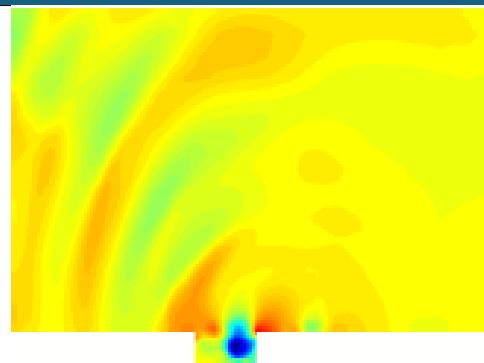
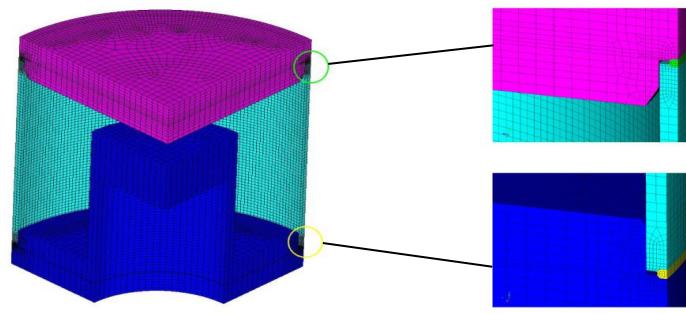


Sandia
National
Laboratories

Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models for Fluid and Solid Mechanics Problems



Payton Lindsay¹, Jeff Fike¹, Kevin Carlberg², Irina Tezaur¹

¹Sandia National Labs, ²Facebook Reality Labs

MMLDT-CSET2021

Wednesday, September 28, 2021

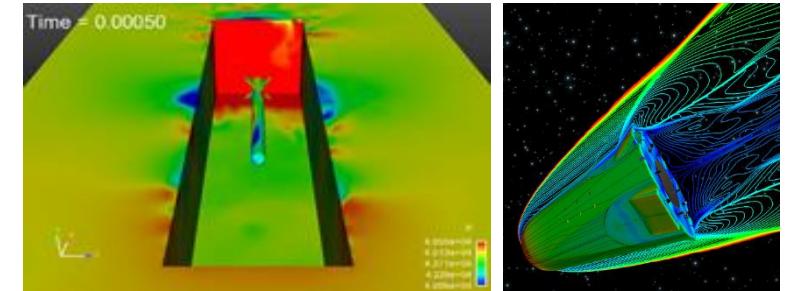
SAND2021-XXXX

Motivation

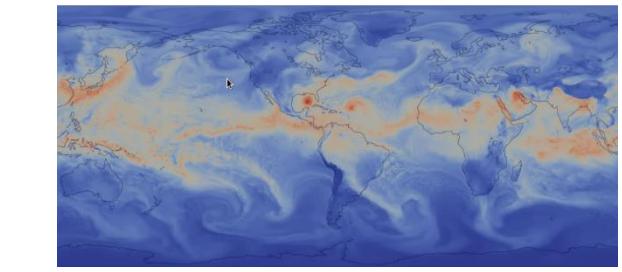
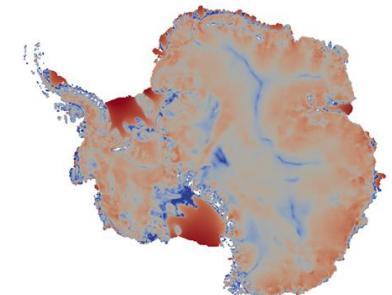
Despite improved algorithms and powerful supercomputers, “high-fidelity” models are often too expensive for use in a design or analysis setting.

Sandia application areas in which this situation arises:

- **Captive-carry and re-entry environments:** Large Eddy Simulations (LES) runs require very fine meshes and can take on the order of weeks.



