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ABSTRACT 

Reactive transport modelling consists of computational and numerical models that describe the 
coupled physical, chemical, mechanical, and biological processes interacting with each other 

over a broad range of spatial and temporal scales. This report reviews some of the reactive 
transport codes available in the literature for carbon dioxide (CO2) applications and can assist the 
scientific community with the applicability of each code to solve a specific problem. Approaches 
implemented in these codes can be categorized in three groups: (i) continuum-scale, (ii) pore-

scale, and (iii) hybrid-scale approaches. Theoretical foundations, numerical implementations, 
and application examples using the models are described. In the continuum approach, flow and 
transport are formulated in terms of a representative control volume of the medium and coupled 
with geochemical reactions. The medium is characterized by bulk parameters such as porosity, 

permeability, or reactive surface area. In the pore-scale approach, each point of space in the pore 
network is occupied by either a fluid or solid phase. The pore-scale approach requires an exact 
knowledge of the spatial and temporal phase distribution. In the hybrid-scale approach, media 
are described by multiple characteristic length-scales, with some regions using a pore-scale 

approach while others used a continuum approach. 

  



A Brief Overview of Reactive Transport Codes Used in CO2 Applications 

2 

1. INTRODUCTION 

The last decades have seen significant advances in tools and approaches for simulating 
subsurface processes involving flow, transport, and geochemical reactions (Steefel et al., 2015). 
Reactive transport modelling consists of computational and numerical models that describe the 
coupled physical, chemical, mechanical, and biological processes interacting with each other 

over a broad range of spatial and temporal scales. These processes include: (i) multiphase flow 
(aqueous phase, gaseous phase, super critical phase, non-aqueous phase liquids, etc.); (ii) thermal 
transport; (iii) geo-mechanics (displacement and deformation); and (iv) biogeochemistry 
(aqueous complexation, adsorption-desorption, ion-exchange, dissolution-precipitation, surface 

complexation, acid-base reactions, microbial-mediated redox, etc.). Application fields of reactive 
transport modelling include geological carbon dioxide storage (Bildstein et al., 2010; DePaolo 
and Cole, 2013; Gaus et al., 2005), nuclear waste repositories (Berner et al., 2013; Claret et al., 
2018; De Windt et al., 2007), environmental remediation (Jamieson-Hanes et al., 2012; Wanner 

et al., 2012; Wanner and Sonnenthal, 2013), etc. 

 

 

Figure 1: Schematic concept of continuum-scale and pore-scale approaches. In the continuum- 

or Darcy-scale approach, porosity 𝝓 (0 < 𝝓 < 1) describes the porous medium. In pore-scale 

modelling, each control volume is determined by a specific phase, fluid or solid.  

 

Three different kinds of models can be used to describe reactive transport in porous media: (1) 
continuum-scale models, (2) pore-scale models, and (3) hybrid-scale models that combine both 

continuum and pore-scale approaches. In the continuum- or Darcy-scale model, the porosity, 
which is a measure of void fraction with value ranging from 0 to 1, describes the porous 
medium. In pore–scale modelling, the medium is described by the volume fraction of pore which 
is the ratio of void space to the cell volume and the volume fraction of solid which is the ratio of 

solid zone to the cell volume (Figure 1).  
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1.1. BASIC GOVERNING EQUATIONS FOR A SINGLE-PHASE SINGLE 

COMPONENT FLUID 

The governing equations, in the absence of electromagnetic effects, are the conservation of mass, 
linear momentum, angular momentum and energy (Truesdell and Noll, 1992). The conservation 
of mass in the Eulerian form is given by:  

 

𝜕𝜌

𝜕𝑡
+ ∇∙(𝜌𝒗) = 0                                                                                             (1) 

 

where 𝒗 is the velocity, 𝜌 is the density, and 𝜕 𝜕𝑡⁄  is the partial derivative with respect to time. 
The balance of linear momentum is 

 

𝜌
𝑑𝒗

𝑑𝑡
= ∇ ∙ 𝑻 + 𝜌𝒃                                                                                       (2) 

 

where d/dt is the total time derivative, given by 

𝑑(. )

𝑑𝑡
=

𝜕(. )

𝜕𝑡
+ [𝛁(. )]𝒗                                                                               (3) 

 

where b is the body force, and T is the Cauchy stress tensor. The balance of angular momentum 
(in the absence of couple stresses) yields the result that the Cauchy stress is symmetric. The 
energy equation in general can have the form (see Massoudi (2011): 

 

𝜌
𝑑𝜀

𝑑𝑡
= 𝑻. 𝑳 − 𝛁 ∙ 𝒒 + 𝜌𝑟 + 𝑄𝐶0𝐾0                                                          (4) 

 

where  denotes the specific internal energy, q is the heat flux vector, r is the radiant heating, 𝑄  

is the heat of reaction, 𝐶0 is the initial concentration of the reactant species, 𝐾0 is the reaction 
rate expression which is a function of temperature, and L is the velocity gradient. 
Thermodynamical considerations require the application of the second law of thermodynamics or 
the entropy inequality. The local form of the entropy inequality is given by (Liu, 2002) (p. 130): 

 

𝜌𝜂̇ + 𝛁 ∙ 𝝋 − 𝜌𝑠 ≥ 0       (5) 

 

where 𝜂(𝑥, 𝑡) is the specific entropy density, 𝝋(𝑥, 𝑡) is the entropy flux, and 𝑠 is the entropy 
supply density due to external sources, and the dot denotes the material time derivative. If it is 

assumed that 𝝋 =
1

𝜃
𝒒, and 𝑠 =

1

𝜃
𝑟, where  𝜃 is the absolute temperature, then Equation 5 

reduces to the Clausius-Duhem inequality 
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𝜌𝜂̇ + 𝛁 ∙ (
𝑞

𝜃
) − 𝜌

𝑟

𝜃
≥ 0                                                                                   (6) 

  

For a complete thermo-mechanical study of a problem, the Second Law of Thermodynamics has 
to be considered (Liu, 2002; Müller, 1967; Truesdell and Noll, 1992; Ziegler, 1983).  

Constitutive relations for complex materials can be obtained in different ways, for example, by 

using: (a) continuum mechanics, (b) physical and experimental models, (c) numerical 
simulations, (d) statistical mechanics approaches, and (e) ad-hoc approaches. A look at the 

governing Equation (1–4) reveals that constitutive relations are required for T, q, 𝑄 , 𝜀, and r. In 
many practical problems involving competing effects such as temperature and concentration, the 
body force b, which in problems dealing with natural convection oftentimes depends on the 
temperature and can be modeled using the Boussinesq assumption (see Slattery (1999) in such a 
way that it is also a function of concentration.  

Once appropriate constitutive relations are chosen and substituted in the above governing 
equations, a system of partial differential equations is obtained, which are then applied to a 

specific physical problem (a specific geometry with boundary and initial conditions) and then the 
equations are solved numerically. In most cases, advanced computational codes are necessary. In 
more complex situations such as multicomponent multiphase flows encountered in geological 
applications, where chemical reactions and heat transfer are to be considered, the above set of 

equations are no longer sufficient and instead one has to use the more advanced and more 
complicated multicomponent theories (see Bear and Bachmat (2012)).  
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2. CONTINUUM-SCALE MODELS 

Porous medium has historically been treated as continuum to study flow, transport, and reactions 
in geological materials. In this approach, a representative volume (REV) is defined where at each 
point in space all phases are assumed to exist simultaneously. Bulk parameters such as porosity, 
permeability, or reactive surface area are then used to characterize the medium.  

In the continuum-scale, Darcy’s equation is usually used to model flow, and multicomponent 
species transport relies on a set of advection-dispersion-reaction equations. The limiting factor of 

the continuum-scale models is the determination of empirical parameters and their evolution as a 
function of the progress of geochemical processes, which often relies on constitutive 
relationships or equations such as Kozeny-Carman or Van Genuchten for permeability, Archie’s 
law for tortuosity, or the two-third power law of porosity for mineral surface area (Xie et al., 

2015).  

Numbers of modern numerical reactive transport codes for subsurface simulations are based on 

continuum representations. These models include, but are not limited to, CrunchFlow (Steefel 
and Molins, 2009), STOMP (White and Oostrom, 1997, 2006), HYDROGEOCHEM (Yeh et al., 
2004), OpenGeoSys (Kolditz et al., 2012), ORCHESTRA (Meeussen, 2003), PFlotran 
(Hammond et al., 2014; Lichtner et al., 2020a, 2020b), PHREEQC (Parkhurst and Appelo, 

2013), TOUGHREACT (Xu et al., 2006; Xu et al., 2014), and MIN3P (Mayer et al., 2002). A 
few of these, including application examples, will be described below.  

2.1. PFLOTRAN 

PFLOTRAN is an open-source massively parallel subsurface flow and reactive transport code 
developed by Hammond and co-workers (Hammond et al., 2014; Lichtner et al., 2020a, 2020b). 
It is a multiple U.S. Department of Energy (DOE) laboratory effort with core developers from 

Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Laurence 
Berkeley National Laboratory (LBNL), and Oak Ridge National Laboratory (ORNL). 

PFLOTRAN code solves a system of generally non-linear partial differential equations 
describing multiphase, multicomponent, and multiscale reactive flow and transport in porous 
materials. According to the authors, the current version of PFLOTRAN (version 4.0) can handle 
several subsurface processes involving flow and transport in porous media including Richards’ 

equation, two-phase flow involving supercritical CO2, and multicomponent reactive transport 
including aqueous complexing, sorption, and mineral precipitation and dissolution. Geochemical 
systems can be modeled in 1D, 2D, and 3D using structured or unstructured grids as 
discretization scheme. PFLOTRAN can solve the reactive transport equations with different 

finite difference methods (explicit, implicit, and operator-splitting). The code can handle 
multiple input files and multiple realizations simultaneously per run, which is useful for 
sensitivity analysis and uncertainty quantification. Some process models are under development 
including surface-subsurface flow coupling, geomechanics (elastic geomechanical model), and 

multiple continuum models for reactive transport. 

The governing equations in the GENERAL mode, which involves two phase liquid water-gas 

flow coupled to the reactive transport mode, are as follows:  
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- Mass conservation equation  
 

𝜕

𝜕𝑡
𝜙(𝑠𝑙𝜌𝑙𝜒𝑙

𝑗
+ 𝑠g𝜌g𝜒g

𝑗) + 𝛁 ∙ (𝑽𝑙𝜌𝑙𝜒𝑙
𝑗

+ 𝑽g𝜌g𝜒g
𝑗

− 𝜙𝑠𝑙𝐷𝑙𝜌𝑙𝛁𝜒𝑙
𝑗

− 𝜙𝑠g𝐷g𝜌g𝛁𝜒g
𝑗) = 𝑄𝑗     (7) 

 

where  𝑠𝑙,g, 𝜌𝑙,g , 𝐷𝑙,g, 𝑽𝑙,g , 𝜒𝑙,g
𝑗 

 are liquid and gas saturation, density, diffusivity, Darcy velocity 

and mole fraction of species j satisfying ∑ 𝜒𝛾
𝑗

= 1𝑗 , respectively.  

 

- Energy conservation equation 
 

∑ {
𝜕

𝜕𝑡
(𝜙𝑠𝛾 𝜌𝛾 𝑢𝛾) + 𝛁 ∙ (𝑽𝛾𝜌𝛾 ℎ𝛾)} +

𝜕

𝜕𝑡
((1 − 𝜙)𝜌𝑠 𝑐𝑠𝑇) − 𝛁 ∙ (𝜅𝛁𝑇) = 𝑄ℎ

𝛾=𝑙,𝑔

              (8) 

 

as the sum of contributions from liquid and gas fluid phases and rock, with internal energy  𝑢𝛾 

and enthalpy ℎ𝛾 of fluid phase 𝛾, rock heat capacity 𝑐𝑠 and thermal conductivity 𝜅.  

