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2 Motivation

Despite improved algorithms and powerful supercomputers, “high-fidelity” models

are often too expensive for use in a design or analysis setting.

Sandia application areas in which this situation arises:

• Captive-carry and re-entry environments: Large Eddy 

Simulations (LES) runs require very fine meshes and can take 

on the order of weeks.

• Fastener failure modeling: modeling fastener 

behavior in a full system presents meshing and 

computational challenges, which limits the 

number of configurations that can be studied.

• Climate modeling (e.g., land-ice, atmosphere): high-fidelity 

simulations too costly for uncertainty quantification (UQ); 

Bayesian inference of high-dimensional parameter fields is 

intractable.



POD/LSPG* Approach to Model Reduction
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Full Order Model (FOM) = Ordinary Differential Equation (ODE):

Proper Orthogonal Decomposition (POD):

Solve ODE at different 

design points
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*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al., 2011; K. Carlberg et al., 2017]
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POD/LSPG Approach to Model Reduction
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Advantages of POD/LSPG projection:

• Computes a solution that minimizes the l2-norm of the time-discrete residual arising in each ∆𝑡

➢ Ensures that adding basis vectors yields a monotonic decrease in the least-squares objective 

function defining the underlying minimization problem [Carlberg et al., 2011]

• Possesses better stability and accuracy than POD/Galerkin for certain classes of problems (e.g., 

compressible flow) [Carlberg et al., 2013, Carlberg et al., 2017, Tezaur et al., 2018].

• Accuracy for time-predictive problems can be inadequate 

• Method may fail to converge for some realistic problems run      

in the predictive regime

• Method may struggle when applied to multi-physics problems 

with disparate scales [Washabaugh, 2016]  

Solution: introduction of preconditioning into LSPG/ROM formulation.
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Room for improvement for realistic predictive applications:



Preconditioned LSPG ROMs5

LSPG Formulation:

ෝ𝒙 = argmin
𝒚∈ℝ𝑀

||𝒓 𝜱𝒚 ||2
2

𝛿ෝ𝒙PG
(𝑘)

= argmin
𝒚∈ℝ𝑀

||𝑱(𝑘)𝜱𝒚 + 𝒓(𝑘)||2
2

ෝ𝒙PG
(𝑘)
= ෝ𝒙PG

𝑘−1
+ 𝛼𝑘𝛿ෝ𝒙PG

(𝑘)

෥𝒙PG
(𝑘)
= 𝜱ෝ𝒙PG

(𝑘)

𝑱PG
(𝑘)
𝛿ෝ𝒙PG

(𝑘)
= −𝒓PG

𝑘

𝑱PG
(𝑘)
: = 𝜱𝑇𝑱 𝑘 𝑇 𝑱 𝑘 𝜱

𝒓PG
𝑘
: = 𝜱𝑇𝑱 𝑘 𝑇𝒓(𝑘)

Preconditioned LSPG Formulation:

Gauss-Newton iteration

Normal equations

Optimization problem
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Preconditioned LSPG ROMs
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Adding preconditioning to the POD/LSPG formulation can improve

not only ROM efficiency but also ROM accuracy.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

• Minimizing the raw (unweighted) residual 𝒓 can be problematic for systems of PDEs where different variables 

have drastically different magnitudes (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].

• Adding a preconditioner amounts to scaling the ROM residual to get all the equations to be roughly the same 

order.

𝛿෥𝒙(𝑘) = 𝜱(𝜱𝑇𝜱)−1𝜱𝑇𝛿𝒙(𝑘)

• Ideal preconditioned ROM (𝑴(𝑘) = (𝑱 𝑘 )−1) gives rise to “projected solution increment” solution (1)

• As quality of preconditioner is improved (𝑴(𝑘) → (𝑱 𝑘 )−1), the ROM solution approaches the most 

accurate ROM solution possible for a given basis 𝜱.

Preconditioning ensures all residual components are on approximately the same scale.

• Upper limit on ROM accuracy is obtained by taking solution increment computed by FOM, 𝛿𝒙(𝑘), at 

each time step 𝑘 and projecting it onto the POD basis:

(1)



Numerical Examples:  Albany and SPARC codes7

multi-physics finite 

element code

• Open-source1, parallel, C++ code

• Component-based design for rapid development

• Contains a wide variety of constitutive models for 

mechanical/thermo-mechanical problems.

