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ABSTRACT

Broadly applicable solutions to multimodal and multisensory fusion problems across 
domains remain a challenge because effective solutions often require substantive 
domain knowledge and engineering. The chief questions that arise for data fusion 
are in when to share information from different data sources, and how to 
accomplish the integration of information. The solutions explored in this work 
remain agnostic to input representation and terminal decision fusion approaches by 
sharing information through the learning objective as a compound objective 
function. The objective function this work uses assumes a one-to-one learning 
paradigm within a one-to-many domain which allows the assumption that 
consistency can be enforced across the one-to-many dimension. The domains and 
tasks we explore in this work include multi-sensor fusion for seismic event location 
and multimodal hyperspectral target discrimination. We find that our domain-
informed consistency objectives are challenging to implement in stable and 
successful learning because of intersections between inherent data complexity and 
practical parameter optimization. While multimodal hyperspectral target 
discrimination was not enhanced across a range of different experiments by the 
fusion strategies put forward in this work, seismic event location benefited 
substantially, but only for label-limited scenarios. 
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1. INTRODUCTION

Data fusion remains a persistent challenge for many domains because the optimal 
exploitation of data across scales, resolutions, and phenomenologies depends 
uniquely on data characteristics. Ideal data fusion strategies maximize the available 
information across available data modalities and effectively prioritize it for informed 
decision making. Data sharing early in the modelling process (such as feature fusion 
and parameter sharing) reduces downstream complexity because the effective 
combination of disparate data sources is calibrated through the modeling process. 
Alternatively, independent modeling can solve limitations that early data sharing 
experiences at the expense of more nuanced and challenging decision fusion later. 
Both approaches and the myriad variations of each that have evolved can be highly 
effective for specific use cases. Despite the abundance of ideas and the rapid pace 
of research in data fusion, the most effective solutions on one problem or domain 
rarely provide similar gains broadly. The goal of this work was to explore a model 
training paradigm that could be applied broadly across domains by remaining 
agnostic to input representation and output decision-making. Conceptually, our goal 
was to maximize the predictive competence for situations, samples, and phenomena 
where multiple examples were available and when shared context would result in 
more robust and informative representations and task performance.

The training method we explored reduces the disagreement (or entropy) between 
model outputs on a given sample when multiple data sources, channels, or 
modalities exist for that sample. We call the objective entropy minimization or EMIN 
henceforth and apply it to problems in two domains. The first domain is a set of 
Hyperspectral Imagery (HSI) collections over a specific geographic location. The 
data collection in this region is characteristic of temporal, geographic, and dynamic 
ambient conditions that make data fusion challenging. The second domain we 
explore is the challenging task of single-station event location from different seismic 
sensor types. In the first domain EMIN is applied directly with labeled loss in a 
multiclass prediction task. In the second domain EMIN is applied to a transform of 
the multitask regression targets. Our experiments inform how modelling paradigms, 
multiple objective weighting, and inherent data complexity and quality all influence 
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the practical value of EMIN on data fusion problems that resemble the scenarios 
explored here. 
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2. ENTROPY MINIMIZATION

The goal of multi-modal decision fusion is to make better overall predictions by 
utilizing multiple observations of the same event/phenomena to corroborate 
evidence towards a single prediction. One popular method of achieving this is to 
have independent models that have been optimized to give high performance for 
each modality. For a given event, all model predictions can then be fused together to 
form a better estimate. One drawback of this method is that without an additional 
calibration scheme, fusion of the individual model predictions is an additional issue 
that must be solved; a ‘high’ estimate from one model may be within a different 
range of another model’s ‘high’ estimate, resulting in a non-trivial fusion problem 
which has been addressed in the literature (Anderson et al., 2007; Simonson, 1998). 
Alternatively, fusion could be a much easier task if individual models tended to 
agree with each other when appropriate (e.g., be similarly calibrated). We 
hypothesized that encouraging the agreement of models when individual modalities 
observe the same phenomena as an objective during the learning process would 
improve fused predictive performance. 

2.1.   EMIN formulation

Expanding on previous work (Michalenko et al., 2020), we matured the concept of 
EMIN by formulating a generic loss function and variants based on the principle that 
multi-modality outputs should typically agree with one other. Our approach assumes 
that multi-modality outputs are independent identically distributed draws from a 
gaussian distribution with known mean and unknown variance. We then used 
standard parameter estimation techniques to estimate the unknown parameters and 
compute distributional entropy as a proxy variable of agreement between models. 
The resulting proxy variable is then used as a regularization loss term to a 
supervised loss while training gradient-based models such as neural networks. 

More concretely, let A = α0,α1,…,α𝑀 with α𝑚 ∈ ℝ𝐷 and let 𝐷 = 1 (for simplicity, but 
extended in section 2.2) be the scalar outputs from a set of 𝑀 multi-modal models. 
This is the case for a regression function 𝑓 where the output of the mth model is 
scalar value α𝑚 = 𝑓 𝑥𝑚│Θ𝑚  where 𝑥𝑚  and Θ𝑚 are the inputs and parameters of the 
𝑚𝑡ℎ model respectively. We want to place assumptions over A such that the 𝑀 
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models must adhere to what we believe will result in better overall model 
performance. If A is a random variable (RV) and αs are realizations of A, we can 
compute statistics of A that are of interest. To make modeling easier, we also say 
the αs are independent draws of the same distribution, which can make an initial 
formulation more tractable. We note that α𝑚 has a deterministic relation to 𝑥𝑚 and 
although it is likely that 𝑥∗ are not independent, we will assume this for simplicity.

We desire that A has low entropy ℋ(A), or 'surprise'. If draws of A are similar and 
typically on the same order as each other, decision fusion becomes easier because 
separate models will output similar values for different 𝑥∗ inputs. Calculating entropy 
typically requires knowledge of the full distribution of A. For a well-behaved 
parametrized distribution such as A ∼ 𝒩(μ = μ𝑜,σ2) with known μ𝑜 and unknown σ 
we can estimate the unknown σ using standard parameter estimation techniques 
like maximum likelihood and subsequently compute ℋ(A). 