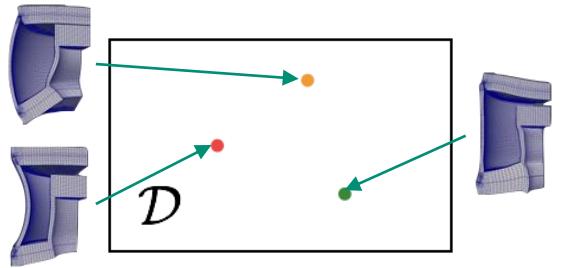
- **Fastener failure modeling:** modeling fastener behavior in a full system presents meshing and computational challenges, which limits the number of configurations that can be studied.
- **Climate modeling** (e.g., land-ice, atmosphere): high-fidelity simulations too costly for uncertainty quantification (UQ); Bayesian inference of high-dimensional parameter fields is intractable.



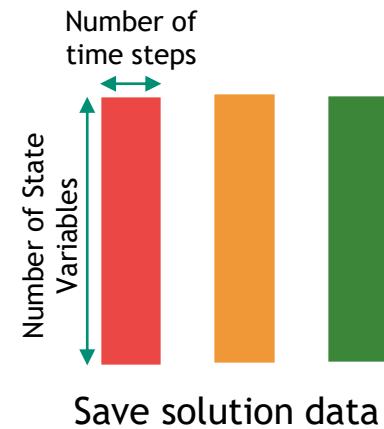
POD/LSPG* Approach to Model Reduction

Full Order Model (FOM) = Ordinary Differential Equation (ODE): $\frac{dx}{dt} = f(x; t, \mu)$

1. Acquisition



Solve ODE at different design points



2. Learning

Proper Orthogonal Decomposition (POD):

$$X = \begin{matrix} \text{Red Bar} \\ \text{Orange Bar} \\ \text{Green Bar} \end{matrix} = \begin{matrix} \text{Brown Bar} \\ \text{Blue Bar} \end{matrix} \Sigma \begin{matrix} \text{Blue Bar}^T \end{matrix}$$

3. Reduction

Choose ODE
Temporal
Discretization

$$\frac{dx}{dt} = f(x; t, \mu) \downarrow r^n(x^n; \mu) = 0, \quad n = 1, \dots, T$$

Reduce the
number of
unknowns

$$x(t) \approx \tilde{x}(t) = \Phi \hat{x}(t)$$

Minimize
the Residual

$$\min_{\hat{v}} \| \begin{matrix} \text{Purple Bar} \\ \text{Black Bar} \end{matrix} \|_2 \quad r^n(\Phi \hat{v}; \mu) \|_2$$

Hyper-reduction/sample mesh

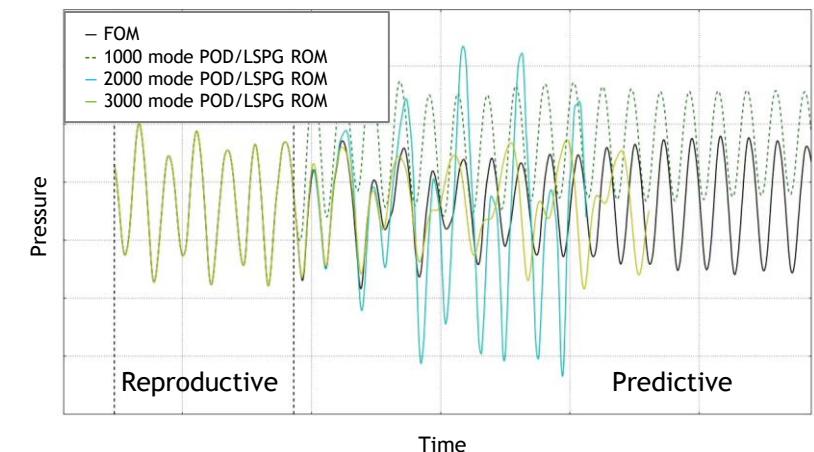
POD/LSPG Approach to Model Reduction

Advantages of POD/LSPG projection:

- Computes a solution that **minimizes the l_2 -norm** of the time-discrete residual arising in each Δt
 - Ensures that adding basis vectors yields a **monotonic decrease** in the least-squares objective function defining the underlying minimization problem [Carlberg *et al.*, 2011]
- Possesses **better stability and accuracy** than POD/Galerkin for certain classes of problems (e.g., compressible flow) [Carlberg *et al.*, 2013, Carlberg *et al.*, 2017, Tezaur *et al.*, 2018].