 

𝑢𝛾 = ℎ𝛾 −
𝑃𝛾

𝜌𝛾
                                                                                     (9) 

 

The Darcy velocity is given by 𝑽𝛾 = −
𝑘𝑘𝑟𝛾

𝜇𝛾
𝛁(𝑃𝛾 − 𝛼𝛾 𝒈𝑧),   (𝛾 = 𝑙, g) , where  𝒈, 𝑘, 𝑘𝑟𝛾, 𝜇𝛾, 

and 𝑃𝛾  are the acceleration of gravity, saturated permeability, relative permeability, viscosity and 

pressure of the fluid phase 𝛾, respectively. The quantity  𝛼𝛾 = 𝑊𝛾 𝜌𝛾  , with 𝑊𝛾 the gram formula 

weight of the phase 𝛾.  

 

h -enthalpy [kJ mol-1]    k -intrinsic permeability [m2] 

kr -relative permeability [-]   P -pressure [Pa] 

𝒈 -gravity [m s-2 ]    𝑄𝑗 -source/sink [kmol m-3 s-1 ] 

V -Darcy flux [m s-1 ]    s -saturation [m3 m-3 ] 

T -temperature [K]    u -internal energy [kJ mol-1 ] 

𝑊𝛾 -formula weight of phase 𝛾 [kg kmol-1 ] 𝜙 -porosity [-] 

ρ -mass density [kg m-3 ]   μ -viscosity [Pa s] 

D -diffusivity [m2 s-1] 

 

More information on the code can be found at https://www.pflotran.org/. 

PFLOTRAN code has applications in many fields. For example, the code was used to model CO2 
injection and post-injection monitoring to evaluate long-term dissolution, leakage, footprint, and 

https://www.pflotran.org/
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pore pressure evolution in a storage system including a target aquifer, caprock, and an overlying 
aquifer (Zhang et al., 2017). Tutolo et al. (2015) utilized PFLOTRAN to investigate the coupled 
effects of cool CO2 injection and background hydraulic head gradients on reservoir-scale mineral 

volume changes by examining the effects of temperature, pressure, hydraulic head gradient, and 
CO2 injection rate on dissolution and precipitation processes in monomineralic calcite and 
dolomite CO2 capture, utilization, and storage (CCUS) reservoirs. PFLOTRAN was also used to 
benchmark bench-scale supercritical CO2-water mass transfer experiments into homogenous 

saturated porous media at pressures and temperatures relevant to geologic carbon sequestration 
(Newell et al., 2018). Navarre-Sitchler et al. (2013) explored changes to water chemistry in the 
event of a CO2 leak into a shallow, heterogeneous, freshwater aquifer at a regional scale and 
relatively small-spatial resolution. Hypothetical aquifers were simulated to examine lead release 

and transport after CO2 leakage. The code was also employed to assess the most relevant 
processes of metal release and attenuation at acid rock drainage (Mayer et al., 2015). Acid rock 
drainage is typically generated in mine waste deposits including tailings and waste rock piles, but 
also in abandoned mine workings (INAP, 2009; Nordstrom et al., 2000). Another area of 

application is the simulation of the fractionation of Cr isotope during aqueous kinetic Cr(VI) 
reduction (Wanner et al., 2015). 

2.2. TOUGH AND TOUGHREACT 

TOUGH (“Transport Of Unsaturated Groundwater and Heat”) is a suite of software codes 
developed at the LBNL. They are multi-dimensional numerical models for simulating the 
coupled transport of water, vapor, non-condensable gas, and heat in porous and fractured media 

(Pruess, 2004). The latest version of TOUGH codes is TOUGH3 which can be run in serial 
mode, on multi-processor machines, or massively-parallel clusters. TOUGHREACT was 
developed by introducing reactive chemistry into the multiphase flow code TOUGH2. 
TOUGHREACT can accommodate any number of chemical species present in liquid, gas, and 

solid phases. A variety of reactive processes are implemented such as aqueous and surface 
complexation, gas dissolution/exsolution, ion exchange, mineral dissolution/precipitation, and 
microbial mediated biodegradation. The temperature and pressure ranges are limited by the 
chemical thermodynamic database and the equation of state (EOS) module employed.  

The primary governing equations for multiphase fluid and heat flow, and chemical transport have 
the same structure, derived from the principle of mass and energy conservation. Aqueous species 

are subject to transport in the liquid phase and local chemical interaction with the solid and 
gaseous phases. The transport equations are written in terms of total dissolved concentrations of 
chemical components, which are concentrations of the basis species plus their associated 
aqueous secondary species. Advection and diffusion are considered for chemical transport, and 

diffusion coefficients are assumed to be the same for all aqueous species.  

General governing equations: 

 

𝜕ℳ 𝜉

𝜕𝑡
= −∇𝑭𝜉 + 𝑄𝜉                                                                          (10) 

 

- Water: 
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ℳ 𝑤 = 𝜙(𝑠𝑙𝜌𝑙𝜔𝑙
𝑤 + 𝑠g𝜌g𝜔g

𝑤)         𝑭𝑤 = 𝜔𝑙
𝑤𝜌𝑙𝑽𝑙 + 𝜔g

𝑤𝜌g 𝑽g         𝑄𝑤 = 𝑄𝑙
𝑤 + 𝑄g

𝑤         (11) 

 

- Air:  

ℳ 𝑎 = 𝜙(𝑠𝑙𝜌𝑙𝜔𝑙
𝑎 + 𝑠g𝜌g𝜔g

𝑎)       𝑭𝑎 = 𝜔𝑙
𝑎𝜌𝑙𝑽𝑙 + 𝜔g

𝑎𝜌g𝑽g       𝑄𝑎 = 𝑄𝑙
𝑎 + 𝑄g

𝑎 + 𝑄𝑟
𝑎          (12) 

 
- Heat: 

ℳ ℎ = 𝜙(𝑠𝑙𝜌𝑙𝑢𝑙 + 𝑠g𝜌g𝑢g) + (1 − 𝜙)𝜌𝑠 𝑢𝑠         𝑭ℎ = ∑ ℎ𝛾 𝜌𝛾 𝑽𝛾

𝛾=𝑙,g

− 𝜅∇𝑇        𝑄ℎ        (13) 

 
Where 𝑽𝛾 is the Darcy velocity, 

 

𝑽𝛾 = −𝑘
𝑘𝑟𝛾

𝜇𝛾

(∇𝑃𝛾 − 𝜌𝛾 𝒈)       𝛾 = 𝑙, g                                             (14) 

 
Chemical components in the liquid phase (j = 1, 2 , … , N1) 

 

ℳ 𝑗 = 𝜙𝑠𝑙𝐶𝑙
𝑗
            𝑭𝑗 = 𝑽𝑙𝐶𝑙

𝑗
− (𝜏𝜙𝑠𝑙𝐷𝑙)∇𝐶𝑙

𝑗
          𝑄𝑗 = 𝑄𝑙

𝑗
+ 𝑄g

𝑗
+ 𝑄𝑠

𝑗
                   (15) 

 

with 𝜏𝛾 = 𝜙1 3⁄ 𝑠𝛾
7 3⁄

 

 
C component concentration [mol L-1 ] ρ density [kg m-3 ] 

D diffusion coefficient [m2 s-1 ]  μ viscosity [kg m-1s-1 ] 
F mass flux [kg m-2s-1 ] (*)    κ heat conductivity [W m-1K-1 ] 
k absolute permeability [m2 ] 
kr relative permeability [-]   Subscripts: 

g gravitational acceleration [m s-2 ]  a air 
M mass accumulation [kg m-3 ]  g gas phase 
N number of chemical components   h heat 
P pressure [Pa]     j aqueous chemical component 

Q source/sink      l liquid phase 
s saturation [-]     r reaction 
T temperature [ oC ]    s solid phase 
u internal energy [J kg-1 ]   w water 

V Darcy velocity [m s-1 ]   ξ governing equation index 
𝜔 mass fraction [-]    𝛾 phase index 

𝜙 porosity [-]      
h enthalpy [J kg-1 ] 
τ medium tortuosity [-] 

(*) For chemical transport and reaction calculations, molar units are used instead of kg.  

Saturation 𝑠𝛾 is the fraction of pore volume occupied by phase 𝛾.   

The mass and energy balance equations are solved implicitly by Newton–Raphson iterations. 
Space discretization involves an unstructured finite volume scheme. TOUGHREACT uses EOS 

flow modules to compute fluid phase partitioning, and flow/transport of various components 



A Brief Overview of Reactive Transport Codes Used in CO2 Applications 

9 

(e.g., water, CO2, salt, air, tracers, radionuclides) in liquid, gas, and nonaqueous phases.  For 
example, if dealing with CO2 (ECO2N), component “Air” above should be replaced with “CO2”. 
TOUGHREACT has also been coupled with a geomechanics simulator ROCMECH to study 

fractured geothermal reservoirs (Kim et al., 2015). More information can be found at 
https://tough.lbl.gov/. 

TOUGHREACT has been applied in a variety of problems including mineral trapping for CO2 
disposal in deep saline aquifers (Xu et al., 2003a, 2004), modeling of mineral 
precipitation/dissolution in plug-flow and fracture-flow experiments under boiling conditions 
(Dobson et al., 2003), calcite precipitation in the vadose zone as a function of net infiltration (Xu 

et al., 2003b), coupled thermal, hydrological, and chemical processes in boiling unsaturated tuff 
for the proposed nuclear waste disposal site at Yucca Mountain, Nevada (Sonnenthal and 
Spycher, 2000; Spycher et al., 2003; Xu et al., 2001). The code has also been applied in isotope 
fractionation in unsaturated zone pore water and vapor (Singleton et al., 2004), mineral scaling 

during wastewater injection into a fractured geothermal reservoir (Xu et al., 2006), and CO2 
geological sequestration in a deep saline aquifer (Xu et al., 2006). 

2.3. CRUNCHFLOW 

CrunchFlow is a multicomponent reactive flow and transport code developed by Steefel and co-
workers and applied since 1988 to a variety of problems in the earth and environmental sciences 
(Steefel et al., 2015; Steefel and Molins, 2009). It is based on a finite volume discretization of 

the governing coupled partial differential equations that link flow, solute transport, and 
multicomponent equilibrium and kinetic reactions in porous and/or fluid media. The features of 
the code include non-isothermal transport and reaction, and unsaturated transport with gas-
aqueous phase exchange. A wide range of biogeochemical reactions are included in CrunchFlow, 

such as aqueous complexation, adsorption/desorption, ion-exchange, precipitation/dissolution, 
redox reactions, advection/diffusion, radiative decay chains, and microbial-mediated reactions. 
Two approaches are available for coupling reactions and transport, a global implicit approach 
that solves transport and reactions simultaneously, and a time or operator splitting approach 

based on the sequential non-iterative approach. 