One of the easiest estimation techniques is to evaluate the likelihood of ℒ σ2|𝐴  = 𝑝
A = {α0,α1,….α𝑀})│σ2,μ = μ𝑜  and find the value σ2 that maximizes it. Since A ∼ 𝒩

(μ = μ𝑜,σ2)  we can write out the likelihood function, take the gradient w.r.t. σ2, set 
∇σ2 𝑝 A│σ2,μ = μ𝑜 = 0 and solve for σ2. The solution, σ2 = 1

n∑ (α𝑖 ― α)2 is the 
Maximum Likelihood Estimate (MLE) of σ2 where α is the sample mean. 

Once we have σ2, we know A ∼ 𝒩 μ = μ𝑜,σ2 = σ2   and can now calculate ℋ(A) = 1
2

log 2πσ2 + 1
2. In this case, we can see that treating entropy as a loss term in the 

minimization problem min ℋ(A) means minimizing  σ2 = 1
𝑛∑ (α𝑖 ― α)2since the log is 

monotonic in σ2. Therefore, under the Gaussian assumption, minimizing entropy is 
the same as minimizing variance across different model outputs. This is shown in 
Figure 1 for a decision fusion problem with 2 separate models. Each plot represents 
the same model and data trained 200 epochs on a toy decision fusion problem with 
varying levels of EMIN enforced upon the models. Each point in the scatter plot 
represents two model predictions over the same event for two inputs. The left plot 
represents no EMIN applied to the model, the middle plot represents a moderate 
penalty, and the right plot represents a high EMIN penalty applied to the model. As 
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the EMIN penalty is increased, individual model outputs become more correlated 
which is the expected effect when minimizing entropy. Simple use case examples 
and EMIN objectives as formulated and used in this work can be found at 
https://innersource.sandia.gov/portal.

Figure 1. Effects of minimizing entropy across two models for 3 different penalty values.

2.2. Multi-Attribute derivative EMIN

The 𝐷 = 1 formulation can be extended to the multidimensional case. A 
straightforward formulation leveraging uncorrelated multivariate assumptions treats 
𝐴 ∼ 𝒩 μ = μ𝑜,𝐼σ2  where parameter estimation of each dimension can be performed 
independently. This formulation is feasible when 𝑀 is small as it keeps the number 
of parameters to estimate less than the number of observations. This formulation 
was used in most of the seismic and HSI experiments described in following 
sections. 

In the UNESE HSI experiments, up to 6 models estimate a classification value in a 
10-class prediction task. In the seismic event location experiments, 2 models 
estimate 2 regression targets each. EMIN is applied to a differentiable transform of 
the model predictions where 𝐷 = 2. The transform conveys directional and distance 
attributes to positional attributes, specifically latitude and longitude (in radians), 
which EMIN then is applied to (see Equations 2-3 in Section 4.5).
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2.3. Student-Teacher EMIN

In practice, we may encounter scenarios in which one or a subset of modalities are 
much higher performing than the complement set. This may be the case in which 
one sensing modality is able to capture more event information than other 
modalities at our disposal. In such settings the practical effect of EMIN is an 
increase in performance for the poor performing modality at the cost of decreasing 
performance for the higher performing modalities. A student-teacher framework can 
be used to address this setting, where the teacher model(s) predictions α𝑡𝑒𝑎𝑐ℎ𝑒𝑟 are 
used in the estimate of α 𝑖𝑛 σ2

MLE = 1
𝑛∑ (α𝑖 ― α)2  but are excluded from the set α𝑖 . 

With this method, EMIN gradients with respect to model parameters from the 
teacher models are zero, while EMIN gradients with respect to student model 
parameters are still non-zero. The effect is that teacher models are unaffected by 
the EMIN training process and student models are pulled in the direction of teacher 
model outputs with the assumption teacher models are higher performing.  Student-
teacher learning experiments are explored for both HSI and seismic cases. 
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3. UNESE HYPERSPECTRAL IMAGERY MULTISENSOR TARGET 
CLASSIFICATION

3.1. Introduction

This section describes experiments for multi-sensor target classification leveraging 
the UNESE U12 Hyperspectral Imagery (HSI) collections focused around the P-
tunnel apron and mesa above the Disko Elm test in area 12 of the Nevada National 
Security Site (UNESE, 2018). These data were collected as part of the Underground 
Nuclear Explosion Signatures Experiment (UNESE) multi-lab venture funded by 
DNN R&D. The UNESE data used in the EMIN experiments described below 
consists of six total modalities: three visible-through near infrared (VNIR) and three 
short wave infrared (SWIR) pseudo-reflectance hyperspectral images. Each image 
was collected at a different time and has a unique spatial footprint that does not 
completely overlap with the five other collections. This chapter describes curation of 
a multi-modality, multi-class classification dataset from this source data and a 
sequence of EMIN fusion experiments conducted against this dataset.

There were five experiments for the UNESE classification dataset. The first 
experiment (Section 3.3) executed against the UNESE dataset consisted of treating 
each of the six HSI flights (3 VNIR, 3 SWIR) as independent modalities. For each of 
the six modalities, an independent feedforward neural network was trained to make 
optimal predictions over that modality. This experiment represented a direct 
application of the EMIN methodology to an independent multi-sensor scenario for 
multi-class classification. The second experiment (Section 3.4) developed a single, 
cross-modality model for all six modalities to decrease the hyperparameter tuning 
difficulty. The third experiment (Section 3.5) tested how well EMIN performs in 
different label scarce scenarios. The fourth experiment (Section 3.6) explored how 
EMIN performed as a fine-tuning step in model training. The final fifth experiment 
(3.7) tested how a student-teacher version of the EMIN objective performed.
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3.2. Dataset curation

3.2.1. Data Labeling

The UNESE HSI data collection was unlabeled, providing only spatial-spectral 
measurements without annotations. The scene was manually annotated with a 
series of polygons indicating known or discernable materials of interest (asphalt 
road, aluminum, stemming sand, etc.). In total, 29 individual targets across 206 
distinct polygons were manually annotated. All annotations were performed against 
the RGB orthomosaic, which provided the greatest spatial accuracy of all collected 
imagery products. The bulk of annotations were performed around the P-tunnel and 
T-tunnel aprons, which featured several anthropogenic artifacts and structures (see 
Figure 2). Photos collected from on the ground as part of the data collection 
campaign were referenced in manually identifying annotated polygons. 

