.
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3.5. UNESE experiment 3: Label limited EMIN

During UNESE experiments 1 and 2 the developed baselines were so performant
that there was minimal headroom for EMIN regularization to improve results. To
make the evaluation task more difficult and better highlight differences between
approaches, training data was subsampled to fractions of the available training data.
The rest of the training data was either withheld from training or was provided as

unlabeled data for semi-supervised learning.

Hyperparameter tuning was conducted over the same parameter ranges as in
UNESE experiment 2 for a training data fraction of 0.1. The best selected
hyperparameter settings were re-trained against a training data fraction of 1.0 and
compared to the best results from UNESE experiments 1 and 2. They were found to
be slightly better than UNESE experiment 1, which suggested that the best
hyperparameters had minimal sensitivity to the fraction of training data and did not
need to be retuned for varying fraction. The selected parameters were then used to

retrain models over a grid of training data fractions.

The label attrition experiments (Figure 10) highlighted expected behavior in that
final model performance was directly correlated with the amount of available
training data. In particular, the low training data fractions showed baseline error
rates increases to as much as 30% (from a full training data error rate of 3-4%).
However, EMIN was not shown to provide a performance increasing regularization
benefit (GaussEntropy in Figure 10) or a strong semi-supervised learning
mechanism (GaussEntropySSL in Figure 10) even as baseline performance
degraded. Label attrition clearly made the resulting problem more challenging, but
the baseline performance still represented a strong showing of the possible-to-

achieve resultant model error rate.
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Figure 10. UNESE label attrition results.

3.6. UNESE experiment 4: EMIN as model finetuning

From observations on the difficulty in finding the narrow a band, a new, less
sensitive approach for the application of EMIN was designed. In this approach, a
model is first trained for a time using a =1 (no EMIN). After reaching a predefined
epoch, the parameter is changed to @ = 0 (no cross entropy, only EMIN) and trained
for an additional period. In this manner, EMIN is applied as “model finetuning” to a
traditionally trained, supervised model. By training as finetuning, EMIN benefits can

be realized on an already well-tuned baseline model.

The best hyperparameter settings found in UNESE experiment 3 were used to
explore the EMIN finetuning approach. The model was trained as supervised only for
1,000 epochs, yielding a resultant model that had performance commensurate with
a well-tuned baseline. Next, this model was fine-tuned as EMIN-only for an
additional 1,000 epochs. The observed error rates after initial training and EMIN

finetuning are shown in Figure 11. Finetuning degraded the overall performance.
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Figure 11. Overall test performance for pre- and post-EMIN finetuning.

The distribution of cross-modality predictive variance was compared between initial
training and EMIN finetuning. As expected, the EMIN finetuning process reduced the
variance of the highest-variance samples to be more in line with the rest of the
dataset. This indicates that EMIN finetuning promoted the expected variance-
reducing behavior. However, while the predictive variance analysis illustrated that
the EMIN regularization provided the expected mathematical behavior, this
regularization did not yield an improvement in overall predictive performance.
Comparison of performance per modality (Figure 12) showed that while EMIN
finetuning did not change the overall fusion performance, it made the individually

worst performing modes better and the best performing modes worse.
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3.7. UNESE experiment 5: Student-Teacher Experiments

Throughout the course of UNESE experiments, EMIN-based regularization was
continually observed to have statistically insignificant impact on final model
performance. From the model finetuning experiments, it was observed that while
overall performance was not improved, EMIN provided improvements to the worst
performing modalities. Based on these observations, we hypothesized that an
alternative, student-teacher EMIN regularization (see Section 2.3) may yield

improvement.

In this framework, the modalities were designated a priori as being either “student”
or “teacher” modalities. In the computation of the EMIN loss, statistics
(mean/variance) were computed using the set of teacher modalities with gradient
blocking. The EMIN loss using the teacher statistics was then applied over the
student modalities. We hypothesized that this would allow the teacher modalities to
“teach” the student modalities, thereby applying EMIN regularization to the subset
of modalities for which there may be improvement and leaving the others
unimpacted by EMIN.