The reactive transport equations in CrunchFlow can be written as follows: 

 

𝜕(𝜙𝜓 𝑗)

𝜕𝑡
= ∇ ∙ (𝜙𝑫∇𝜓 𝑗) − ∇ ∙ (𝜙𝐮𝜓 𝑗) − ∑ 𝜈𝑗,𝑚𝑅𝑚

𝑚

      (𝑗 = 1, 2, … , 𝑁𝑡𝑜𝑡)           (16) 

 

The term on the left-hand side is the accumulation term, with the porosity, 𝜙, multiplied by the 

total concentration (𝜓𝑗) of each component j. The first, second, and third terms at the right-hand 

side represent the dispersion-diffusion, advection, and reaction terms, respectively. 𝑁𝑡𝑜𝑡 is the 

total number of components, 𝐮 the flow velocity (m/s), and 𝑫 the dispersion-diffusion tensor 
(m2/s). The total concentration of component j is the summation of the concentration of primary 
species j, and the contributions of all secondary species k, weighted by the stoichiometric 
coefficient 𝜈𝑘,𝑗 as follows:  

 

https://tough.lbl.gov/
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𝜓 𝑗 = 𝐶𝑗 + ∑ 𝜈𝑘,𝑗𝐶𝑘

𝑘

                                                                            (17) 

 

The concentration of the secondary species 𝐶𝑗 (mol/m3) is calculated from the concentrations of 

primary species based on aqueous complexation reactions, which are assumed to be at 
equilibrium, 

 

𝐶𝑘 = 𝛾𝑘
−1𝐾𝑒𝑞,𝑘

−1 ∏(𝛾𝑗𝐶𝑗)
𝜈𝑘,𝑗

𝑗

                                                              (18) 

 

where 𝐾𝑒𝑞 is the equilibrium constant, and 𝛾𝑗 is the activity coefficient that is calculated using 

the extended Debye-Hückle equation. 𝜙 is the porosity [m3 void m−3 medium] and Rm rate of 
reaction (mol/m3/s) 

In the application fields, CrunchFlow was used to simulate the infiltration of hyperalkaline 

groundwater along discrete fractures at Maqarin, Jordan, a proposed natural analogue site to 
cement bearing nuclear waste repositories (Steefel and Lichtner, 1998). CrunchFlow was also 
employed to study heavy metal cycling in mining-impacted lake sediments (Arora et al., 2015), 
to assess the most relevant processes of metal release and attenuation at acid rock drainage  

(Mayer et al., 2015), and to simulate the fractionation of Cr isotope during aqueous kinetic 
Cr(VI) reduction (Wanner et al., 2015). Bagheri et al. (2019) coupled CrunchFlow with a 
geomechanical model to predict the lifespan of a cement matrix exposed to CO2-bearing fluids at 
a specific depth at the conditions found in depleted oil and gas reservoirs. 
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Table 1: Summary of Key Capabilities of Selected Continuum-Scale Model Reactive 
Transport Codes. A more detailed description of the capabilities of the codes can be found in 

Steefel et al. (2015). 

Continuum-Scale 
Models 

Flow and Heat 
Transfer Mass Transfer Biogeochemistry Geo-mechanics 

OpenGeoSys Saturated 

Variable density 
Two-phase 

Non-isothermal 

Diffusion 

Advection 
Multicomponent 

Multiple continua 
Colloids 

Complexation 
Adsorption-
Desorption 
Precipitation-

Dissolution 
Ion exchange 

Nucleation 
Isotope 
fractionation 

Elastic and 
inelastic 

deformations 

STOMP Saturated 
Variable density 

Multiphase 
Non-isothermal 

Diffusion 
Advection 

Multicomponent 

Complexation 
Precipitation-

Dissolution 
Ion exchange 

Nucleation 

Thermo-poro-
elastic + small 
strain 

assumption 

PFLOTRAN Saturated  
Constant density 

Multiphase 
Non-isothermal 

Diffusion 
Advection 
Multicomponent-
multispecies 

Multiple continua 
Colloids 

Complexation 
Adsorption-

Desorption 
Precipitation-
Dissolution 

Ion exchange 

Under 
development 
Linear elastic 
deformation 

TOUGHREACT Saturated  

Multiphase 

Variable density 
Non-isothermal 

Diffusion 

Advection 
Multicomponent-
multispecies 
Multiple continua 

Colloids 

Complexation 
Adsorption-
Desorption 
Precipitation-
Dissolution 

Ion exchange 
Isotope 
fractionation 

Pore 
compressibility 

Crunchflow Saturated 
Variable density 

Single phase 

Diffusion 
Advection 
Electrochemical 
migration 

Multiple continua 

Complexation 
Ion exchange 
Precipitation-
Dissolution 

Nucleation 
Isotope 
fractionation 

Unavailable 

MIN3P Saturated  
Unsaturated 

Variable density 
Single phase 

Non-isothermal 

Diffusion 

Advection 
Multicomponent-
multispecies 
Electrochemical 
migration 
Multiple continua 

Complexation 
Adsorption-

Desorption 
Precipitation-
Dissolution 

Ion exchange 
Isotope 

fractionation 

1D vertical stress 
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2.4. MIN3P / MIN3P-HPC 

MIN3P is a general-purpose multicomponent flow and reactive transport code for variably 
saturated media, which provides a high degree of flexibility with respect to the definition of the 
reaction network (Mayer et al., 2002). The key features of the MIN3P code include 3D 
saturated/unsaturated fluid flow, biogeochemical reactions, heat transport, solute and gas 

transport, density coupling between flow and transport, and 1D hydromechanical coupling (Bea 
et al., 2016; Bea et al., 2012; Henderson et al., 2009; Mayer et al., 2002; Mayer and MacQuarrie, 
2010; Su et al., 2017). Several code developments have been performed since the release of the 
original version in 1999. Code capabilities were enhanced with the inclusion of: the dual porosity 

model (MIN3P-DUAL) by Cheng (2005), and used to assess the fate and transport of  methyl 
tertiary butyl ether (MTBE) in a Chalk aquifer (Cheng et al., 2011); gas exsolution, entrapment 
and release model (MIN3P-BUBBLE) by Amos and Mayer (2006a,b); multicomponent gas 
phase diffusion and advection model (MIN3P-DUSTY) to simulate gas attenuation in partially 

saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by 
organic compounds and pyrite oxidation in mine tailings (Molins et al., 2008; Molins and Mayer, 
2007); and density coupling between flow and reactive transport (MIN3P-D) by Henderson et al. 
(2009). MIN3P capabilities were further enhanced with the implementation of the Pitzer 

equations for activity corrections, energy balance, and a formulation for 1D vertical stress 
(MIN3P-THCm, Bea et al., 2011, 2012); and the latest release of the high-performance 
unstructured grid code (MIN3P-HPC) for subsurface flow and reactive transport simulation (Sue 
et al., 2021). 

The main governing equations in MIN3P-HPC are summarized below. 

a) The flow equation is that of a non-isothermal and density-dependent variably saturated flow 
and described as following (Bea et al., 2012; Henderson et al., 2009): 

 

𝜙𝑠𝑙

𝜕𝜌𝑙

𝜕𝑡
+ 𝜌𝑙

𝑆𝑠

𝜌𝑤 𝑔
(

𝜕𝑃

𝜕𝑡
− 𝜉

𝜕𝜎𝑧𝑧

𝜕𝑡
) = −∇ ∙ 𝜌𝑙𝑽𝑙 + 𝑄𝑙                              (19) 

 

where 𝜙 [L3 void L−3 bulk] is porosity, 𝑠𝑙 [L
3 water L−3 void] is the saturation of the aqueous 

phase and 𝜌𝑙 [M L−3] is the pore water density, which is a function of  temperature and solution 
composition. 𝜌𝑤 [M L−3] is the freshwater density, t [T] is time, 𝑃 [M L−1 T−2] is the fluid 

pressure, 𝑆𝑠 [L
−1] is the 1D specific storage coefficient, 𝑔 [L T−2] is the gravity constant, ξ [–] is 

a 1D loading efficiency coefficient, 𝜎𝑧𝑧 [M L−1 T−2] is the vertical component of the mean total 

stress and 𝑄𝑙 [M L−3 T−1] is a source-sink term for the aqueous phase. The aqueous phase flux 𝑽𝑙 
[L T−1] can be defined as 

 

𝑽𝑙 = −
𝑘𝑟𝑙𝒌

𝜇
(∇𝑃 + 𝜌𝑙𝑔∇𝑧)                                                         (20) 

 

where 𝑘𝑟𝑙 [−] is relative permeability, 𝒌 [L2] is the permeability tensor and 𝜇 [M L−1 T−1] is the 
dynamic fluid viscosity. 
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b) The energy transport is written according to the energy balance equation as follows 

 

𝜕𝜙𝑐𝑙𝑠𝑙𝜌𝑙

𝜕𝑡
+

𝜕𝜙𝑐𝑔𝑠𝑔𝜌𝑔

𝜕𝑡
+

𝜕(1 − 𝜙)𝑐𝑠𝜌𝑠

𝜕𝑡
+

𝜕𝐿𝑤𝜙𝑠𝑔𝜌𝑔

𝜕𝑡
= ∇ ∙ Jℎ + 𝑄ℎ                      (21) 

 

where 𝑐𝑙, 𝑐g, and 𝑐𝑠 [E M-1 °C-1] are the heat capacities for aqueous, gas (vapor) and solid 

phases, respectively; 𝜌g, and 𝜌𝑠  [M L-3] are the density of gas (vapor) and solid phase, 

respectively; 𝑠g [L3 gas L−3 void] is the gas (vapor) phase saturation; ∇ ∙ Jℎ [E L−3 T−1] is the 

energy flux; 𝐿𝑤 [E M−1] is the water vaporization latent heat; and 𝑄ℎ [E L−3 T−1] is an energy 
source-sink term. 

c) The reactive transport equations are given by the global mass conservation equations for 
reactive transport in variably saturated porous media, with contributions from all mobile, 
adsorbed, and mineral species (Mayer et al., 2002)  

 

𝜕

𝜕𝑡
[𝑠𝑙𝜙𝜓𝑙

𝑗] +
𝜕

𝜕𝑡
[𝑠g𝜙𝜓𝑔

𝑗 ] +
𝜕𝜓𝑠

𝑗

𝜕𝑡
+ ∇ ∙ [𝑽𝑙𝜓𝑙

𝑗] − ∇ ∙ [𝑠𝑙𝜙𝑫𝑙∇𝜓𝑙
𝑗] − ∇ ∙ [𝑠g𝜙𝑫g∇𝜓𝑔

𝑗] − 𝑄𝑗 = 0 

 𝑗 = 1, … , 𝑁𝑐  ;                                                                         (22)  

 

where 𝑁𝑐 is the number of components; 𝜓𝑙
𝑗
 [M L−3] and 𝜓𝑔

𝑗
 [M L−3] are the total aqueous 

component concentration and gaseous concentration for the component 𝑗, respectively; 𝜓𝑠
𝑗
 [M 

L−3] is the total concentration of aqueous component 𝑗 on the surface sites; 𝑫𝑙  [L
2 T−1] is the 

dispersion tensor for the aqueous phase; 𝑫g [L2 T−1] is the diffusion tensor for the gaseous phase; 

𝑄𝑗 [M L−3 T−1] is a summation of internal source and sink terms from intra-aqueous kinetic 
reactions and kinetically controlled dissolution-precipitation reactions, and external source and 

sink terms for the aqueous phase and gas phase. More information can be found at 
https://www.min3p.com/. 

MIN3P has been applied in mining (Mayer et al., 2015; Vriens et al., 2020), deep geologic 
repositories (Su et al., 2018; Xie et al., 2014), oil and gas (Forde et al., 2018; Hers et al., 2014), 
carbon sequestration (Bea et al., 2012; Harrison et al., 2015), soil and plants (De Biase et al., 
2012; Jia et al., 2021), and permeable reactive barriers (Bilardi et al., 2013; Mayer et al., 2006). 

For example, the code was used to model the generation and attenuation of acid drainage (Mayer 
et al., 2015), investigate the scale dependence of effective geochemical rates in weathering mine 
waste rock (Vriens et al., 2020). Hers et al. (2014) used MIN3P to assess the influence of winter 
conditions including snow/frost cover, and cold soil temperatures, on the aerobic biodegradation 

of petroleum vapors in soil and the potential for vapor intrusion. De Biase et al. (2012) simulated 
the removal of volatile organic compound in vertical flow soil filters and Jia et al.  (2021) 
modelled the degradation of soil organic matter under variably saturated flow conditions.  

https://www.min3p.com/
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2.5. OPENGEOSYS 

OpenGeoSys (OGS) is a scientific open-source project for the development of numerical 
methods for the simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous 
and fractured media. It is a finite element code based on an object-oriented and process-oriented 
approach that allows the solution of partial differential equations for different physical 

subsurface problems using a generic object structure (Kolditz and Bauer, 2004; Kolditz et al., 
2012a; Wang and Kolditz, 2007). Fluid flow can be solved in a pressure-pressure or in a 
pressure-saturation formulation. Coupled processes are solved either sequentially (iterative and 
explicit coupling) or monolithically (fully coupled). For the geomechanical process, several 

constitutive models are implemented. The poroelastic model uses Biot formulation to solve for 
solid displacements, stresses, and strains. 