• Makes extensive use of libraries from the open-

source Trilinos project2, including preconditioners 

from the Ifpack library

1https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end
2https://github.com/trilinos/trilinos

Problems tested: quasi-static mechanical and 

thermo-mechanical with prediction across 

material parameter space.

SPARC3 Flow Solver

• Next-generation transonic and hypersonic C++ 

CFD code developed at Sandia

• Simulates compressible flow

• Used for analyses involving captive carry and 

reentry vehicles

• Primary discretization is cell-centered finite 

volume method

• Leverages libraries from the Trilinos project2

Problems tested: transient compressible laminar 

flow over an open cavity with prediction in time

3Sandia Parallel Aerodynamics and Reentry Code

https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end
https://github.com/trilinos/trilinos


Thermo-Mechanical Beam (Albany)8

• Coupled thermo-mechanical problem involving Neohookean material

• 2 sets of material blocks, ℬ𝑎 and ℬ𝑏, each having set of material parameters

➢ Material parameters in block ℬ𝑎 are fixed

➢ Material parameters in block ℬ𝑏 are varied (see Table 1)

• Linearly varying time-dependent pressure and temperature BC is                       

prescribed on Γ2; other boundaries are fixed

• Problem is run quasi-statically to pseudo-time 𝑡 =7200s with 2100 dofs

ℬ𝑎

ℬ𝑏

Γ1

Γ2 Γ3

Γ4

Table 1.  Parameters in block ℬ𝑏 for 

thermo-mechanical beam problem. 

• Training is performed for 6 sets of parameters; testing/prediction is                                                     

performed for 4 sets of parameters (see Table 1)

➢ Significant variations in displacement (up to 60%) are observed with the parameter variations considered 

(right figure)
[Lindsay et al., in prep.]



Thermo-Mechanical Beam (Albany)9

• Figure plots global relative error in 

approximate ROM solutions:

𝜖 ≔
σ𝑖=0
𝑃 𝑥𝑖 − ෤𝑥𝑖 2

σ𝑖=0
𝑃 𝑥𝑖 2

• Preconditioners evaluated: Jacobi, Gauss-Seidel, 

Symmetric Gauss-Seidel, Incomplete Cholesky, ILU 

and (𝑱 𝑘 )−1 (denoted by projSoln)

• By introducing preconditioning, it is possible to 

reduce 𝜖 by 2-6 orders of magnitude

• All preconditioned LSPG ROMs achieve errors close 

to (less than one order of magnitude greater than) 

the error obtained by the projected solution 

increment model 



Thermo-Mechanical Beam (Albany)10

• Figure plots condition numbers of reduced 

Jacobian (𝑱PPG
(𝑘)

or 𝑱PG
(𝑘)

) for each ROM.

• Reduced Jacobians for regular LSPG ROM are   

very ill-conditioned (𝑂 1014 − 𝑂 1016 )

➢ Ill-conditioning is due to extreme differences 

in scale b/w displacement and temperature 

solutions (9 orders of magnitude)

• Results demonstrate that simple preconditioning 

strategy can reduce condition numbers by as many 

as 10 orders of magnitude

➢ Gauss-Seidel preconditioners produce the 

lowest condition number

• As expected, projected solution increment 

reduced Jacobian has perfect condition number



Thermo-Mechanical Beam (Albany)11

• Figures shows CPU-times for all ROMs 

considered

• Preconditioned LSPG ROMs achieve CPU-

times that are comparable or marginally 

larger than unpreconditioned LSPG ROM

• Since preconditioned ROMs are substantially 

more accurate than vanilla LSPG, there is a 

significant computational advantage in 

applying preconditioning

• Gauss-Seidel preconditioners give rise to 

lowest CPU-times of preconditioned ROMs

• As expected, the projected solution 

increment is the most expensive to 

compute



Thermo-Mechanical Pressure Vessel (Albany)12

• Coupled thermo-mechanical problem involving Neohookean material

• 2 sets of material blocks, ℬ𝑎 and ℬ𝑏, each having set of material parameters

➢ Material parameters in block ℬ𝑎 (magenta, cyan) are fixed

➢ Material parameters in block ℬ𝑏 (green, yellow, blue) are varied (see Table 2)

• Pressure vessel is heated and pressurized from the lateral side

• Problem is run quasi-statically to pseudo-time 𝑡 =720s with 370K dofs

• Training is performed for 4 sets of parameters; testing/prediction is                                                     

performed for 2 sets of parameters (see Table 2)

Table 2.  Parameters in block ℬ𝑏 for thermo-

mechanical pressure vessel problem. 