Figure 2. Example manually annotated polygons around the P-tunnel apron.
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3.2.2. Spatial Point Sampling

The labeled polygons and original hyperspectral source rasters were conflated to 
generate a much smaller and more digestible spectral classification dataset. First, 
the 10 most populous class types were selected for sampling. The polygons 
corresponding to these 10 class types were then used to generate random points 
within the polygons. Target points were generated by sampling a point density of 5 
pts / m2 within target polygons and at a density of 0.025 pts / m2 outside polygons 
to generate “background” points. Each target class was then downsampled to 2,000 
pts/target. Using these randomly generated points, the spectra were sampled at 
each point for the 6 hyperspectral raster images. Many points did not overlap with 
specific hyperspectral images and these “empty” spectra were dropped from the 
analysis, resulting in a non-uniform distribution of target classes per raster. See 
Table 1 for statistics on the sampled dataset, resolved by raster and class. 

Table 1. UNESE multiclass sample statistics.

Target VNIR1 VNIR2 VNIR3 SWIR1 SWIR2 SWIR3

Asphalt 
road

66 790 1531 27 1519 1515

Background 747 1206 514 504 1488 694

Concrete 1506 503 9 1401 1635 8

Graded Dirt 
Road

1220 293 55 598 1318 139

Pad Muck 580 2000 232 507 580 0

Rusted 
Metal

333 1073 916 518 416 72

Sheet Metal 114 1886 873 568 114 0

Tailings 91 1485 0 956 1237 1485
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Target VNIR1 VNIR2 VNIR3 SWIR1 SWIR2 SWIR3

Stemming 
Gravel

0 411 0 63 0 0

Stemming 
Sand

0 697 0 595 0 0

Total 4657 10344 4130 5737 8307 3913

% Missing 70.9 35.4 74.2 64.1 48.1 75.5

3.2.3. Spectral Preprocessing

Two preprocessing steps were used to condition the data for classification. The data 
were notionally corrected to reflectance, meaning theoretically that it should take on 
values between [0, 1]. However, necessary assumptions made during the 
reflectance calibration process mean this was not the case. The differences in 
collection times-of-day as well as the reflectance calibration methodology used 
suggest that there are meaningful and systematic differences, even between 
collections made with the same sensors. The preprocessing steps employed were as 
follows:

1. Mask “bad” bands, with poor sensor responsivity, low atmosphere 
transmittance (see Figure 3), etc. Specifically:

a. Limit VNIR data to 400 – 900 nm
b. Limit SWIR data to 900 – 2500 nm, drop bands with atmospheric 

transmission < 0.25, drop bands for 1900 nm and 2050 nm.
2. Clip data to a range of [0, 1.5]. Clipping the data mitigates the effects of 

outliers from poor calibration but retains the overall shapes and reflectance 
profiles. This is desirable over standard normalization since the data is 
already primarily within the requisite range.
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Figure 3. Sample atmospheric transmission profile.

3.2.4. Partitioning and Known Data Issues 

Data were split into stratified (by class) 5-fold cross validation, with folds 1-4 used 
for leave-one-set-out cross validation and fold 5 withheld for test evaluation after 
training and model selection.

The resulting processed multi-class classification dataset consists of several known 
issues. The first and biggest issue is that of spatial alignment, which can degrade 
the correctness of labels. Each underlying hyperspectral image has variable spatial 
alignment errors to the labeled polygons. For example, see Figure 4, which shows 
how the same “concrete” label polygon sits atop the original RGB, a VNIR image, 
and the SWIR image. Steps were taken to partially mitigate this by applying an 
interior buffer, preventing sampling of points along polygon edges.
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Figure 4. Variable spatial alignment of annotated target polygon with VNIR and SWIR data 
modalities.

The second known issue is that of data calibration and shadows. The data 
reflectance calibration is poor, and the data does not align well to known spectral 
libraries. These issues are further compounded by the exceptionally steep 
topography in the region, which induces angular bi-directional reflectance 
distribution function (BRDF) differences into measured spectra, as well as deep 
shadows dependent on collection time. 

As described previously, the collection footprints for each of the 6 hyperspectral 
images vary widely, resulting in a sparse set of modalities per spectral point used in 
the dataset. The histogram of the number of modalities present in each data sample 
is shown in Figure 5; there are no samples observed by more than 4 modalities. The 
combinations of modalities present in samples is highly biased, as it is based on the 
spatial overlap of collection footprints. Thus, not all combinations of all modalities 
are observed in the data. 

RGB VNIR SWIR
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Figure 5. Distribution of the number of modalities available per sample.

3.3. UNESE experiment 1: EMIN multitarget classification

A baseline fusion approach was established by averaging softmax-normalized 
predictions from six independently trained models. Each model was selected from a 
fully connected network architecture, which consisted of 2-4 layers with 10-120 
units per layer. Dropout was applied to each layer (dropout probability was sampled 
as a hyperparameter) and ReLU non-linear activations and batch normalization were 
applied between each layer. A summary of the hyperparameter distributions is 
shown in Table 2. Runs were executed using early stopping with a patience of 500 
epochs applied to validation macro accuracy. Two hundred and fifty runs were 
sampled for each modality. 

Table 2. Baseline hyperparameter ranges and distributions.

Parameter Sampling Distribution

Number of layers Uniform integers on [2, 4]

Layer sizes Uniform integers on [10, 120]

Dropout probability Uniform on [0, 0.35]

Batch size Uniform integers quantized to 50 on [50, 1000]

Learning rate Log-uniform on [1e-5, 1e-2]

Weight decay Log-uniform on [1e-8, 1e-1]
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Analysis of the validation accuracy during hyperparameter sampling revealed that 
dropout and weight decay both negatively impacted performance. Both were 
disabled for a second round of 250 runs/modality hyperparameter tuning that was 
used for final fused results. The best run per modality was selected using validation 
macro accuracy performance (across 4 replicate cross-validation iterations). 
Hyperparameter configurations for each best selected run were then re-run 5 times 
with different seeds. This resulted in 6 modalities x 5 replicate runs / modality to 
define the baseline. Cross-modality runs were randomly selected to fuse into 5 
distinct baselines. For a given baseline set of models, post-softmax predictions were 
averaged by sample ID (for the modalities that observed a particular sample) and 
argmax was used over the averaged softmax scores for class predictions. 