The mathematical framework or governing equations to be solved when dealing with THMC 
processes in porous media can be described as follow (Kolditz et al., 2012a): 

- For the heat transport (T process - thermodynamics) in multiphase systems, which 
includes phase changes such as evaporation, condensation and latent heat, the equation is 

given by  
 

𝑐𝜌
𝜕𝑇

𝜕𝑡
= −∇ (−𝜅∇𝑇 + ∑ ℎ𝛾 𝑭𝛾

𝛾

) + 𝑄                                                (23) 

 

where 𝑐 is the heat capacity (J/kg K), 𝜌 the density (kg/m3), 𝜅 thermal conductivity (J/K m s), ℎ𝛾 

enthalpy of phase 𝛾 (J/kg), and 𝑇 the temperature (K).   

- The fluid flow (H process - hydraulics) is given by the equations of the non-isothermal 
multiphase flow of liquids and gases  

 

𝜕ℳ 𝜉

𝜕𝑡
= −∇𝑭𝜉 + 𝑄𝜉                                                                   (24) 

 

ℳ𝜉 = 𝜙 ∑ 𝜌𝛾 𝑠𝛾 𝜔𝛾
𝜉

𝛾

                                                                 (25) 

 

𝑭𝛾
𝜉

= −𝜌𝛾

𝒌𝑘𝑟𝛾

𝜇𝛾

(∇𝑃𝛾 − 𝜌𝛾 𝒈)  ,     ∑ 𝑠𝛾

𝛾

= 1                                             (26) 

 

where 𝜔𝛾
𝜉
 is the mass fraction of component 𝜉 in phase 𝛾, and 𝜌𝛾  phase density of phase 𝛾 

(kg/m3). 

- The mass transport (C process - chemistry) equations for multicomponent including 
bio/geochemical reactions are obtained using the following expressions  
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𝑭𝜉 = ∑ (𝜔𝛾
𝜉

𝑭𝛾 + 𝜌𝛾 𝑫𝛾
𝜉

∇𝜔𝛾
𝜉

)

𝛾

                                                            (27) 

 

ln(𝐾𝑃,𝑇) =
∆𝐺𝑃,𝑇

0

𝑅𝑇
                                                                        (28) 

 

𝐾𝑗 =
𝑎𝑤

𝜈𝑤𝑗 ∏ (𝛾𝑖𝐶𝑖)
𝜈𝑖𝑗

𝑖 ∏ (𝑎𝑚)𝜈𝑚𝑗
𝑚 ∏ (𝑓𝑔)

𝜈𝑔𝑗

𝑔

𝛾𝑗𝐶𝑗                                         (29) 

 

where 𝑫𝛾
𝜉
 is the diffusion tensor of component 𝜉 for phase 𝛾 (m2/s), ∆𝐺𝑃,𝑇

0  standard Gibbs free 

energy (J/mol), 𝑅 gas constant (J/mol K), and 𝐾𝑃,𝑇 equilibrium constant at temperature 𝑇 and 

pressure 𝑃.   

- For deformations (M process - mechanics) non-isothermal elastic and inelastic 
deformations are considered according to the following equations 

 

∇𝝈 − 𝜌𝒈 = 0                                                                             (30) 
 

∇ ∙ (𝝈 − (𝑠𝑙𝑃𝑙 + 𝑠g𝑃g)𝐈 − 𝛽𝑇∆𝑇𝐈) + 𝜌𝒈 = 0                                             (31) 

 

where 𝝈 is the stress tensor (Pa), 𝛽𝑇 the thermal expansion coefficient (K-1), and 𝐈 the identity 
tensor. 

The equilibrium constant 𝐾𝑗 at the temperature and pressure of interest is obtained through the 

law of mass action approach applied to a system with a basis (𝐴𝑤, 𝐴𝑖 , 𝐴𝑚, 𝐴g), where 𝐴𝑤 is 

water, 𝐴𝑖  are the aqueous species, 𝐴𝑚 the minerals, and 𝐴𝑔  the gases in the basis. Secondary 

species can be expressed by the formation reactions of base species as the following reaction 

 

𝐴𝑗 ⇌ 𝜈𝑤𝑗𝐴𝑤 + ∑ 𝜈𝑖𝑗

𝑖

𝐴𝑖 + ∑ 𝜈𝑚𝑗

𝑚

𝐴𝑚 + ∑ 𝜈g𝑗

g

𝐴g                                        (32) 

 

where 𝜈 represents the reaction coefficients: 𝜈𝑤𝑗 is the number of moles of water in the reaction 

to form 𝐴𝑗, 𝜈𝑖𝑗 is the number of moles of the basis species 𝐴𝑖 , and so on for the minerals and 

gases. 𝛾𝑖 and 𝛾𝑗 are the activity coefficients for the primary and secondary species, respectively; 

𝐶𝑖  and 𝐶𝑗 the concentration of the primary and secondaries species, respectively; and 𝑎𝑖 and 𝑓g 

the activity of the species and fugacity of the gases, respectively. More information about the 
code can be found at https://www.opengeosys.org/. 

The OGS community has been very active in several international benchmarking initiatives that 
has led to the publication of a book series containing well verified benchmarks (Kolditz et al., 

https://www.opengeosys.org/
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2012b; Kolditz et al., 2016; Kolditz et al., 2018; Kolditz et al., 2015). The versality of OGS 
platform has promoted functionality extension through code coupling interfaces to other 
simulators such as the reservoir simulator suite Eclipse (Graupner et al., 2011), the geochemical 

modeling package GEM (Shao et al., 2009; Shao et al., 2009), the Biogeochemical Reaction 
Network Simulator BRNS (Centler et al., 2010), the thermodynamic simulator ChemApp (Xie et 
al., 2011). 

Current applications of OGS are CO2 storage and sequestration (Benisch et al., 2013; Beyer et 
al., 2012; Böttcher et al., 2012; Singh et al., 2014), geothermal energy (Beyer et al., 2016; 
Pfeiffer et al., 2016), water resources management (Beyer et al., 2016), hydrology and waste 

deposition (Goerke et al., 2011; Shao et al., 2009). For example, OGS was coupled to the 
geochemical model ChemApp to assess the impact of geochemical reactions during CO2 
sequestration at a hypothetical but typical Bunter sandstone formation in the Northern German 
Basin (Li et al., 2014). OGS was applied to simulate the clogging process at Maqarin natural 

analogue site in Jordan (Shao et al., 2013). The code was also applied to predict heat transport 
processes due to a high-temperature heat injection, as well as the induced thermal impacts of a 
high temperature-aquifer thermal energy storage system (Heldt et al., 2021). OGS was used to 
study organic carbon degradation in a sand column via multiple microbial degradation pathways, 

and a dispersive mixing controlled bioreactive transport problem in aquifers with different 
reaction kinetics (Center et al., 2010). OGS was also coupled with PHREEQC to simulate 
geochemical processes such as ion exchange, mineral dissolution/precipitation, and equilibrium 
reactions in partly saturated bentonites (Xie et al., 2006). OpenGeoSys-Eclipse was used to 

address the impact of pore pressure changes on rock stability and deformation as well as the 
feedback effects of geomechanical processes on multiphase flow via pore volume coupling and 
porosity and permeability update (Benisch et al., 2020). 

2.6. STOMP 

Subsurface Transport Over Multiple Phases (STOMP) is a suite of numerical simulators 
developed by the Pacific Northwest National Lab (PNNL) for investigating coupled processes 

involving multifluid flow, heat transport, geochemistry, and geomechanics in the subsurface  
(Ward et al., 2012). It is designed to solve a wide variety of non-linear, multiple-phase, flow, and 
transport problems for variably saturated geologic media. 

STOMP simulator is comprised of Operational Modes classified according to the solved 
governing flow and transport equations and constitutive relation extensions. The following 
Operational Modes are available in the STOMP simulator: STOMP-W for variably saturated 

flow and transport in water systems, STOMP-GT for geothermal systems, STOMP-CO2 for 
carbon storage applications, STOMP-EOR for enhanced oil recovery applications, STOMP-
HYDT-KE for gas hydrates, STOMP-WO for non-volatile Organic, and STOMP-WOA for 
volatile Organic. 

The governing equations that describe flow and transport through porous media in the STOMP 
simulator are conservation equations for component mass, energy, and solute (White and 

Oostrom, 2000). The components are referred here by water, air, oil, salt, and surfactants terms. 
The phases are referred by aqueous, gas, hydrate, non-aqueous phase liquid (NAPL), and solid. 
The component conservation equation defined as the time rate of change of component within a 
control volume with the flux of component crossing the control volume surface can be written in 

general form as follows 
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𝜕ℳ 𝜉

𝜕𝑡
= −∇𝑭𝜉 + 𝑄𝜉                                                                             (33) 

 

where ℳ 𝜉 is the mass or heat accumulation, 𝑭𝜉 the mass or heat flux and 𝑄𝜉 the sink and source 
terms.  

- Water mass conservation 
 

ℳ 𝑤 = ∑ (𝜙𝐷𝜔𝛾
𝑤𝜌𝛾 𝑠𝛾 )

𝛾=𝑙,g,𝑖𝑐

        𝑭𝑤 = ∑ (𝑭𝛾
𝑤 + 𝑱𝛾

𝑤)

𝛾=𝑙,g

+ 𝑭𝑙
𝑆        𝑄𝑤 = 𝑚̇𝑤           (34) 

 

- Air mass conservation 
 

ℳ 𝑎 = ∑ (𝜙𝐷𝜔𝛾
𝑎𝜌𝛾 𝑠𝛾 )

𝛾=𝑙,g

        𝑭𝑎 = ∑ (𝑭𝛾
𝑎 + 𝑱𝛾

𝑎)

𝛾=𝑙,𝑔

       𝑄𝑎 = 𝑚̇𝑎                      (35) 

 
- Oil mass conservation 

 

ℳ 𝑜 = ∑ (𝜙𝐷𝜔𝛾
𝑜𝜌𝛾 𝑠𝛾)

𝛾=𝑙,g,𝑛

+ (1 − 𝜙𝑇)𝜔𝑠
𝑜𝜌𝑠      𝑭𝑜 = ∑ (𝑭𝛾

𝑜 + 𝑱𝛾
𝑜 )

𝛾=𝑙,g,𝑛

      𝑄𝑜 = 𝑚̇𝑜         (36) 

 

- Energy Conservation 
 

ℳ ℎ = ∑ (𝜙𝐷𝜌𝛾 𝑠𝛾𝑢𝛾 )

𝛾=𝑙,g,𝑛,𝑖𝑐

+ (1 − 𝜙𝑇)𝜌𝑠𝑢𝑠 + (𝜙𝑇 − 𝜙𝐷)𝜌𝑙𝑢𝑙                         (37) 

 

 𝑭ℎ = ∑ (𝜌𝛾 ℎ𝛾𝐕𝛾 + ∑ ℎ𝑗𝑱𝛾
𝑗

𝑗=𝑤,𝑎,𝑜

)

𝛾=𝑙,g,𝑛

+ 𝜿𝑒∇𝑇       𝑄ℎ = ∑ (ℎ𝑗𝑚̇𝑗)

𝑗=𝑤,𝑎,𝑜

+ 𝑞̇               (38) 

 

- Salt and surfactant mass conservation 
 

ℳ 𝑆 = 𝑆      𝑭𝑆 = 𝑆𝑙𝐕𝑙 − (𝝉𝑙𝑠𝑙𝜙𝐷𝐷𝑙
𝑆 + 𝑠𝑙𝜙𝐷𝑫ℎ𝑙

)∇𝑆𝑙       𝑄
𝑆 = 𝑚̇𝑆                  (39) 

 

- Solute mass conservation 
 

ℳ 𝐶 = 𝐶  𝑭𝐶 = ∑ (𝐶𝛾𝐕𝛾)