[Lindsay et al., in prep.]



Thermo-Mechanical Pressure Vessel (Albany)13

Table 3.  Errors 𝜖 for thermo-mechanical pressure vessel problem

Table 4.  CPU-times for thermo-mechanical pressure vessel problem

Table 5.  Number nonlinear iterations for thermo-mechanical pressure 

vessel problem

• Three basis sizes considered: 𝑀 =
8, 79, 790 modes

• One preconditioner considered: 

Gauss-Seidel

• Vanilla LSPG ROM results are unsatisfactory

➢ LSPG ROM did not converge for larger basis 

sizes (𝑀 = 79 and 𝑀 = 790)

➢ For smaller basis size (𝑀 = 8), the LSPG ROM 

was only able to achieve a global error of 

𝑂 10−1 − 𝑂 10−2

• Preconditioned LSPG ROM converges for all basis 

sizes and achieves errors of 𝑂 10−5 − 𝑂 10−6

• For 𝑀 = 8 case, the preconditioned LSPG ROM 

achieved a speedup of up to 3.6x over LSPG ROM

• Preconditioned LSPG ROM reduces the total 

number of nonlinear iterations by a factor of 3-4x



Compressible Cavity Flow (SPARC)14

• 2D viscous laminar flow around an open cavity geometry

➢ Simple model for the captive carry scenario

• Mach number = 0.6, Reynolds number ≈ 3000

• Problem is run non-dimensionally

• Domain is discretized using 104,500 hexahedral cells (right)

• Of primary interest are long-time predictive simulations

➢ ROM is run at same parameters as FOM but much 

longer in time

➢ Relevant QOIs: statistics of the flow (e.g., pressure 

power spectral densities or PSDs)
𝑥-axis

𝑦
-a

x
is

[Tezaur et al. 2017, Fike et al. 2018]



Compressible Cavity Flow (SPARC)15

Method RMS OASPL1 in dB % Difference from 

FOM in dB

FOM 66.176 −

projSoln 67.552 2.08%

LSPG N/A N/A

LSPG + Jacobi PC 68.033 2.80%

1Overall sound pressure level

• Figure top left: pressure time history for a point halfway up 

the downstream wall of the cavity for an LSPG ROM having 

327 modes with a Jacobi preconditioner (PC)

• Figure bottom left: pressure PSD for the signal in the top 

left figure (solid line is mean PSD, shaded regions indicate 

range of values used to construct the mean)

• Preconditioned LSPG ROM captures well the pressure PSD, 

including its peaks (Rossiter modes) and the RMS OASPL1

• Vanilla LSPG ROM did not run successfully



Summary & Future Work16

Summary:

• Adding preconditioning to the LSPG formulation gives rise to ROMs with improved accuracy and stability, 

especially in the predictive regime

➢ Preconditioning attempts to emulate projection of FOM solution increment onto POD basis (the ROM 

“best-case scenario” for a given basis)

➢ Preconditioning ensures all components of residual being minimized are of the same magnitude

➢ Results on predictive (across parameter space) thermo-mechanical and predictive (in time) 

compressible flow problems are compelling

Ongoing/future work:

• Two manuscripts on this work are in preparation

➢ P. Lindsay, J. Fike, K. Carlberg, I. Tezaur.  “Preconditioned LSPG Reduced Order Models”, in prep.

➢ J. Fike, P. Lindsay, K. Carlberg, I. Tezaur.  “Preconditioned Least-Squares Petrov-Galerkin Reduced Order 

Models for Compressible Flows”, in prep.

• Application of preconditioned LSPG approach to more sophisticated problems relevant to Sandia’s mission 

spaces 

➢ Preconditioning LSPG ROMs has been helpful for hypersonic aero, thermal/ablation and reacting 

hypersonic flow problems
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