Entropy minimization was applied very similarly as in the baseline, with the core 
difference being that all six modalities were trained simultaneously and linked via 
the Gaussian Entropy Minimization method. These EMIN based runs used the same 
range of model architecture parameters as were used for the baseline. Dropout and 
weight decay were disabled based upon baseline results, and batch size, learning 
rate, and network sizes were sampled from the same distributions as in the 
baseline. 

The EMIN runs balanced the EMIN and cross entropy loss terms using an 𝛼 
parameter as follows:

𝐿 = 𝛼𝐿𝑐𝑒 + (1 ―  𝛼)𝐿𝑒𝑚𝑖𝑛 Equation 
1

Exploratory experiments highlighted the importance of carefully selecting this 𝛼: too 
large and the models were identical to the baselines (EMIN had no effect) and too 
small and the models experienced mode collapse by optimizing only for entropy 
minimization and not classification performance. To address this, two different 
selection strategies were implemented and subsequently sampled over. First, a 
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simple sampling strategy employed by simply randomly sampling 𝛼. Second, a 
strategy for Pareto front optimization was used to dynamically adjust 𝛼 during each 
training step using the Multiple Gradient Descent Algorithm (MGDA) (Equation 4 for 
two-term multi-objective optimization (Sener & Koltun, 2018)). The use of gradient 
normalization in the MGDA formulation was additionally sampled with a 25% 
probability. The decision to use the random sampling strategy or MGDA was 
sampled over during hyperparameter tuning with equal weight for each. 

The MGDA-based Pareto front optimization provided an elegant solution to the 
selection of 𝛼 by selecting a value and taking optimization steps that are guaranteed 
to improve both the cross entropy and entropy minimization losses. However, this 
selection strategy is predicated on the idea that optimizing cross entropy and 
entropy minimization are equally important. The overarching goal of EMIN based 
regularization was improved prediction performance in fusion-based scenarios: it 
does not follow that it was appropriate to equally weight these loss terms to achieve 
this goal. Indeed, many of the training loss curves from MGDA showed a very 
minimally decreasing cross entropy loss to simultaneously decrease cross-modality 
entropy. These runs often resulted in inferior final performance to models trained by 
simply randomly sampling a fixed value of 𝛼.

The best runs for both baseline and EMIN were selected (per modality in the case of 
baseline) based upon validation set performance. Test set macro error rates from 
selected models are shown in Figure 6. These results showed no statistically 
significant difference in overall performance between baseline and EMIN and 
showed a degradation in some individual modalities from EMIN. However, the 
overall performance from the baseline was quite good and may reflect the Bayes 
error rate due to data issues inherently present in the data (see Section 3.2.4). This 
experiment appeared to provide little to no headroom for EMIN to improve fusion 
performance over the baseline.
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Figure 6. Performance and results from UNESE experiment 1.

3.4. UNESE experiment 2: Hydra Models

Throughout the hyperparameter tuning of UNESE experiment 1 it became apparent 
that training all six modalities at the same time greatly increased the tuning 
difficulty. Hyperparameter search expands combinatorically in the number of 
parameters and linking the parameters across modalities vastly expanded the 
search. In total, 1000 unique hyperparameter runs were executed for EMIN. To 
address this issue, a new multi-headed feed forward architecture was designed 
such that it could accept input from any of the six spectral modalities while also 
allow for systematic differences between the modalities. The resultant architecture, 
named the “Hydra model”, employed a modality-specific input (only the requisite 
input layer was used for any given spectra), with a common feedforward backbone 
to all input layers. This architecture, illustrated in Figure 7, allowed for modality 
specific learning in the input layer but aggregate learning in the backbone. Multi-
modality predictions (outputs) were averaged into a single softmax normalized 
output for final class predictions. 
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Figure 7. Hydra model architecture.

The Hydra model was hyperparameter tuned over the same parameter ranges used 
in UNESE experiment 1. Each baseline and EMIN regularized run was defined by a 
single hydra model rather than 6 individual models as before. MGDA was not 
employed for EMIN 𝛼 selection as it did not produce useful results in UNESE 
experiment 1. Hyperparameter tuning of the singular Hydra baseline and EMIN 
based models yielded the test macro error rate shown in Figure 8. The EMIN 
regularized model did not improve results over the baseline. The overall hydra 
performance was commensurate with observed performance during UNESE 
experiment 1, whilst proving far easier to conduct effective hyperparameter tuning. 

Figure 8. UNESE Hydra Baseline and Gaussian Entropy Minimization results.
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Given the observed difficulties in the selection of the 𝛼 during UNESE experiment 1, 
the learning dynamics of the best performing hyperparameter settings were 
observed over a grid of 𝛼 values (see Figure 9). By examining the evolution of model 
predictions for specific samples dynamically during the training process, it was 
observed that for a large range of 𝛼 values EMIN seemed to have little to no effect 
on training, had a very fine range in which it changed the dynamics, and then quickly 
fell off into a degenerate condition that prevented any model learning whatsoever 
from cross entropy (the supervised classification loss), which strongly regularized 
models to the initial predictions. From these observations, it seemed possible that 
the resultant selected best hyperparameters from UNESE experiment 2 had selected 
a mode for which the value of 𝛼 yielded no difference from EMIN regularization, 
hence the equivalent performance with baselines.

Figure 9. Learning dynamics for variable 𝜶 after 2,000 training epochs.
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3.5. UNESE experiment 3: Label limited EMIN

During UNESE experiments 1 and 2 the developed baselines were so performant 
that there was minimal headroom for EMIN regularization to improve results. To 
make the evaluation task more difficult and better highlight differences between 
approaches, training data was subsampled to fractions of the available training data. 
The rest of the training data was either withheld from training or was provided as 
unlabeled data for semi-supervised learning. 

Hyperparameter tuning was conducted over the same parameter ranges as in 
UNESE experiment 2 for a training data fraction of 0.1. The best selected 
hyperparameter settings were re-trained against a training data fraction of 1.0 and 
compared to the best results from UNESE experiments 1 and 2. They were found to 
be slightly better than UNESE experiment 1, which suggested that the best 
hyperparameters had minimal sensitivity to the fraction of training data and did not 
need to be retuned for varying fraction. The selected parameters were then used to 
retrain models over a grid of training data fractions. 