𝛾=𝑙,g,𝑛

− ∑ (𝝉𝛾 𝑠𝛾𝜙𝐷𝐷𝛾
𝐶 + 𝑠𝛾 𝜙𝐷𝑫ℎ𝛾

)∇𝐶𝛾

𝛾=𝑙,g,𝑛

 𝑄𝐶 = 𝑚̇𝐶 − 𝑅̇𝐶𝐶   (40) 
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where  

𝑭𝛾
𝑗

= −
𝜔𝛾

𝑗
𝜌𝛾 𝑘𝑟𝛾𝒌

𝜇𝛾

(∇𝑃𝛾 + 𝜌𝛾 𝑔𝒛𝑔)     𝑓𝑜𝑟 𝛾 = 𝑙, g, 𝑛 ;   𝑗 = 𝑤, 𝑎, 𝑜                            (41) 

 

𝑱𝛾
𝑗

= −𝝉𝛾 𝜙𝐷𝜌𝛾 𝑠𝛾

𝑀𝑗

𝑀𝛾
𝐷𝛾

𝑗
∇𝜒𝛾

𝑗
        𝑓𝑜𝑟 𝛾 = 𝑙, g, 𝑛 ;   𝑗 = 𝑤, 𝑎, 𝑜                             (42) 

 

𝑭𝑙
𝑆 = 𝐷𝑙

𝑆∇𝑆𝑙                                                                            (43) 

 

𝐕𝛾 = −
𝑘𝑟𝛾 𝒌

𝜇𝛾

(∇𝑃𝛾 + 𝜌𝛾 𝑔𝒛𝑔)           𝑓𝑜𝑟 𝛾 = 𝑙, g, 𝑛                                      (44) 

 

The subscripts g, ic, l, n, and s are for gas phase, ice phase, aqueous phase, NAPL phase, and 
rock/soil or solid phase, respectively. The superscripts a, o, and w are for air, oil, and water 

components, respectively.  

𝐶 and 𝐶𝛾 are the solute concentration and solute concentration in phase 𝛾 (1/m3), respectively; 

𝐷𝛾
𝑗
, 𝐷𝛾

𝐶, and 𝐷𝛾
𝑆 are the diffusion coefficient of component j, solute diffusion coefficient and salt 

diffusion coefficient for phase 𝛾 (m2/s), respectively. 𝑫ℎ𝛾
is hydraulic dispersion tensor for phase 

𝛾 (m2/s). 𝑭𝑙
𝑆 and 𝑭𝛾

𝑗
 are the osmotic flux of the aqueous phase and the advective flux of 

component j in phase 𝛾 (kg/m2 s), respectively. ℎ𝑗 and ℎ𝛾 are the enthalpy of component j and 

the enthalpy of phase 𝛾 (J/kg), respectively. 𝑱𝛾
𝑗

 is the diffusive-dispersive flux of component j for 

the 𝛾 phase (kg/m2 s); 𝑘𝑟𝛾 fluid relative permeability of phase 𝛾; 𝒌 intrinsic permeability tensor 

(m2); 𝒌𝑒 equivalent thermal conductivity tensor (W/m K). The quantities 𝑚̇𝑗, 𝑚̇𝐶, and 𝑚̇𝑆 
determine the mass source rate of component j (kg/s), solute rate (1/s), and the salt mass source 

rate (kg/s), respectively. 𝑀𝑗 and 𝑀𝛾 are the molecular weight of component j and phase 𝛾 

(kg/kgmol), respectively. Other quantities are: 𝑞̇ thermal energy source (W), 𝑅̇𝐶  solute decay rate 
constant (1/s), 𝑆 salt concentration (kg/m3), 𝑆𝑙 salt concentration in phase 𝛾 (kg/m3),  𝑠𝛾 

saturation of phase 𝛾, 𝑢𝛾 internal energy of phase 𝛾 (J/kg), 𝑢𝑠 porous media internal energy 

(J/kg), 𝐕𝛾 Darcy velocity vector of phase 𝛾 (m/s), 𝜇𝛾 kinematic viscosity of phase 𝛾 (Pa s), 𝜌𝛾  

phase density for phase 𝛾 (kg/m3), 𝝉𝛾 phase tortuosity for phase 𝛾, 𝜒𝛾
𝑗
 mole fraction of 

component j in phase 𝛾, and 𝜔𝛾
𝑗
 mass fraction of component j in phase 𝛾. 

The partial-differential equations describing the conservation of mass and energy are solved 
using finite volume method for spatial discretization and backward Euler method for time 
discretization. An operator splitting solution method is used for flow, transport, and reactions, 
each of which employs implicit time-stepping schemes. The resulting non-linear coupled 
algebraic equations are solved using Newton–Raphson iteration. Reactive transport is 

implemented through the ECKEChem module (White and McGrail, 2005). The implementation 



A Brief Overview of Reactive Transport Codes Used in CO2 Applications 

19 

of the geomechanical model through the GeoMech module gives the STOMP simulator fully 
coupled THMC capabilities. Reactive processes considered include aqueous and surface 
complexation, ion exchange, mineral precipitation-dissolution, and aqueous-gas exchange. 

Microbially mediated reactions include species-specific biomass production and decay, Monod-
type rate laws with biomass dependencies, and thermodynamic controls. Transport algorithms 
address advection, anisotropic dispersion, and interphase partitioning. More information can be 
found at https://www.pnnl.gov/projects/stomp. 

STOMP has a vast field of applications including geologic sequestration (e.g., deep sedimentary 
saline formations (Nguyen et al., 2016), enhanced oil recovery (Bacon et al., 2015; White et al., 

2014), environmental remediation (e.g., non-aqueous phase liquid and dense NAPL fate, 
transport, and remediation (Matos de Souza et al., 2016; Yoon et al., 2009); soil desiccation 
(Oostrom et al., 2012), environmental stewardship (e.g., radionuclide and contaminant fate and 
transport (Oostrom et al., 2007), storage tank leaks (Bacon et al., 2016),  unconventional 

hydrocarbon and energy development (e.g., methane gas hydrate production (Ju et al., 2020; 
White et al., 2011), and natural gas (White et al., 2020). 

  

https://www.pnnl.gov/projects/stomp
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3. PORE-SCALE MODELS 

Pore-scale is defined as the scale at which each point of space in the pore network is occupied by 
a specific phase, fluid or solid. Contrary to the continuum-scale, pore-scale modeling requires an 
exact knowledge of the phase distribution. Reactive transport at the pore-scale is still emerging. 
One of the main challenges of the pore-scale approach is the characterization of the solid/fluid 

interfaces and the evolution of the interfaces with respect to chemical reactions at the mineral 
boundaries (Molins et al., 2021; Noiriel and Soulaine, 2021).  

Popular approaches to pore-scale modeling applied to reactive geochemical systems include the 
Lattice Boltzmann method (LBM), Lagrangian approach and particle methods, and 
computational fluid dynamics (CFD). 

3.1. THE LATTICE BOLTZMAN METHOD 

The LBM has made significant progress in modeling fluid flow in porous media and reactive 
transport. It was developed as an extension to lattice gas models (LGMs) for fluid flows. In  a 

LGM, particles move synchronously from node to node on a regular Bravais lattice and undergo 
momentum-conserving collisions (d'Humières et al., 1986; Frisch et al., 1986). However, LGMs 
suffer from major deficiencies for use in hydrodynamic simulations such as lack of Galilean 
invariance for fast flows, statistical noise, and poor Reynolds number scaling with lattice size. To 

overcome these deficiencies the LBM uses a mesoscale approach in which the amount of fluid 
associated with each lattice node is large enough to suppress the effects of fluctuations through 
averaging. In one approach, Higuera and Jimenez (1989) replaced the discrete collision by a 
linearized collision operator by assuming that the distribution is close to the local equilibrium 

state. The Bhatnagar-Gross-Krook (BGK) relaxation term (Bhatnagar et al., 1954) is the simplest 
and most used to approximate the linearized collision operator, making simulations more 
efficient and allowing flexibility of the transport coefficients. From Chapman-Enskog theory, 
one can recover the governing continuity and Navier–Stokes equations (in an incompressible 

limit) from the LBM algorithm (Wolf-Gladrow, 2000). LBM presents several advantages, and it 
can easily deal with complex boundaries using a simple bounce-back or modified bounce-back 
scheme (He and Luo, 1997) in the fluid particle distributions. It can be applied to multiphase 
flow with phase transition and particulate suspension flows. One of the limitations of LBM is 

that flows with Mach numbers greater than 0.1 and flows with pressure variations or density 
variations greater than 0.01 will exhibit significant deviations from incompressible Navier-
Stokes flows. The method has been successfully applied to model flow and reactive transport 
phenomena in a various media.  

For example, Kang et al. (2006, 2007) developed a multicomponent pore-scale LBM model to 
simulate reactive transport with both homogeneous and heterogeneous reactions between the 

multiple aqueous species and minerals. They further applied the model in CO2 geologic 
sequestration to simulate the injection of CO2-saturated brine into structured porous media (Kang 
et al., 2010). Tian et al. (2016) developed a geochemical reaction LBM model at the 
representative elementary volume-scale to investigate the coupled processes of fluid flow, solid 

phase dissolution, and species reactive transport in homogeneous porous media. The change in 
porosity due to dissolution and its impacts on flow field were numerically analyzed. The model 
was then extended to study the reactive transport of CO2 injection in fractured reservoirs (Tian et 
al., 2016). LBM models have also been used for applications in nuclear waste repositories (Curti 
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et al., 2019; Prasianakis et al., 2017) and multiphase reacting flow in magma chambers (Huber et 
al., 2014; Parmigiani et al., 2011). 

Below is a brief description of an LBM model.  

The generalized Navier-Stokes equations for isothermal incompressible fluid flow through 
porous media are: 

 

𝜌
𝜕𝐮

𝜕𝑡
+ 𝜌𝐮 ∙ ∇𝐮 = −∇𝑃 + 𝜇∇2𝐮                                                            (45) 

 

∇ ∙ 𝐮 = 0                                                                                    (46) 

 

where 𝜌 and μ are the fluid density and the effective viscosity, respectively. 

In the LBM framework the motion of fluid can be described by a set of particle distribution 
functions. Based on the simple and popular BGK collision operator, the evolution equation of the 
particle distribution function 𝑓𝑖  is as follows:  

 

𝑓𝑖(𝐱 + 𝒗𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝐱, 𝑡) = −
1

𝜁
[𝑓𝑖(𝐱, 𝑡) − 𝑓𝑖

𝑒𝑞(𝐱, 𝑡)]                                     (47) 

 

The terms x and t represent the node position and time, 𝒗𝑖  the particle discrete velocity along the 
ith discrete direction; Δt and 𝜁 are the time step and the dimensionless relaxation time, 

respectively, and 𝑓𝑖
𝑒𝑞

 is the equilibrium distribution function. The fluid density and velocity are 

defined as: 

 

𝜌 = ∑ 𝑓𝑖

𝑖

 ,      𝜌𝐮 = ∑ 𝒗𝑖𝑓𝑖  

𝑖

                                                                  (48) 

 

Using the Chapman–Enskog procedure, the above generalized N–S equation can be recovered in 
the incompressible limit. 

The transport of aqueous species in the LBM can also be described by an evolution distribution: 

 

𝑔𝛼,𝑖(𝐱 + 𝒗𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑔𝛼,𝑖(𝐱, 𝑡) = −
1

𝜁𝛼

[𝑔𝛼,𝑖(𝐱, 𝑡) − 𝑔𝛼,𝑖
𝑒𝑞 (𝐱, 𝑡)]                            (49) 
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where 𝑔𝛼,𝑖 is the concentration distribution function for the 𝛼th species, 𝜁𝛼 is the dimensionless 

relaxation time for the 𝛼th species, and 𝑔𝛼,𝑖
𝑒𝑞

 is the equilibrium distribution function for the 𝛼th 

species. The species or solute concentration is obtained by  

 

𝐶𝛼 = ∑ 𝑔𝛼,𝑖

𝑖

                                                                          (50) 

 

and the diffusivity is related to the relaxation time. One can recover the following pore-scale 
advection-diffusion equation for 𝐶𝛼:  

 

𝜕𝐶𝛼

𝜕𝑡
+ (𝐮 ∙ ∇)𝐶𝛼 = ∇ ∙ (𝐷∇𝐶𝛼).                                                     (51) 

 

The quantity 𝐷 is the diffusion coefficient. More details can be found in Kang et al. (2010, 2006, 
2007), Chen et al. (2015) and Tian et al. (2016).  