In the application of the student-teacher paradigm to the UNESE dataset, the three
SWIR modalities were designated as the teachers and the three VNIR modalities
were designated as the students. This was based upon observations that the SWIR
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modalities individually provided better performance over the VNIR (Figure 6, Figure
8), and that the VNIR modalities could be improved by EMIN regularization (Figure
12). The student-teacher framework was re-applied in the semi-supervised learning
label attrition experiment described in UNESE experiment 3, with a critical
difference: both EMIN and baseline models were trained for many more epochs and

early stopping of training based on validation performance was disabled.

The results from student-teacher EMIN regularization are shown in Figure 13. The
rationale for training longer with student-teacher than in previous experiments was
based upon manual examination of learning dynamics of the student-teacher
trained model, which showed oscillatory behavior in validation loss that limited the
effectiveness of early stopping. Initially, student-teacher based EMIN appeared to
show a small but consistent performance improvement over the baseline (denoted
as “Early Stopping” in the figure). However, while the baseline did not obviously
exhibit this oscillatory behavior, a long-trained baseline (labeled as “Long Baseline”
in the figure) yielded the same performance as the student teacher EMIN
regularized model. As in other UNESE experiments, when sufficient attention was
given to the tuning and setup of the baseline model there were no observed

statistically significant differences between EMIN regularization and baseline.
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3.8. UNESE Discussion

Within the UNESE multi-modality, hyperspectral classification experiments entropy
minimization-based regularization never showed statistically significant
improvements compared to baselines in overall fused performance. In experiment 1,
overall performance of tuned baselines was very good. At the same time, the joint
hyperparameter tuning of 6 models required for EMIN regularization was
cumbersome and unwieldy, representing a combinatorial expansion in the
hyperparameter space for joint tuning. In response, the multi-headed hydra model
was developed which proved far easier for hyperparameter tuning. The hydra
architecture was evaluated under subsampled training labels, and while
performance was correlated with available training data as expected, EMIN did not
provide benefit over the degraded baseline in this regime. Analysis of these results
highlighted a highly sensitive dependence on the value of «, the parameter that
controlled the relative weighting between the supervised and EMIN loss terms. A
less a-sensitive method of training was developed, instead leveraging EMIN as a

finetuning step after normal supervised learning as pretraining. This two-step
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approach illustrated that while fused performance between EMIN and baseline was
flat, EMIN appeared to improve the performance of some individual modalities at
the cost of others. To exploit this behavior, a student-teacher framework in which
the best performing modalities (SWIR1-3) were used to “teach” the worst
performing modalities (VNIR1-3). At first, this appeared to provide small but
consistent improvement over baselines, but a further extra-long training cycle

baseline closed the observed performance gap.

This dataset was characterized by a per-sample modality overlap that had most
samples observed by 2-3 modalities. It is not clear that a statistical cross-modality
regularization provides a useful target for learning in this regime. Furthermore, high
performing baselines showed that often, per modality differences were insignificant
and effectively quashed under simple mean-aggregation fusion. On a per-sample
basis, errors between baselines and EMIN were similar, but EMIN often sacrificed

the performance of the best performing modalities to improve the worst.

A strong recommendation from the UNESE experiments is that significant
investment and experimentation should be paid into underlying baselines prior to
developing advanced fusion approaches. Early stopping should be used with the
utmost caution; models continue to learn and improve for long after validation
metrics exhibit flat trends. The developed hydra model architecture is an elegant
solution to data fusion while still using classic mean-aggregation fusion approaches,
particularly when data modalities are similar enough to justify sharing most model
weights. The hydra model resolves issues of inter-modality model score calibration,
which can plague and degrade simple fusion aggregation techniques such as mean,

by outputting all modality predictions for a sample into the same space.