The label attrition experiments (Figure 10) highlighted expected behavior in that 
final model performance was directly correlated with the amount of available 
training data. In particular, the low training data fractions showed baseline error 
rates increases to as much as 30% (from a full training data error rate of 3-4%). 
However, EMIN was not shown to provide a performance increasing regularization 
benefit (GaussEntropy in Figure 10) or a strong semi-supervised learning 
mechanism (GaussEntropySSL in Figure 10) even as baseline performance 
degraded. Label attrition clearly made the resulting problem more challenging, but 
the baseline performance still represented a strong showing of the possible-to-
achieve resultant model error rate.
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Figure 10. UNESE label attrition results.

3.6. UNESE experiment 4: EMIN as model finetuning

From observations on the difficulty in finding the narrow 𝛼 band, a new, less 
sensitive approach for the application of EMIN was designed. In this approach, a 
model is first trained for a time using 𝛼 = 1 (no EMIN). After reaching a predefined 
epoch, the parameter is changed to 𝛼 = 0 (no cross entropy, only EMIN) and trained 
for an additional period. In this manner, EMIN is applied as “model finetuning” to a 
traditionally trained, supervised model. By training as finetuning, EMIN benefits can 
be realized on an already well-tuned baseline model.

The best hyperparameter settings found in UNESE experiment 3 were used to 
explore the EMIN finetuning approach. The model was trained as supervised only for 
1,000 epochs, yielding a resultant model that had performance commensurate with 
a well-tuned baseline. Next, this model was fine-tuned as EMIN-only for an 
additional 1,000 epochs. The observed error rates after initial training and EMIN 
finetuning are shown in Figure 11. Finetuning degraded the overall performance. 
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Figure 11. Overall test performance for pre- and post-EMIN finetuning.

The distribution of cross-modality predictive variance was compared between initial 
training and EMIN finetuning. As expected, the EMIN finetuning process reduced the 
variance of the highest-variance samples to be more in line with the rest of the 
dataset. This indicates that EMIN finetuning promoted the expected variance-
reducing behavior. However, while the predictive variance analysis illustrated that 
the EMIN regularization provided the expected mathematical behavior, this 
regularization did not yield an improvement in overall predictive performance. 
Comparison of performance per modality (Figure 12) showed that while EMIN 
finetuning did not change the overall fusion performance, it made the individually 
worst performing modes better and the best performing modes worse.
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Figure 12. Per modality delta accuracy resulting from EMIN finetune.

3.7. UNESE experiment 5: Student-Teacher Experiments

Throughout the course of UNESE experiments, EMIN-based regularization was 
continually observed to have statistically insignificant impact on final model 
performance. From the model finetuning experiments, it was observed that while 
overall performance was not improved, EMIN provided improvements to the worst 
performing modalities. Based on these observations, we hypothesized that an 
alternative, student-teacher EMIN regularization (see Section 2.3) may yield 
improvement. 

In this framework, the modalities were designated a priori as being either “student” 
or “teacher” modalities. In the computation of the EMIN loss, statistics 
(mean/variance) were computed using the set of teacher modalities with gradient 
blocking. The EMIN loss using the teacher statistics was then applied over the 
student modalities. We hypothesized that this would allow the teacher modalities to 
“teach” the student modalities, thereby applying EMIN regularization to the subset 
of modalities for which there may be improvement and leaving the others 
unimpacted by EMIN.

In the application of the student-teacher paradigm to the UNESE dataset, the three 
SWIR modalities were designated as the teachers and the three VNIR modalities 
were designated as the students. This was based upon observations that the SWIR 
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modalities individually provided better performance over the VNIR (Figure 6, Figure 
8), and that the VNIR modalities could be improved by EMIN regularization (Figure 
12). The student-teacher framework was re-applied in the semi-supervised learning 
label attrition experiment described in UNESE experiment 3, with a critical 
difference: both EMIN and baseline models were trained for many more epochs and 
early stopping of training based on validation performance was disabled. 

The results from student-teacher EMIN regularization are shown in Figure 13. The 
rationale for training longer with student-teacher than in previous experiments was 
based upon manual examination of learning dynamics of the student-teacher 
trained model, which showed oscillatory behavior in validation loss that limited the 
effectiveness of early stopping. Initially, student-teacher based EMIN appeared to 
show a small but consistent performance improvement over the baseline (denoted 
as “Early Stopping” in the figure). However, while the baseline did not obviously 
exhibit this oscillatory behavior, a long-trained baseline (labeled as “Long Baseline” 
in the figure) yielded the same performance as the student teacher EMIN 
regularized model. As in other UNESE experiments, when sufficient attention was 
given to the tuning and setup of the baseline model there were no observed 
statistically significant differences between EMIN regularization and baseline.
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Figure 13. Student-Teacher based EMIN regularization results.

3.8. UNESE Discussion

Within the UNESE multi-modality, hyperspectral classification experiments entropy 
minimization-based regularization never showed statistically significant 
improvements compared to baselines in overall fused performance. In experiment 1, 
overall performance of tuned baselines was very good. At the same time, the joint 
hyperparameter tuning of 6 models required for EMIN regularization was 
cumbersome and unwieldy, representing a combinatorial expansion in the 
hyperparameter space for joint tuning. In response, the multi-headed hydra model 
was developed which proved far easier for hyperparameter tuning. The hydra 
architecture was evaluated under subsampled training labels, and while 
performance was correlated with available training data as expected, EMIN did not 
provide benefit over the degraded baseline in this regime. Analysis of these results 
highlighted a highly sensitive dependence on the value of 𝛼, the parameter that 
controlled the relative weighting between the supervised and EMIN loss terms. A 
less 𝛼-sensitive method of training was developed, instead leveraging EMIN as a 
finetuning step after normal supervised learning as pretraining. This two-step 
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approach illustrated that while fused performance between EMIN and baseline was 
flat, EMIN appeared to improve the performance of some individual modalities at 
the cost of others. To exploit this behavior, a student-teacher framework in which 
the best performing modalities (SWIR1-3) were used to “teach” the worst 
performing modalities (VNIR1-3). At first, this appeared to provide small but 
consistent improvement over baselines, but a further extra-long training cycle 
baseline closed the observed performance gap.

This dataset was characterized by a per-sample modality overlap that had most 
samples observed by 2-3 modalities. It is not clear that a statistical cross-modality 
regularization provides a useful target for learning in this regime. Furthermore, high 
performing baselines showed that often, per modality differences were insignificant 
and effectively quashed under simple mean-aggregation fusion. On a per-sample 
basis, errors between baselines and EMIN were similar, but EMIN often sacrificed 
the performance of the best performing modalities to improve the worst. 