3.2. LAGRANGIAN APPROACH AND PARTICLE METHODS 

A variety of particle methods have been developed for the purpose of modelling and simulating 
single- and multi-phase fluid flow and reactive transport in fractured and porous media (Meakin 

and Tartakovsky, 2009). Examples of these methods include dissipative particle dynamics 
(Drawert et al., 2019), vortex particle methods (Chatelin et al., 2016; Gazzola et al., 2011; 
Molins et al., 2021), and smoothed particle hydrodynamics (Tartakovsky et al., 2007a; 
Tartakovsky et al., 2007b; Tartakovsky et al., 2016). 

The smoothed particle hydrodynamics (SPH) has been extensively developed by Tartakovsky 
and co-workers to model reactive transport and mineral precipitation in fractured and porous 
materials (Tartakovsky et al., 2007a; Tartakovsky et al., 2007b). SPH is a Lagrangian method 

based on a meshless discretization of partial differential equations. The meshless discretization 
scheme allows to move the discretization points with fluid velocity, even if the velocity field is 
highly non-uniform. SPH is Galilean invariant because particle–particle interactions depend on 
relative particle positions and velocity differences.  

The governing equations for the SPH model are as follows: fluid flow and solute diffusion are 
described by a combination of the continuity equation  

 

d𝜌

d𝑡
= −𝜌∇ ∙ 𝐮 ,                                                                              (52) 

 

the linear momentum conservation equation  
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d𝐮

d𝑡
= −

1

𝜌
∇𝑃 +

𝜇

𝜌
∇2𝐮 +

1

𝜌
𝑭𝑒𝑥𝑡  ,                                                        (53) 

 

and the diffusion equation  

d𝐶

d𝑡
= 𝐷∇2𝐶 ,                                                                              (54) 

 

where 𝐮, 𝑃, 𝜇, and 𝜌 are the fluid velocity, pressure, viscosity, and density, respectively. The 

terms, 𝑭𝑒𝑥𝑡 represents the effects of body forces (such as gravity acting on the fluid density), 𝐶 is 
the concentration of a solute dissolved in the fluid, and 𝐷 is the molecular diffusion coefficient 
of the solute in the solvent. In the SPH approach, both mobile f luids and solid boundaries are 

represented by particles with intensive properties (e.g., mass 𝑚𝑖) that are tracked in time as they 
move in the pore space. 

In the SPH approach, continuous fields are represented as a superposition of smooth kernel 
functions centered on point particles. The properties associated with each particle can be 
expressed as  

 

𝐴(𝐫) = ∑
𝑎𝑖

𝑛𝑖 𝑊(𝐫 − 𝐫𝑖 , ℎ)

𝑖

                                                                (55) 

 

and its corresponding gradient  

∇𝐴(𝐫) = ∑
𝑎𝑖

𝑛𝑖 ∇𝐫𝑊(𝐫 − 𝐫𝑖 , ℎ)

𝑖

 ,                                                         (56) 

 

 where 𝑎𝑖 is the value of 𝐴 at particle i. The summation is performed over all the particles. 

The mass and momentum conservation equations for each particle in the SPH approximations for 
continuous fields and their gradients can thus be written in the following form (Tartakovsky et 

al., 2007a; Tartakovsky et al., 2007b) 

 

𝑛𝑖 = ∑ 𝑊(𝐫𝑗 − 𝐫𝑖 , ℎ)       𝑖, 𝑗 ∈ fluid+solid particles  

𝑗

                                      (57) 

and  
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d𝐮𝑖

d𝑡
= −

1

𝑚𝑖 ∑ (
𝑃𝑗

𝑛𝑗𝑛𝑗 +
𝑃𝑖

𝑛𝑖𝑛𝑖
)∇𝑖𝑊(𝐫𝑖 − 𝐫𝑗, ℎ)

𝑗∈ fluid+solid

+
1

𝑚𝑖 ∑
(𝜇𝑖 + 𝜇𝑗 )(𝐮𝑖 − 𝐮𝑗 )

𝑛𝑖𝑛𝑗(𝐫𝑖 − 𝐫𝑗)
2 (𝐫𝑖 − 𝐫𝑗) ∙ ∇𝑖𝑊(𝐫𝑖 − 𝐫𝑗, ℎ)

𝑗∈ fluid+solid

+ 𝑭𝑖
𝑒𝑥𝑡         (58) 

 𝑖 ∈ fluid particles 

 

where 𝐫𝑖  is the position of particle i, 𝑛𝑖 = 𝜌𝑖 𝑚𝑖⁄  is the number density of particle i, 𝜌𝑖  and 𝑚𝑖  

are the fluid density and mass of particle i, and ℎ is the range of the SPH smoothing function 𝑊. 
Several forms of weighting function including the Gaussian function (Gingold and Monaghan, 
1977) and Schoenberg spline functions of different order (Schoenberg, 1946) can be used in SPH 

simulations. 

Reactive transport is modelled by including the sink/source term in the SPH diffusion equation 

(Tartakovsky and Meakin, 2005; Zhu and Fox, 2001, 2002) and described by:  

 

d𝐶𝑖

d𝑡
= ∑

(𝐷𝑖𝑛𝑖 + 𝐷𝑗𝑛𝑗)(𝐶𝑖 − 𝐶𝑗)

𝑛𝑖𝑛𝑗(𝐫𝑖 − 𝐫𝑗)
2 (𝐫𝑖 − 𝐫𝑗) ∙ ∇𝑖𝑊(𝐫𝑖 − 𝐫𝑗, ℎ)

𝑗∈ fluid

− 𝑅 ∑ (𝐶𝑖 − 𝐶𝑒𝑞)𝛿𝑖𝑘

𝑘∈ solid 

                                                                                             (59) 

 

The terms, 𝐶𝑖  is the solute concentration at fluid particle i, R is the strength of the source or the 

effective “particle” fluid–solid reaction rate constant. Summation over fluid or solid indicates 

summation over all the fluid or solid particles. The Kronecker 𝛿𝑖𝑘, which takes the value 1 if 
|𝐫𝑖 − 𝐫𝑘| ≤ 𝑑 or 0 otherwise ensures that the precipitation/dissolution occurs only in a thin layer 
with thickness d near the fluid-solid interface. The last term of this equation is the source term 

modeling the precipitation or dissolution reaction, and 𝐶𝑒𝑞 is the solute concentration in 
equilibrium with the solid. 

Precipitation (dissolution) leads to gain (loss) of the solid phase. Consequently, the rate of 
gain/loss of mass due to precipitation/dissolution of the solid phase must balance the loss/gain of 
solute in the liquid phase. Thus, the total change of mass of solid particle i, due to interactions 

with all the fluid particles within distance 𝑑, is given by  

 

d𝑚𝑖

d𝑡
=

𝑅

𝑛𝑒𝑞 ∑ (𝐶𝑗 − 𝐶𝑒𝑞 )𝛿𝑖𝑗

𝑗∈ fluid

       𝑖 ∈ solid                                             (60) 

 

where 𝑛𝑒𝑞 is the equilibrium density of the particles. The reactive transport and precipitation 
model described above conserves the mass of the solute exactly. During precipitation and 
dissolution, solid particles are added or removed and the change in volume of the fluid phase 
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should be exactly opposite to that of the solid phase. More details can be found in (Tartakovsky 
et al., 2007a; Tartakovsky et al., 2007b. 

SPH model was used to study the effects of the Damköhler and Peclet numbers on the character 
of precipitation and changes in the effective transport properties of the porous media  
(Tartakovsky et al., 2007b). SPH simulations were conducted to help understand the mechanism 

of precipitation layer formation in a quasi-2D flow cell filled with quartz sand, where two 
solutions were each injected in different halves of the cell (Tartakovsky et al., 2008).  

3.3. COMPUTATIONAL FLUID DYNAMICS METHODS 

Many CFD approaches to pore-scale reactive transport modeling have been implemented in the 
open-source simulation platform OpenFOAM, a C++ library which solves partial differential 
equations using the finite volume method on an unstructured grid (http://www.openfoam.org). 

These approaches benefit from all the features offered by the OpenFOAM library, including code 
parallelization, discretization schemes, and geometric algebraic multigrid solvers.  The 
availability of the open-source software Chombo has also made possible to simulate pore-scale 
reactive transport processes (Adams et al., 2015; Colella et al., 2000). This section reviews a few 

of these CFD approaches used for CO2 applications.  

3.3.1. DissolFoam 

DissolFoam is a 3D OpenFoam solver for reactive transport with dissolution. It solves for steady 
flow (Stokes or inertial) and reactant transport. 

The reactive transport equations encompass fluid flow, ion advection/diffusion , and chemical 
reactions at the mineral-fluid interface. 

The fluid flow is described by the stationary Navier-Stokes equations: 

 

∇ ∙ (𝐮𝐮) + ∇𝑃 = 𝜇∇2𝐮                                                                      (61) 

 

Where 𝜇 is the viscosity of the fluid and the pressure P is determined by the incompressibility 
condition, 

 

∇ ∙ 𝐮 = 0 .                                                                               (62) 

 

Transport of reactants follows a convection-diffusion equation: 

 

𝜕𝐶

𝜕𝑡
+ ∇ ∙ (𝐮𝐶) = ∇ ∙ (𝐷∇𝐶)                                                               (63) 

 

Where 𝐶 is the concentration field and D is the molecular diffusion coefficient.  

http://www.openfoam.org/
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The steady-state flow and transport are solved by a second-order finite volume discretization of 
the fields using an unstructured mesh. The governing equations are solved by operator splitting 
and assume that the velocity of the dissolving mineral surface is much slower than the fluid 

velocity. Chemical reactions on the mineral surfaces are included by imposing a Robin boundary 
condition on the surface of the solid. Reaction boundary conditions implemented are linear, non-
linear, and danckwerts. The reactive flux only depends on the undersaturation of the aqueous 
ions. The motion of points on the pore surfaces is controlled by the rate of dissolution. For a 

detailed description of the method see Starchenko et al. (2016), Starchenko and Ladd (2018), and 
Dutka et al. (2020). The code is available at https://github.com/vitst/dissolFoam. 

3.3.2. GeoChemFoam 

GeoChemFoam is an open-source OpenFOAM-based toolbox that includes a range of additional 
packages that solve various flow processes from multiphase transport with interface transfer, to 
single-phase flow in multiscale porous media, to reactive transport with mineral dissolution 

(Maes and Menke, 2021). The multiphase flow is solved using the volume-of-fluid method 
(VOF), and the transport of species using the continuous species transfer method. The chemical 
equilibrium is solved with PHREEQC, the U.S. Geological Survey’s geochemical software. 

The geochemical model is described by the equilibrium chemical reactions between the primary 
and secondary species, and can be written as  

 

𝐴𝑖 ⇌ ∑ 𝜈𝑖𝑗𝐴𝑗

𝑁̅𝑐

𝑗=1

 ,       𝑆𝑛 ⇌ 𝑆𝑚 + ∑ 𝜈𝑛𝑗𝐴𝑗

𝑁̅𝑐

𝑗=1

 ,                                                 (64) 

 

where 𝐴𝑗 and 𝐴𝑖  are the chemical formulas of the primary and secondary species in the bulk 

phase, respectively; 𝑆𝑚 and 𝑆𝑛 are the chemical formulas of the primary and secondary species 

on the solid surface, respectively; 𝜈𝑖𝑗 and 𝜈𝑛𝑗 are the stoichiometric coefficients, and 𝑁𝑐 the 

number of independent concentrations in the bulk, which also corresponds to the number of 
chemical elements (e.g., H, O, C).  