Tuning of multi-term loss functions remains a significant challenge which cannot be
decoupled from issues of loss and gradient scaling, learning dynamics, and training
stability. There remains no obvious strategy to jointly optimize two or more loss
terms at the same time. Sophisticated Pareto-front optimization strategies, such as
MGDA explored in the UNESE experiments, require a quantitative understanding of
relative loss importance. This is rarely possible in all but the most contrived

examples, as direct interpretation of smooth, differentiable loss functions is
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challenging and data dependent. Other strategies, such as random sampling of «,
require a fixed or described schedule of relative loss weighting which can be
unresponsive and ill-tuned to observed learning dynamics. Furthermore, random
sampling-based strategies can struggle to find the often-narrow bands of @ which

produced desired results.

Under the EMIN project, the UNESE hyperspectral imagery collects were used to
produce a realistic benchmark dataset for evaluating multi-modality multi-class
classification algorithms. Appropriate data labels were developed, and the source
rasters were subsequently sampled. The conditions of sparse and variable modality
overlap, data alignment, etc. in this dataset are realistic exactly because they stem
from real data collection processes. This dataset is available for future
investigations into multi-modality fusion and is a lasting resource in support of

algorithm development (Linville, 2022).
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4, SEISMIC EVENT LOCATION REGRESSION

The problem of locating the source of an incoming signal from a single sensor
remains a challenge for seismic event processing in part because directional
information with traditional processing requires triaxial sensors which are often
unavailable. Less expensive vertical axis sensors on the other hand can help
constrain distance relationships owing to their relative abundance compared to
other sensor types. We explore the advantages for direction and location prediction
on vertical channel and triaxial sensors for a seismic network in the state of Utah.
We first develop a location model through multitask learning to obtain a baseline for
event location in Sections 4.1- 4.4. We then develop models that are trained with
EMIN loss and evaluate the impact on directional and distance prediction for triaxial
and vertical sensors in Section 4.5. We finish in Section 4.6 with an assessment of

EMIN modelling in label sparce scenarios (semi-supervised learning) using student-
teacher EMIN.
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4.1. Direction (back azimuth) prediction

The direction of energy arriving from a seismic event observed at a specific location
is typically measured in degrees from north looking toward the origin and is referred
to as back azimuth or BAZ. High quality BAZ prediction with seismic data
traditionally requires an array of stations. Arrays provide directional information
when there are measurable differences in the arrival times of incoming energy
across the geographically separated elements of the array. Less robust
measurements are possible through polarization analysis on co-located orthogonal
measurements available from individual triaxial sensors (Frohlic and Pullium, 1999).
Observed accuracies for triaxial BAZ estimates are often on the order of 30°
(Davenport et al., 2021), which can result in large, potentially unusable location
errors if based off a small number of distant observations. Initial tests on single-
station BAZ prediction with both triaxial and single vertical orientation sensors
suggested that deep neural networks learn a sin/cos encoding of the BAZ attribute
at a level only slightly better than existing methods for triaxial sensors (~18 km).
However, when coupled with distance information in multitask learning BAZ

improved markedly for both triaxial and single channel sensors.

4.2. Distance prediction
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The distance to an observed phenomenology combined with the estimated BAZ
provides a geographic (surface) location for a seismic event from a single sensor
measurement. While there are no formal traditional methods to estimate distance
with high precision using a single station, common ‘rules of thumb’ such as travel
time distance between the arrival time of p and s waves can provide reasonable
estimates for local and regional events. Distance is therefore usually considered the
easier attribute for determining location because the errors that results from
distance-only estimates from azimuthally distributed sensors result in higher
location qualities than if BAZ is included at 18-to-30-degree resolution. Coupling
distance and BAZ prediction benefits BAZ while not substantively inhibiting distance
prediction with convolutional neural network (CNN) models for single stations.
Therefore, because of the performance advantage multitask learning offers,
distance and BAZ (sine/cos embedding) are predicted together in a single CNN

model.

4.3. Dataset

The dataset for single-station location was developed by analysts and the University
of Utah and has been leveraged extensively for algorithm development in the past
(Linville et al, 2019, Linville, 2021). The regional extent of the dataset includes the
monitoring region around the state of Utah with event locations from 34.7-46.3° N
Latitude and 117.0-106.7° W Longitude. Observations come from a network of 280
stations of which 66% are single vertical channel sensors (111,606 observations)
and 34% are from 3 orthogonal channel sensors (58,202). The maximum observation
distance is 445km, however most events are observed at local distance scales <
150km (catalog mean=51km). The mean reported horizontal error reported in the
catalog is 1km. Partitioning for training, testing, and validation was performed
randomly over events (events remained grouped during sampling) and 10% of the

samples were used for testing and validation, respectively.