A strong recommendation from the UNESE experiments is that significant 
investment and experimentation should be paid into underlying baselines prior to 
developing advanced fusion approaches. Early stopping should be used with the 
utmost caution; models continue to learn and improve for long after validation 
metrics exhibit flat trends. The developed hydra model architecture is an elegant 
solution to data fusion while still using classic mean-aggregation fusion approaches, 
particularly when data modalities are similar enough to justify sharing most model 
weights. The hydra model resolves issues of inter-modality model score calibration, 
which can plague and degrade simple fusion aggregation techniques such as mean, 
by outputting all modality predictions for a sample into the same space.

Tuning of multi-term loss functions remains a significant challenge which cannot be 
decoupled from issues of loss and gradient scaling, learning dynamics, and training 
stability. There remains no obvious strategy to jointly optimize two or more loss 
terms at the same time. Sophisticated Pareto-front optimization strategies, such as 
MGDA explored in the UNESE experiments, require a quantitative understanding of 
relative loss importance. This is rarely possible in all but the most contrived 
examples, as direct interpretation of smooth, differentiable loss functions is 
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challenging and data dependent. Other strategies, such as random sampling of 𝛼, 
require a fixed or described schedule of relative loss weighting which can be 
unresponsive and ill-tuned to observed learning dynamics. Furthermore, random 
sampling-based strategies can struggle to find the often-narrow bands of 𝛼 which 
produced desired results. 

Under the EMIN project, the UNESE hyperspectral imagery collects were used to 
produce a realistic benchmark dataset for evaluating multi-modality multi-class 
classification algorithms. Appropriate data labels were developed, and the source 
rasters were subsequently sampled. The conditions of sparse and variable modality 
overlap, data alignment, etc. in this dataset are realistic exactly because they stem 
from real data collection processes. This dataset is available for future 
investigations into multi-modality fusion and is a lasting resource in support of 
algorithm development (Linville, 2022). 
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4. SEISMIC EVENT LOCATION REGRESSION

The problem of locating the source of an incoming signal from a single sensor 
remains a challenge for seismic event processing in part because directional 
information with traditional processing requires triaxial sensors which are often 
unavailable. Less expensive vertical axis sensors on the other hand can help 
constrain distance relationships owing to their relative abundance compared to 
other sensor types. We explore the advantages for direction and location prediction 
on vertical channel and triaxial sensors for a seismic network in the state of Utah. 
We first develop a location model through multitask learning to obtain a baseline for 
event location in Sections 4.1- 4.4. We then develop models that are trained with 
EMIN loss and evaluate the impact on directional and distance prediction for triaxial 
and vertical sensors in Section 4.5. We finish in Section 4.6 with an assessment of 
EMIN modelling in label sparce scenarios (semi-supervised learning) using student-
teacher EMIN.
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4.1. Direction (back azimuth) prediction

The direction of energy arriving from a seismic event observed at a specific location 
is typically measured in degrees from north looking toward the origin and is referred 
to as back azimuth or BAZ. High quality BAZ prediction with seismic data 
traditionally requires an array of stations. Arrays provide directional information 
when there are measurable differences in the arrival times of incoming energy 
across the geographically separated elements of the array. Less robust 
measurements are possible through polarization analysis on co-located orthogonal 
measurements available from individual triaxial sensors (Frohlic and Pullium, 1999). 
Observed accuracies for triaxial BAZ estimates are often on the order of 30 
(Davenport et al., 2021), which can result in large, potentially unusable location 
errors if based off a small number of distant observations. Initial tests on single-
station BAZ prediction with both triaxial and single vertical orientation sensors 
suggested that deep neural networks learn a sin/cos encoding of the BAZ attribute 
at a level only slightly better than existing methods for triaxial sensors (~18 km). 
However, when coupled with distance information in multitask learning BAZ 
improved markedly for both triaxial and single channel sensors. 

4.2. Distance prediction
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The distance to an observed phenomenology combined with the estimated BAZ 
provides a geographic (surface) location for a seismic event from a single sensor 
measurement. While there are no formal traditional methods to estimate distance 
with high precision using a single station, common ‘rules of thumb’ such as travel 
time distance between the arrival time of p and s waves can provide reasonable 
estimates for local and regional events. Distance is therefore usually considered the 
easier attribute for determining location because the errors that results from 
distance-only estimates from azimuthally distributed sensors result in higher 
location qualities than if BAZ is included at 18-to-30-degree resolution. Coupling 
distance and BAZ prediction benefits BAZ while not substantively inhibiting distance 
prediction with convolutional neural network (CNN) models for single stations. 
Therefore, because of the performance advantage multitask learning offers, 
distance and BAZ (sine/cos embedding) are predicted together in a single CNN 
model. 

4.3. Dataset

The dataset for single-station location was developed by analysts and the University 
of Utah and has been leveraged extensively for algorithm development in the past 
(Linville et al, 2019, Linville, 2021). The regional extent of the dataset includes the 
monitoring region around the state of Utah with event locations from 34.7-46.3° N 
Latitude and 117.0-106.7° W Longitude. Observations come from a network of 280 
stations of which 66% are single vertical channel sensors (111,606 observations) 
and 34% are from 3 orthogonal channel sensors (58,202). The maximum observation 
distance is 445km, however most events are observed at local distance scales < 
150km (catalog mean=51km). The mean reported horizontal error reported in the 
catalog is 1km. Partitioning for training, testing, and validation was performed 
randomly over events (events remained grouped during sampling) and 10% of the 
samples were used for testing and validation, respectively. 

4.4. Baseline single-station location models

Baseline models utilize 3-channel (zero padded for vertical sensors) time-frequency 
(spectrogram) input representations. The spectrograms have 1sec time resolution 
and 1Hz frequency resolution. While we explored CNN models of various depths, the 
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largest models were typically the most competent at multitask learning for event 
location. Final models used the VGG16 architecture (Simonyan and Zisserman, 
2014) and resulted in median location errors over the randomly sampled test catalog 
of 3.2 – 3.5 km from 1.1-1.3 km distance errors and 3.5-3.7° BAZ errors. Median 
event level errors were 1.69km (mean=4.4). Median location errors for single 
channel models are 4.1km compared to 2.8km in triaxial models. There are 
substantive differences between the average and the median for reported location 
errors (17km vs 3.5km) because a majority of the events are close (< 51 km distant) 
and maximum location error is controlled by distance. Therefore, in selecting 
(through validation) the models with the smallest median error we are preferentially 
selecting models that are best for short distances, but these models also perform 
the best in aggregate over all distance samples. These experiments were run on a 
subset of the catalog: earthquake sources with reported horizontal error < 1km (38% 
of the catalog). For validation several full catalog runs were performed, which 
increased performance of the best models to 2.6 km median location error.