The total concentration 𝜓𝛾
𝑗
 for each primary species j in phase 𝛾 is conserved during chemical 

reactions and is given by 

 

𝜓𝛾
𝑗

= 𝐶𝛾
𝑗

+ ∑ 𝜈𝑖𝑗𝐶𝛾
𝑖

𝑁𝑥

𝑖=1

+ ∑ 𝜈𝑛𝑗𝜔𝑛Γ𝐴𝑠

𝑁𝑦

𝑛=1

  ,                                                    (65) 

 

where Γ is the site density (kmol/m2), 𝐶𝛾
𝑗
 and 𝐶𝛾

𝑖  are the concentration (kmol/m3) of primary and 

secondary species in phase 𝛾, respectively; 𝜔𝑛 is the activity of a surface species n; 𝑁𝑥 and 𝑁𝑦 

are number of secondary bulk and surface species; 𝐴𝑠 the specific surface area (m2/m3) of the 
solid which, at the pore-scale, is calculated from the mesh.  

https://github.com/vitst/dissolFoam
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The multiphase flow model is described using the VOF method. The single-field momentum 
equation for a multiphase system can be written as (Maes and Menke, 2021) 

 

𝜕𝜌𝐮

𝜕𝑡
+ ∇ ∙ (𝜌𝐮𝐮) = −∇𝑃 + ∇ ∙ (𝜇(∇𝐮 + ∇𝐮𝑇)) + 𝜌𝒈 + 𝐟𝑠𝑡                                     (66) 

 

where 𝒈 (m/s2) is the gravity acceleration and 𝐟𝑠𝑡  the surface tension force. For a two-phase 
system, aqueous (phase 1) and non-aqueous (liquid or gas, phase 2) the velocity 𝐮 and pressure 𝑃 
in the domain are expressed in terms of the single-field variables as follows  

 

𝐮 = 𝛼1𝐮1 + 𝛼2𝐮2 ,       𝑃 = 𝛼1 𝑃1 + 𝛼2𝑃2                                                  (67) 

 

where 𝛼1 and 𝛼2 = 1 − 𝛼1  are indicator functions used to track the interface between the two 
fluids, 𝐮𝛾 (m/s) and 𝑃𝛾  (Pa) are the velocity and pressure in phase 𝛾 assumed to be Newtonian 

and incompressible. In the same token, the density and viscosity of the fluid in each cell are 
expressed as  

 

𝜌 = 𝛼1 𝜌1 + 𝛼2𝜌2 ,    𝜇 = 𝛼1 𝜇1 + 𝛼2𝜇2                                                     (68) 

 

where 𝜌𝛾  (kg/m3) and 𝜇𝛾 (Pa s) are the density and viscosity of phase 𝛾. The advection of the 

indicator functions is done by solving the phase transport equation using algebraic VOF methods 
as described below 

 

𝜕𝛼1

𝜕𝑡
+ ∇ ∙ (𝛼1 𝐮) + ∇ ∙ (𝛼1 𝛼2𝐮𝑟) = −

𝑚̇12

𝜌1
                                                   (69) 

 

where 𝐮𝑟 = 𝐮1 − 𝐮2 is the relative velocity, which is a consequence of mass and momentum 

transfer between the phases, and 𝑚̇12 (kg/m3/s) is the rate of mass transfer from phase 1 to phase 
2 by solubility.  

For the reactive transport model, the total concentration 𝜓𝛾
𝑗
 of a primary species j in phase 𝛾 

must satisfy the conservation equation  

 

𝜕𝜓𝛾
𝑗

𝜕𝑡
+ ∇ ∙ (𝜓𝛾

𝑗
𝐮𝛾 ) = −∇ ∙ 𝐉𝛾

𝑗
                                                           (70) 
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Where 𝐉𝛾
𝑗
 the total diffusive flux of primary species j in phase 𝛾 can be modelled using Fick’s 

law  

𝐉𝛾
𝑗

= −𝐷𝛾
𝑗
∇𝐶𝛾

𝑗
− ∑ 𝜈𝑖𝑗𝐷𝛾

𝑖 ∇𝐶𝛾
𝑖

𝑁𝑥

𝑖=1

                                                                (71) 

 

The quantities 𝐷𝛾
𝑗
 and 𝐷𝛾

𝑖  are the molecular diffusion coefficients (m2/s) of the primary and 

secondary species in phase 𝛾. 

Within the VOF method, the reactive transport equations are integrated over a control volume 

using volume averaging (Maes and Soulaine, 2020) and boundary conditions. Due to the 
difficulty of developing an accurate and stable transport solver for the total concentrations 

(𝜓 𝑗)
1≤𝑗≤𝑁̅𝑐

, the numerical model solves directly for the concentration of the primary and 

secondary species using a sequential non-iterative operator splitting approach (Carrayrou et al., 
2004). The transport step solves the single-field transport equation using the continuous species 

transfer (CST) method (Maes and Soulaine, 2020). 

 

𝜕𝐶𝑘

𝜕𝑡
+ ∇ ∙ (𝐶𝑘𝐮) + ∇ ∙ (𝛼1𝛼2(𝐶1

𝑘 − 𝐶2
𝑘)𝐮𝑟) − ∇ ∙ (𝐷𝑘∇𝐶𝑘 − 𝚽𝑘) = 0                         (72) 

 

where 𝚽𝑘 is the CST flux of species k, 𝐷𝑘 the single-field diffusion coefficient of species k, and 

𝐶𝑘 the single-field concentration of species k (primary or secondary) with 𝐶𝑘 = 𝛼1 𝐶1
𝑘 + 𝛼2𝐶2

𝑘. 
The boundary condition at the surface of the solid for the single-field concentration of species k 
is defined by Graveleau et al. (2017)  

 

𝐷𝑘∇𝐶𝑘 − 𝚽𝑘 = 0                                                                         (73) 

 

For more details of the model derivation and implementation see Maes and Menke (2021). For 
the code availability go to https://www.julienmaes.com/geochemfoam. 

The code was applied to simulate multiphase reactive transport in a micro-CT image of 
Bentheimer sandstone where a solution of CaCl2 was injected into an oil saturated domain with 

surface complexation at the solid surface. Other fields of applications are in the oil and gas, 
carbon capture and storage, contaminant transport, battery, and fuel cell industries (Maes and 
Menke (2021). 

3.3.3. CrunchFoam 

CrunchFoam is a pore-scale multiphase reactive transport modeling framework developed by 
coupling the open source software package OpenFOAM and the geochemical reaction solver 

CrunchTope (Li et al., 2022). The coupling is done through a generic interface, Alquimia, that 
exposes the capabilities of existing and thoroughly validated geochemistry codes (Andre et al., 

https://www.julienmaes.com/geochemfoam
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2013). CrunchFoam solves two-phase flow, transport, and geochemical reactions sequentially 
using the operator splitting approach. The time stepping is controlled by the flow solver in 
OpenFOAM.  

The two-phase flow is solved using the standard OpenFOAM solver for transient incompressible 
isothermal flow of two immiscible fluids, interFoam, which implements a modified version of 

the VOF method by treating the two fluid phases as an effective single phase. In this approach, 
the velocity and pressure fields are solved by the single-field incompressible Navier-Stokes 
equation and continuity equation (Hirt and Nichols, 1981). The transport is solved using the 
compressive-continuous species transfer method, where the transport of a species j dissolved in 

both phases is described as follows (Maes and Soulaine, 2018)  

 

𝜕𝐶𝑗

𝜕𝑡
+ ∇ ∙ (𝐮𝐶𝑗) = −∇ ∙ (

(1 − 𝐻𝑗)𝐶𝑗

𝛼 + (1 − 𝛼)𝐻𝑗 𝛼(1 − 𝛼)𝐮𝑟) + ∇ ∙ (𝐷̂𝑗∇𝐶𝑗 + Ψ𝑗) + 𝑅𝑗        (74) 

 

where 𝐷̂ 𝑗 is the interpolation of the diffusion coefficient of the chemical species in the two 

phases, Ψ𝑗 is the concentration jump at the interface, H𝑗 is the Henry’s law constant, C𝑗 is the 

concentration of species j, 𝐮 is the velocity, 𝐮𝑟  the relative velocity between the two 

fluids/phases, and 𝛼 the volume fraction of a designated fluid. The reaction rate R𝑗 is described 
by the transition state theory rate law.  

CrunchFOAM was applied to investigate pore-scale dynamics of two-phase flow and their 
impacts on mineral reaction rates (Li et al., 2022).  

3.3.4. Chombo-Crunch 

Chombo-Crunch is a code suite developed since 2010 by Trebotich and co-workers to simulate 
subsurface flow and reactive transport at the pore-scale by direct numerical simulation 

techniques (Molins et al. 2017; Molins et al., 2012; Molins et al. 2014). It is a combination of the 
high-performance Chombo software package (Trebotich et al., 2008) for flow, transport, and 
geometry evolution processes with the geochemical reactions code CrunchFlow (Steefel et al., 
2015; Steefel and Molins, 2009).  

The governing equations are the Navier-Stokes equations for incompressible flow and the 
advection-diffusion reaction equations for the transport of aqueous species: 

 

𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ ∇)𝐮 +

1

𝜌
∇𝑃 = 𝜈∇2𝐮                                                             (75) 

 

∇ ∙ 𝐮 = 0                                                                                (76) 

 

𝜕𝐶

𝜕𝑡
+ ∇ ∙ (𝐮𝐶) = ∇ ∙ (𝐷∇𝐶)                                                                (77) 
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Where 𝜌, 𝜈, 𝑃, and 𝐮 are the fluid density, the kinematic viscosity, the fluid pressure, and the 
fluid velocity, respectively; 𝐶 is the concentration of the dissolved component and 𝐷 is the 
molecular diffusion coefficient. Mineral dissolution, described as a kinetic process, takes place at 
the fluid-solid interface, and can be expressed as a Robin boundary condition on the transport 

equation  

 

−𝐷𝐧 ∙ ∇𝐶 = 𝜉𝑟                                                                           (78) 

 

With 𝐧 the outward surface normal to the fluid region, 𝑟 the mineral dissolution rate which is 
described explicitly as a function of the species concentrations, and 𝜉 the stoichiometric 
coefficient of species in the dissolution reaction.  

Geochemical reactions are coupled to transport using an operator splitting approach. The code 
uses an embedded boundary-algebraic multigrid formulation based on a finite volume 
discretization where the solid−fluid interfaces are represented with embedded boundaries within 

each of the Cartesian grid cells. Conservation equations are solved using a predictor-corrector 
projection method. To minimize numerical dispersion, a higher order upwind method with a van 
Leer flux limiter is applied to advection terms in a semi-implicit Crank-Nicolson approach. More 
details can be found at Molins et al. (2017, 2012, 2014). 

Chombo-Crunch was applied to investigate the pore-scale transport and surface reaction controls 
on calcite dissolution under elevated pCO2 conditions (Molins et al. (2014). 
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4. HYBRID-SCALE MODELS 

Hybrid-scale models describe systems that include multiple characteristic length-scales, where 
some regions are described using pore-scale modelling and  others are modelled with continuum 
approaches. Two different approaches have been developed to solve hybrid-scale problems: the 
domain decomposition technique and the micro-continuum models.  

The domain decomposition technique solves different physics on separate domains, one for 
Darcy flow and the other for Stokes flow. The domains are linked together through appropriate 

boundary conditions (Molins et al., 2019).  

The micro-continuum models use a single set of partial differential equations (e.g., Darcy-

Brinkman-Stokes equation) throughout the computational domain (Soulaine and Tchelepi, 2016; 
Steefel et al., 2015).   

An example of a hybrid-scale model reactive transport code is porousMedia4Foam (Soulaine et 
al., 2021).  