44, Baseline single-station location models

Baseline models utilize 3-channel (zero padded for vertical sensors) time-frequency
(spectrogram) input representations. The spectrograms have 1sec time resolution

and 1Hz frequency resolution. While we explored CNN models of various depths, the
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largest models were typically the most competent at multitask learning for event
location. Final models used the VGG16 architecture (Simonyan and Zisserman,
2014) and resulted in median location errors over the randomly sampled test catalog
of 3.2 -3.5 km from 1.1-1.3 km distance errors and 3.5-3.7° BAZ errors. Median
event level errors were 1.69km (mean=4.4). Median location errors for single
channel models are 4.1km compared to 2.8km in triaxial models. There are
substantive differences between the average and the median for reported location
errors (17km vs 3.5km) because a majority of the events are close (< 51 km distant)
and maximum location error is controlled by distance. Therefore, in selecting
(through validation) the models with the smallest median error we are preferentially
selecting models that are best for short distances, but these models also perform
the best in aggregate over all distance samples. These experiments were run on a
subset of the catalog: earthquake sources with reported horizontal error < 1km (38%
of the catalog). For validation several full catalog runs were performed, which

increased performance of the best models to 2.6 km median location error.

4.5. Experiment 1: Seismic EMIN models

Seismic EMIN models were trained with architectures, hyperparameters, and loss in
the same manner as baseline models, with the exception that triaxial and single
channel modalities comprised separate models and took in their respective inputs.
The EMIN objective was a function of the predicted BAZ (in radians) and distance
(km normalized the earth radius = 6378.1) and required a starting location (start/ai)

for each observation /in set of stations (for a single event, for simplicity):

X; = arcsin (sin (startlat;) cos(dist;) + cos(startlat;) sin (dist;)cos (B/ Equation 2

(sin (BAZ;) sin(dist;) cos(startlat;) Eqguation 3
cos(dist;) — sin(startlat;) sin (X;)

Y; = startlon; + arctan

EMIN minimized the variance of the resulting distributions of X;Y; from each model

and for each event. In the case of student-teacher EMIN for seismic, distributions
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were stabilized using the median values of X,,Y; for set of stations in an event but
EMIN was only applied to the lowest performing model (the single channel modality,

the student in the student-teacher paradigm).

EMIN models in aggregate did not outperform baseline models within statistically
meaningful margins unless considering observations within 40 km (1 std of the
catalog distance distribution; Figure 14a). Triaxial models remained better on
average than vertical channel sensors, although the performance differences per

modality depended on distance.

There was a difference between behaviors for both baseline and EMIN models on
the best and worst performing modalities on event level classification. Namely,
triaxial performance improved for most events but worsened for the ‘hardest’ cases.
In contrast, the EMIN single channel models were better, even if very marginally
(Figure 14e).

When the dataset was extended beyond the most well constrained earthquake
locations to include all cataloged events, the performance for EMIN models was
statistically equal to that of baseline models (2.6 km median error). Performance
differences between sensor types at different distance ranges also became nearly
equivalent for both very near and very distant observations. For all models,
predictive variance was an unreliable estimate of predictive accuracy for both BAZ
and distance attributes. In order to be informative for decision making, the least
stable distance and BAZ estimates should clearly relate to the largest prediction

errors, which they did not.
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4.6. Experiment 2: Semi-supervised seismic location

In contrast to supervised learning loss, formulations of the EMIN objective do not
require distance and BAZ labels as input. EMIN can therefore be used in semi-
supervised learning (SSL) tasks where the requirements of learning are a sparse
number of known labels and some additional quantity of unlabeled data. The SSL
experiments performed here use 25 event labels which equates to 262 labeled
samples. For the randomly sampled label set explored here, SSL EMIN reduced the
km location error by 15.5 km (median over test set) and the km location error per km

distance by .8 - 1.4 km, on average half compared to non-EMIN models (Figure 15a).
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Figure 15. SSML EMIN location error normalized by observation distance (a) and with different
label counts (b). Models with labels counts above 500 are assumed to have sub-optimally
explored HP based on their lack of decrease in model error given additional labels. This is due to
the time available to continue to perform model experiments for this study.