4.5. Experiment 1: Seismic EMIN models

Seismic EMIN models were trained with architectures, hyperparameters, and loss in 
the same manner as baseline models, with the exception that triaxial and single 
channel modalities comprised separate models and took in their respective inputs. 
The EMIN objective was a function of the predicted BAZ (in radians) and distance 
(km normalized the earth radius = 6378.1) and required a starting location (startlat) 
for each observation i in set of stations (for a single event, for simplicity):

𝑋𝑖 = arcsin (sin (𝑠𝑡𝑎𝑟𝑡𝑙𝑎𝑡𝑖) cos(𝑑𝑖𝑠𝑡𝑖) + cos(𝑠𝑡𝑎𝑟𝑡𝑙𝑎𝑡𝑖) sin (𝑑𝑖𝑠𝑡𝑖)cos (𝐵𝐴𝑍𝑖) Equation 2

𝑌𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑙𝑜𝑛𝑖 + arctan
(sin (𝐵𝐴𝑍𝑖) sin(𝑑𝑖𝑠𝑡𝑖) cos(𝑠𝑡𝑎𝑟𝑡𝑙𝑎𝑡𝑖)
cos(𝑑𝑖𝑠𝑡𝑖) ―  sin(𝑠𝑡𝑎𝑟𝑡𝑙𝑎𝑡𝑖) sin (𝑋𝑖)

Equation 3

EMIN minimized the variance of the resulting distributions of 𝑋𝑖,𝑌𝑖 from each model 
and for each event. In the case of student-teacher EMIN for seismic, distributions 
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were stabilized using the median values of 𝑋𝑖,𝑌𝑖  for set of stations in an event but 
EMIN was only applied to the lowest performing model (the single channel modality, 
the student in the student-teacher paradigm).

    
  
EMIN models in aggregate did not outperform baseline models within statistically 
meaningful margins unless considering observations within 40 km (1 std of the 
catalog distance distribution; Figure 14a). Triaxial models remained better on 
average than vertical channel sensors, although the performance differences per 
modality depended on distance.  

There was a difference between behaviors for both baseline and EMIN models on 
the best and worst performing modalities on event level classification. Namely, 
triaxial performance improved for most events but worsened for the ‘hardest’ cases. 
In contrast, the EMIN single channel models were better, even if very marginally 
(Figure 14e).
 
When the dataset was extended beyond the most well constrained earthquake 
locations to include all cataloged events, the performance for EMIN models was 
statistically equal to that of baseline models (2.6 km median error). Performance 
differences between sensor types at different distance ranges also became nearly 
equivalent for both very near and very distant observations. For all models, 
predictive variance was an unreliable estimate of predictive accuracy for both BAZ 
and distance attributes. In order to be informative for decision making, the least 
stable distance and BAZ estimates should clearly relate to the largest prediction 
errors, which they did not. 
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Figure 14. Location error in km for catalog subsets. Panels are broken into subsections of the 
catalog based off standard deviation of location errors in km. a: 1 std = ~40 km, b: 1std = 88.9% of 

the catalog, c: 2std = 5.6%, d: 3std = 2.2%, e: 4std = 3.1%.



43

4.6. Experiment 2: Semi-supervised seismic location

In contrast to supervised learning loss, formulations of the EMIN objective do not 
require distance and BAZ labels as input. EMIN can therefore be used in semi-
supervised learning (SSL) tasks where the requirements of learning are a sparse 
number of known labels and some additional quantity of unlabeled data. The SSL 
experiments performed here use 25 event labels which equates to 262 labeled 
samples. For the randomly sampled label set explored here, SSL EMIN reduced the 
km location error by 15.5 km (median over test set) and the km location error per km 
distance by .8 - 1.4 km, on average half compared to non-EMIN models (Figure 15a).

Figure 15. SSML EMIN location error normalized by observation distance (a) and with different 
label counts (b). Models with labels counts above 500 are assumed to have sub-optimally 
explored HP based on their lack of decrease in model error given additional labels. This is due to 
the time available to continue to perform model experiments for this study.

In geographic terms, aggregate errors over the catalog reduce from ~67 to 53 km 
(Figure 15b) and estimates for both modalities improve dramatically at the event 
level (Figure 16; red compared to grey error ellipses). While clear performance gains 
have been demonstrated, the error achieved in these examples is sufficiently high 
that with or without EMIN these approaches may be only minimally useful for event 
location in practice. 
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Figure 16. Model location ellipses for baseline models (grey) and EMIN models (red).
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4.7. Seismic Discussion
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In the best models, triaxial sensor median error was 2km compared to 3km for single 
channel sensors or 9.5km compared to 16km when using the mean. While single 
channel models were more numerous at 66% of the catalog, triaxial estimates were 
more accurate, with the exception of long- distance observations. Recognizing the 
disparate aptitudes across modalities, EMIN can be formulated within a student-
teacher paradigm where only the teacher (the triaxial modality) influences the 
decisions of the student (single channel sensors). In these experiments regardless 
of the EMIN objective formulation (enforced across the entire distribution instead of 
just the per-modality median, using the modality median to stabilize outliers, or as 
the modality median of the teacher) EMIN was either helpful or at least not 
damaging for learning. The stability of the performance for EMIN in seismic 
experiments was likely the result of consistent azimuthal coverage for each event. 
Consistent azimuthal coverage provides distributed error averaging and helps 
minimize the impact of poorly performing individual sensors on location estimates 
and the loss objectives. Therefore, while it is possible to formulate the EMIN 
objective function to be less sensitive to outliers with maximum a posteriori 
probability or Bayesian formulations, these are less likely to be advantageous for 
this dataset and therefore testing of these formulations remained limited. When 
EMIN objectives were optimized using the student-teacher methods, loss occurred 
more stably (monotonically decreases) but when trained to completion with 
appropriate hyperparameters performance remained equivalent. The only cases 
where EMIN generated substantive performance differences were in severely label-
limited cases, where performance is doubled relative to baselines (errors are halved 
when normalized by distance). This suggests that a redundant precision forcing, 
which is what location entropy minimization does in multitask supervised regression 
settings, adds little to no value in accuracy or predictive confidence. The non-
redundance of the information provided by unlabeled samples through EMIN proved 
to be powerful, however, the gains are unlikely to scale linearly with label size under 
random sampling. Optimal label selection for these experiments is the next step in 
understanding the practical use cases for SSL EMIN for specific problems (e.g. how 
accurate do single-station locations need to be to add value beyond distance-based 
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predictions). However, label selection remains a foundational question in the field of 
SSL broadly and is beyond the scope of this work.