4.1. POROUSMEDIA4FOAM 

porousMedia4Foam is a multi-scale open-source package to solve flow and transport in porous 
media within the simulation platform OpenFOAM (Soulaine et al., 2021). It is built using 
PHREEQC, an open-source and popular geochemistry package used in many continuum-scale 

reactive transport modeling. It relies on micro-continuum concept and makes it possible to 
investigate hydro-geochemical processes occurring at multiple scales, i.e., at the pore-scale, 
reservoir (or continuum)-scale, and at the hybrid-scale. The source code is available on GitHub 
(https://github.com/csoulain/porousMedia4Foam). Although the package has capabilities for 

solving two-phase flow (liquid-liquid and liquid-gas) in porous systems, the geochemistry 
coupling introduced in their paper only considers single-phase flow. 

porousMedia4Foam includes three flow models: a multi-scale flow solver (that includes pore-
scale, hybrid-scale, continuum-scale) based on the micro-continuum approach, and a continuum-
scale Darcy solver and a constant velocity solver.  

Micro-continuum approaches are intermediate between a pure Navier-Stokes description of the 
transport for which all the porosity is fully resolved, and a pure continuum-scale modelling for 
which the flow is governed by Darcy’s law. The momentum equation which arises from the 

integration of the Navier-Stokes equation over a control volume (Bennon and Incropera, 1987; 
Bousquet-Melou et al., 2002; Goyeau et al., 2003; Quintard and Whitaker, 1999; Vafai and Tien, 
1981) is given by: 

 

1

𝜙
(

𝜕𝜌𝑓𝐮

𝜕𝑡
+ ∇ ∙ (

𝜌𝑓

𝜙
𝐮𝐮)) = −∇𝑃𝑓 + 𝜌𝑓𝒈 + ∇ ∙ (

𝜇𝑓

𝜙
(∇𝐮 + ∇𝐮𝑡 )) − 𝜇𝑓𝑘−1𝐮                 (79) 

 

Where 𝜙, 𝐮, 𝑃𝑓, 𝒈, 𝜌𝑓 , 𝜇𝑓, and k are the porosity, the seepage velocity (m/s), the fluid pressure 

(Pa), the gravity (m/s2), the fluid density (kg/m3), the fluid viscosity (Pa s), and the cell 
permeability (m2), respectively. The porous media properties, including porosity and 

https://github.com/csoulain/porousMedia4Foam
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permeability, change dynamically with geochemical processes and are updated at every time 
step. The porosity field is computed by 

 

𝜙 = 1 − ∑ 𝑌𝑠
𝑖 − 𝑌𝑠

𝑖𝑛𝑒𝑟𝑡  ,

𝑁𝑠−1

𝑖

                                                              (80) 

 

𝑌𝑠
𝑖  is the volume fraction of mineral i on the computational grid, 𝑌𝑠

𝑖𝑛𝑒𝑟𝑡 defines an inert mineral 
and Ns the number of minerals. 

In porousMedia4Foam, complex reaction networks are handled by geochemical packages. Four 
models are currently implemented to account for the geochemistry (Table 2). The geochemical 

packages update the water composition 𝐶𝑗, and the distribution of the solid minerals 𝑌𝑠
𝑖  , and 

return the rate of solid changes,  

 

𝑚̇𝑠
𝑖 =

𝜕𝜌𝑠
𝑖𝑌𝑠

𝑖

𝜕𝑡
                                                                             (81) 

 

where 𝜌𝑠
𝑖  is the density of solid mineral i. 

In the PHREEQC model, the coupling between transport and reactions relies on an operator-
splitting approach based on the Strang’s algorithm (Strang, 1968). All species concentration 

fields, 𝐶𝑗, are transported sequentially using the advection-dispersion equations,  

 

𝜕𝜙𝐶𝑗

𝜕𝑡
+ ∇ ∙ (𝐮𝐶𝑗) − ∇ ∙ (𝜙𝐷∗𝑗 ∙ ∇𝐶𝑗) = 0 ,                                                 (82) 

 

𝐷∗𝑗 is an effective diffusion tensor that accounts for tortuosity and hydrodynamic dispersion 
effects. The fluid velocity 𝐮 is computed with the flow solver. 

The first order kinetic model solves the transport of single species that reacts with solid minerals 
using first order kinetic reactions. Considering a chemical reaction where species A reacts with a 

mineral to produce species B, the mass balance equation for species A can be written as:  

 

𝜕𝜙𝐶𝐴

𝜕𝑡
+ ∇ ∙ (𝐮𝐶𝐴) − ∇ ∙ (𝜙𝐷∗𝑗 ∙ ∇𝐶𝐴) = − (∑ 𝐴𝑠

𝑗 (𝑘𝑗,𝐴𝛾𝐴)

𝑁𝑠

𝑗=1

) 𝐶𝐴 ,                          (83) 

where 𝐴𝑠
𝑗
 (m-1) is the reactive surface area of mineral j, and (𝑘𝑗,𝐴𝛾𝐴) in m/s is the constant of 

reaction of the species A with the mineral j. The concentration field 𝐶𝑗 is in mol/m3. The 

distribution of solid minerals evolves according to  
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𝜕𝑌𝑠
𝑖

𝜕𝑡
= −𝐴𝑠

𝐴(𝑘𝑖,𝐴𝛾𝐴)𝑉𝑚𝑠,𝑖
𝐶𝐴 ,                                                               (84) 

 

𝑉𝑚𝑠,𝑖
 (m3/mol) is the molar volume of the reacting mineral.  

The other two models of the geochemical packages are transport only (no geochemistry, 
advection-dispersion equation is solved) and flow only (no transport and no geochemistry). 

Porous media models are generally described by their properties including absolute permeability, 
specific surface area, and dispersion tensor. Several models have been implemented in the code 
(Table 2).   

 

Table 2: Summary of the Geochemical Packages for Hydro-Geochemical Processes, 
Permeability-Porosity Models, Specific Surface Area Models, and Dispersion Models 

Implemented in porousMedia4Foam. See Appendix for their expressions. 

 
Geochemical 

Packages 
Permeability-

Porosity Surface Area Dispersion 

Model PHREEQC 

First order kinetic 

Transport only 

Flow only 

None 

Constant 

Power-law 

Kozeny-Carman 

Verma-Singh 

Hele-Shaw 

None 

Constant 

Volume of solid 

Power-law 

Sugar lump 

Hydro-geochemical 
coupling 

None 

Diffusion only 

Archie’s Law 

Linear dispersion 

 

The permeability-porosity models implemented include None, Constant (uniform or non-
uniform), Power-law (permeability power law of porosity), Kozeny-Carman, Verma-Pruess, and 
Hele-Shaw.   

The specific surface area models implemented in porousMedia4Foam are the following: None 
(e.g., for phase equilibrium calculation), Constant surface area, Volume of solid (for pore-scale 
simulations only, local surface area computed  based on the mineral mapping), Power-law 

(power of the distribution of the solid minerals), Sugar lump (evolution of the surface area of an 
aggregate during dissolution), and Hydro-geochemical coupling.  

For the dispersion, four models are implemented including: None (model transport by advection 
only), Diffusion only (no tortuosity effects, no hydrodynamic dispersion), Archie’s Law 
(tortuosity represented by a power law of porosity), and Linear dispersion.  

The application fields of this package include the investigation of hydro-bio-geochemical 
processes in the critical zone, the modelling of contaminant transport in aquifers, and the 
assessment of confinement performance for geological barriers (Soulaine et al., 2021). 
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5. CONCLUSIONS 

Accurate modelling and prediction of subsurface processes involving flow, transport, and 
geochemical reactions requires advanced tools and approaches. Reactive transport modelling 
consists of computational approaches and numerical models that describe the coupled physical, 
chemical, mechanical, and biological processes interacting with each other over a broad range of 

spatial and temporal scales. Three different kinds of approaches for CO2 applications have been 
defined: continuum-scale approach based on Darcy equation, pore-scale approach, and hybrid-
scale approach. All three approaches have been presented in this work and a few examples of 
reactive transport codes have been described.  

The continuum-scale approach deals with problems at the macroscale and relies on average 
quantities over a REV and constitutive relationships, but fails to describe the microscopic 

insights of the porous media. The pore-scale approach requires an exact knowledge of the phase 
distribution and computes properties of the system at the microscopic level that can be used to 
determine properties at the continuum-scale. The hybrid-scale approach bridges the gap between 
the continuum- and pore-scale approach, where some regions of the porous media are treated at 

the Darcy-scale while others at the pore-scale. However, the last two approaches are still 
emerging.   

Reactive transport codes differ not only by their approaches, but also by their features, 
capabilities, and license requirements. A few of these codes have the design capability to 
simulate multiphase flow, multiphase reactive transport, or geo-mechanics. While many of them 
are open-source codes (or free for DOE laboratories), others require the purchase of a license.   

It is important to determine the best approach and model to solve a particular/specific problem 
and the influence of the model on the results. This work will provide guidance on choosing 

appropriate approaches, and therefore, reactive transport codes to solve a particular problem.     
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APPENDIX 

Expressions of reaction-induced porosity and permeability changes implemented in the reactive 
transport codes. 

- Power law 
 

𝑘 = 𝑘0 (
𝜙

𝜙0

)
𝑛

                                                                      (A.1) 

 

- Kozeny-Carman 

𝑘 = 𝑘0 (
𝜙

𝜙0

)
𝑛

(
1 − 𝜙0

1 − 𝜙
)

𝑚

                                                 (A.2) 

 
by default, n = 2 and m = 3 (Kozeny, 1927; Carman, 1937). 
 

- Verma-Pruess 

𝑘 = 𝑘0 (
𝜙 − 𝜙𝑐

𝜙0 − 𝜙𝑐

)
𝑛

                                                               (A.3) 

 

n is a model parameter. 𝜙𝑐 refers to the critical porosity where permeability reduces to 0 
(Verma and Pruess, 1988). 
 

- Hele-Shaw 

𝑘 =
ℎ2

12
                                                                          (A.4) 

for simulating 2D depth-averaged flow in micromodels; ℎ is the gap between the two plates. 

Expressions of some specific surface area models implemented in porousMedia4Foam 

 

- Volume of solid 
𝐴𝑠 = |∇𝑌𝑠|𝜓                                                               (A.5) 

 

compute the local surface area based on the mineral mapping. 𝜓 is a diffuse interface 
function. 
 

- Power-law 

𝐴𝑠 = 𝐴0(𝑌𝑠)𝑛                                                               (A.6) 
n is a user defined variable. 
 

- Sugar lump  

𝐴𝑠 = (𝐴0 + 𝐴𝑚 (1 − (
𝑌𝑠

𝑌0

)
𝑛1

)

𝑛2

) (
𝑌𝑠

𝑌0

)
𝑛3

                                    (A.7) 
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Am is the maximum surface area given by the sum of the surface areas of all individual 
particles. Parameters n1, n2, and n3 are user-defined parameters (Noiriel et al., 2009). 
 

- Hydro-geochemical coupling  

𝐴𝑠 = 𝐴0 (
𝑌𝑠

𝑌0

)
𝑛

(1 − exp(𝑃𝑒 −𝑝𝐷𝑎−𝑞))                                   (A.9) 

 

n, p, q are user defined parameters (Soulaine et al., 2017); 𝑃𝑒 and 𝐷𝑎 are Péclet and 
Damkhöler numbers. 
 

Expressions of some of the dispersion models implemented in the reactive transport codes: 

- Diffusion only 
𝐷𝑖

∗ = 𝐷𝑖𝐼                                                                 (A.10) 

- Archie’s Law 
𝐷𝑖

∗ = 𝜙𝑛𝐷𝑖𝐼                                                              (A.11) 

- Linear dispersion 

𝐷𝑖
∗ = 𝜙𝑛 ((𝐷𝑖 + 𝛼𝑇|𝐮|)𝐼 +

(𝛼𝐿 − 𝛼𝑇)

|𝐮|
𝐮𝐮)                                  (A.12) 

 

Tortuosity is represented by 𝜙𝑛. αT and αL are model parameters describing lateral and 
longitudinal dispersion, respectively. 𝐼 is the matrix/tensor identity. 
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