In geographic terms, aggregate errors over the catalog reduce from ~67 to 53 km
(Figure 15b) and estimates for both modalities improve dramatically at the event
level (Figure 16; red compared to grey error ellipses). While clear performance gains
have been demonstrated, the error achieved in these examples is sufficiently high
that with or without EMIN these approaches may be only minimally useful for event

location in practice.
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4.7.

Seismic Discussion
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In the best models, triaxial sensor median error was 2km compared to 3km for single
channel sensors or 9.5km compared to 16km when using the mean. While single
channel models were more numerous at 66% of the catalog, triaxial estimates were
more accurate, with the exception of long- distance observations. Recognizing the
disparate aptitudes across modalities, EMIN can be formulated within a student-
teacher paradigm where only the teacher (the triaxial modality) influences the
decisions of the student (single channel sensors). In these experiments regardless
of the EMIN objective formulation (enforced across the entire distribution instead of
just the per-modality median, using the modality median to stabilize outliers, or as
the modality median of the teacher) EMIN was either helpful or at least not
damaging for learning. The stability of the performance for EMIN in seismic
experiments was likely the result of consistent azimuthal coverage for each event.
Consistent azimuthal coverage provides distributed error averaging and helps
minimize the impact of poorly performing individual sensors on location estimates
and the loss objectives. Therefore, while it is possible to formulate the EMIN
objective function to be less sensitive to outliers with maximum a posteriori
probability or Bayesian formulations, these are less likely to be advantageous for
this dataset and therefore testing of these formulations remained limited. When
EMIN objectives were optimized using the student-teacher methods, loss occurred
more stably (monotonically decreases) but when trained to completion with
appropriate hyperparameters performance remained equivalent. The only cases
where EMIN generated substantive performance differences were in severely label-
limited cases, where performance is doubled relative to baselines (errors are halved
when normalized by distance). This suggests that a redundant precision forcing,
which is what location entropy minimization does in multitask supervised regression
settings, adds little to no value in accuracy or predictive confidence. The non-
redundance of the information provided by unlabeled samples through EMIN proved
to be powerful, however, the gains are unlikely to scale linearly with label size under
random sampling. Optimal label selection for these experiments is the next step in
understanding the practical use cases for SSL EMIN for specific problems (e.g. how

accurate do single-station locations need to be to add value beyond distance-based
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predictions). However, label selection remains a foundational question in the field of

SSL broadly and is beyond the scope of this work.

Lastly, enforcing consistency when doing so is mostly redundant (as in the
supervised seismic location modelling) increases the HP search space without the
commensurate benefits of reducing training time or significant increases in
performance. In this scenario we expected mostly the ‘hard cases’ to be improved by
model clamping, and the more difficult attribute (BAZ) did in fact improve compared
to unclamped models, but often at the expense of precision across distance, and
with gains that decrease as training epoch increased. After 4 days of model training
there was no recognizable difference between clamped and unclamped models for
this task. The model gained insight about how it performed on current samples
based on how it performed on related samples, but this is the same insight
accessible through labeled loss given sufficient training times (8 days for baseline

models on the full dataset compared to 41 days for EMIN).
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5. DISCUSSION