Lastly, enforcing consistency when doing so is mostly redundant (as in the 
supervised seismic location modelling) increases the HP search space without the 
commensurate benefits of reducing training time or significant increases in 
performance. In this scenario we expected mostly the ‘hard cases’ to be improved by 
model clamping, and the more difficult attribute (BAZ) did in fact improve compared 
to unclamped models, but often at the expense of precision across distance, and 
with gains that decrease as training epoch increased. After 4 days of model training 
there was no recognizable difference between clamped and unclamped models for 
this task. The model gained insight about how it performed on current samples 
based on how it performed on related samples, but this is the same insight 
accessible through labeled loss given sufficient training times (8 days for baseline 
models on the full dataset compared to 41 days for EMIN).
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5. DISCUSSION

The EMIN objective is a theoretically simple idea: if models consistently and 
correctly assign sample x a set of attributes, other models with less descriptive data 
should incorporate x into the representative space of what those attributes can look 
like. Intuitively it seems that EMIN loss would be increasingly valuable when 
instances of x are rare in one modality, and even more valuable when instances of x 
exist but for which no ground truth is available. While theoretically simple, the 
complexity introduced in real data generally drives performance in far greater ways 
than EMIN has opportunities to leverage. For example, enforcing EMIN loss over 
arbitrary (non-physical attributes) is more likely to lead to poor generalization, and 
reduced inherent (and perhaps desired) uncertainty for phenomenologies with 
differential detectability across modalities. A more concretely example would be 
enforcing agreeance over time-of-day for modelling quarry blasts in a region where 
blasting is not restricted by daylight. This is not likely to be valuable. When applying 
EMIN for a specific phenomenology, the hard question is whether detectability for 
some samples is poor because no signal exists, or because the signal is weak or 
previously unrecognized (i.e., hard cases with valuable aspects that traditional 
processing has failed to recognize). If no signal exists, enforcing a noise sample into 
positive class may not be ideal. At the very least the expectation is that the 
adversarial relationship between class loss and consistency loss results in low 
predictive confidence for these samples. This was true for training samples but does 
not reliably translate to new (test) samples in the experiments explore in this work. 

Complexity introduced by the domain is also coupled to learning dynamics. For 
example, weighting labeled loss as equivalent in importance to EMIN loss was 
generally detrimental to learning. Learning suffers because models struggle to 
escape low entropy initialization states or can be driven to mode collapse (another 
low entropy state). This means that elegant solutions to multi-objective optimization 
are not helpful and instead brute force search space approaches are required. 
Problems like this compound as the number of modalities increase because joint 
model optimization becomes increasingly intractable. Shared parameters with 
independent model heads for each modality (the HSI hydra model) are an efficient 
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solution to unwieldy parameter spaces, but when EMIN and labeled loss are at odds 
for a given sample late in learning, it is likely because there are few or no helpful 
features left to exploit beyond labeled learning for a given dataset. In these cases, 
EMIN at best can induce tradeoffs in prediction for specific samples but given a 
labeled learning loss of sufficient strength, these differences will not be 
substantively different from what is achieved in the absence of EMIN from different 
weight initialization and training pathways. This is essentially what we observe in 
the first two HSI experiments. In cases where we optimize labeled learning and 
subsequently apply EMIN, we observed expected behaviors given the training 
objective (sample entropy decreases) which had positive impacts on poor 
performing modalities but those came at the expense of higher performing 
modalities. Simple mitigation strategies follow a student-teacher learning scenario 
but likewise failed to offer substantive benefit even in label-limited experiments 
likely because as in previous experiments, EMIN forcing did not help in developing 
additional predictive features. 

The optimization challenges discussed above were not limiting for seismic 
experiments as they were for HSI because the number of modalities were limited to 
2. Instead, complexity in applying EMIN was shifted to the development and stable 
application of EMIN on a non-trivial transform of the model output. Physically based 
learning objectives must be carefully normalized and learning dynamics investigated 
extensively in order to verify gradient pathways and convergence as expected. Once 
accomplished, we found that EMIN forcing on seismic regression tasks is a 
superfluous precision forcing term in fully labeled domains. Given sufficient time, 
labeled loss alone was able to arrive at the same location accuracy, and did so more 
rapidly (8 days vs 41) under a broader HP range. This is not to say EMIN did not 
demonstrate value. As in the HSI experiments, there were cases for which EMIN 
improved performance, but in aggregate across the dataset those gains were a 
trade-off. The one case where EMIN provided clear and substantive gains was for 
semi-supervised regression where unlabeled data was able to decreases error rates 
to half their non-EMIN values. Not only did average and median station values 
improve, but event level estimates for each modality became substantially more 
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aligned with each other (calibrated). The reason this outcome is not considered a 
substantive win for general data fusion is that engineering complexity required to 
arrive there is formidable and will be required for each new problem, making it a 
highly specialized rather than a general solution to label-limited but data rich 
problems. 
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6. CONCLUSIONS

This work developed a new training method (EMIN) for gradient based predictive 
models that expects low entropy when multiple data sources, channels, or 
modalities exist for a given decision. Conceived as a general method of data fusion 
that maintains input representation flexibility between modalities, EMIN helps 
calibrate decisions from automated models across modalities and can increase 
predictive performance substantially in very specific label-limited cases. Despite 
generalizable theory, EMIN in practice requires substantive engineering for each 
specific problem and is not guaranteed to enhance performance when the labels 
that exist for learning already exploit the features of the data available for the 
predictive tasks. 
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