The EMIN objective is a theoretically simple idea: if models consistently and
correctly assign sample x a set of attributes, other models with less descriptive data
should incorporate xinto the representative space of what those attributes can look
like. Intuitively it seems that EMIN loss would be increasingly valuable when
instances of xare rare in one modality, and even more valuable when instances of x
exist but for which no ground truth is available. While theoretically simple, the
complexity introduced in real data generally drives performance in far greater ways
than EMIN has opportunities to leverage. For example, enforcing EMIN loss over
arbitrary (non-physical attributes) is more likely to lead to poor generalization, and
reduced inherent (and perhaps desired) uncertainty for phenomenologies with
differential detectability across modalities. A more concretely example would be
enforcing agreeance over time-of-day for modelling quarry blasts in a region where
blasting is not restricted by daylight. This is not likely to be valuable. When applying
EMIN for a specific phenomenology, the hard question is whether detectability for
some samples is poor because no signal exists, or because the signal is weak or
previously unrecognized (i.e., hard cases with valuable aspects that traditional
processing has failed to recognize). If no signal exists, enforcing a noise sample into
positive class may not be ideal. At the very least the expectation is that the
adversarial relationship between class loss and consistency loss results in low
predictive confidence for these samples. This was true for training samples but does

not reliably translate to new (test) samples in the experiments explore in this work.

Complexity introduced by the domain is also coupled to learning dynamics. For
example, weighting labeled loss as equivalent in importance to EMIN loss was
generally detrimental to learning. Learning suffers because models struggle to
escape low entropy initialization states or can be driven to mode collapse (another
low entropy state). This means that elegant solutions to multi-objective optimization
are not helpful and instead brute force search space approaches are required.
Problems like this compound as the number of modalities increase because joint
model optimization becomes increasingly intractable. Shared parameters with

independent model heads for each modality (the HSI hydra model) are an efficient
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solution to unwieldy parameter spaces, but when EMIN and labeled loss are at odds
for a given sample late in learning, it is likely because there are few or no helpful
features left to exploit beyond labeled learning for a given dataset. In these cases,
EMIN at best can induce tradeoffs in prediction for specific samples but given a
labeled learning loss of sufficient strength, these differences will not be
substantively different from what is achieved in the absence of EMIN from different
weight initialization and training pathways. This is essentially what we observe in
the first two HSI experiments. In cases where we optimize labeled learning and
subsequently apply EMIN, we observed expected behaviors given the training
objective (sample entropy decreases) which had positive impacts on poor
performing modalities but those came at the expense of higher performing
modalities. Simple mitigation strategies follow a student-teacher learning scenario
but likewise failed to offer substantive benefit even in label-limited experiments
likely because as in previous experiments, EMIN forcing did not help in developing

additional predictive features.

The optimization challenges discussed above were not limiting for seismic
experiments as they were for HSIl because the number of modalities were limited to
2. Instead, complexity in applying EMIN was shifted to the development and stable
application of EMIN on a non-trivial transform of the model output. Physically based
learning objectives must be carefully normalized and learning dynamics investigated
extensively in order to verify gradient pathways and convergence as expected. Once
accomplished, we found that EMIN forcing on seismic regression tasks is a
superfluous precision forcing term in fully labeled domains. Given sufficient time,
labeled loss alone was able to arrive at the same location accuracy, and did so more
rapidly (8 days vs 41) under a broader HP range. This is not to say EMIN did not
demonstrate value. As in the HSI experiments, there were cases for which EMIN
improved performance, but in aggregate across the dataset those gains were a
trade-off. The one case where EMIN provided clear and substantive gains was for
semi-supervised regression where unlabeled data was able to decreases error rates
to half their non-EMIN values. Not only did average and median station values

improve, but event level estimates for each modality became substantially more
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aligned with each other (calibrated). The reason this outcome is not considered a
substantive win for general data fusion is that engineering complexity required to
arrive there is formidable and will be required for each new problem, making it a

highly specialized rather than a general solution to label-limited but data rich

problems.
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6. CONCLUSIONS
This work developed a new training method (EMIN) for gradient based predictive

models that expects low entropy when multiple data sources, channels, or
modalities exist for a given decision. Conceived as a general method of data fusion
that maintains input representation flexibility between modalities, EMIN helps
calibrate decisions from automated models across modalities and can increase
predictive performance substantially in very specific label-limited cases. Despite
generalizable theory, EMIN in practice requires substantive engineering for each
specific problem and is not guaranteed to enhance performance when the labels
that exist for learning already exploit the features of the data available for the

predictive tasks.
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