Room for improvement for realistic predictive applications:

- Accuracy for **time-predictive problems** can be inadequate
- Method may **fail to converge** for some realistic problems run in the predictive regime
- Method may struggle when applied to **multi-physics problems** with disparate scales [Washabaugh, 2016]



Solution: introduction of preconditioning into LSPG/ROM formulation.

LSPG Formulation:

$$\hat{\mathbf{x}} = \underset{\mathbf{y} \in \mathbb{R}^M}{\operatorname{argmin}} \|\mathbf{r}(\Phi \mathbf{y})\|_2^2$$

Optimization problem

$$\begin{aligned}\delta \hat{\mathbf{x}}_{\text{PG}}^{(k)} &= \underset{\mathbf{y} \in \mathbb{R}^M}{\operatorname{argmin}} \|\mathbf{J}^{(k)} \Phi \mathbf{y} + \mathbf{r}^{(k)}\|_2^2 \\ \hat{\mathbf{x}}_{\text{PG}}^{(k)} &= \hat{\mathbf{x}}_{\text{PG}}^{(k-1)} + \alpha_k \delta \hat{\mathbf{x}}_{\text{PG}}^{(k)} \\ \tilde{\mathbf{x}}_{\text{PG}}^{(k)} &= \Phi \hat{\mathbf{x}}_{\text{PG}}^{(k)} \quad \text{Gauss-Newton iteration}\end{aligned}$$

Normal equations

$$\begin{aligned}\mathbf{J}_{\text{PG}}^{(k)} \delta \hat{\mathbf{x}}_{\text{PG}}^{(k)} &= -\mathbf{r}_{\text{PG}}^{(k)} \\ \mathbf{J}_{\text{PG}}^{(k)} &:= \Phi^T \mathbf{J}^{(k)T} \mathbf{J}^{(k)} \Phi \\ \mathbf{r}_{\text{PG}}^{(k)} &:= \Phi^T \mathbf{J}^{(k)T} \mathbf{r}^{(k)}\end{aligned}$$

Preconditioned LSPG Formulation:

$$\hat{\mathbf{x}} = \underset{\mathbf{y} \in \mathbb{R}^M}{\operatorname{argmin}} \|\mathbf{M} \mathbf{r}(\Phi \mathbf{y})\|_2^2$$

Optimization problem

$$\begin{aligned}\delta \hat{\mathbf{x}}_{\text{PPG}}^{(k)} &= \underset{\mathbf{y} \in \mathbb{R}^M}{\operatorname{argmin}} \|\mathbf{M}^{(k)} (\mathbf{J}^{(k)} \Phi \mathbf{y} + \mathbf{r}^{(k)})\|_2^2 \\ \hat{\mathbf{x}}_{\text{PPG}}^{(k)} &= \hat{\mathbf{x}}_{\text{PPG}}^{(k-1)} + \alpha_k \delta \hat{\mathbf{x}}_{\text{PPG}}^{(k)} \\ \tilde{\mathbf{x}}_{\text{PPG}}^{(k)} &= \Phi \hat{\mathbf{x}}_{\text{PPG}}^{(k)} \quad \text{Gauss-Newton iteration}\end{aligned}$$

Normal equations

$$\begin{aligned}\mathbf{J}_{\text{PPG}}^{(k)} \delta \hat{\mathbf{x}}_{\text{PG}}^{(k)} &= -\mathbf{r}_{\text{PG}}^{(k)} \\ \mathbf{J}_{\text{PPG}}^{(k)} &:= \Phi^T \mathbf{J}^{(k)T} \mathbf{M}^{(k)T} \mathbf{M}^{(k)} \mathbf{J}^{(k)} \Phi \\ \mathbf{r}_{\text{PPG}}^{(k)} &:= \Phi^T \mathbf{J}^{(k)T} \mathbf{M}^{(k)T} \mathbf{M}^{(k)} \mathbf{r}^{(k)}\end{aligned}$$

Adding preconditioning to the POD/LSPG formulation can **improve** not only ROM efficiency but also ROM accuracy.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

- Upper limit on ROM accuracy is obtained by taking **solution increment** computed by FOM, $\delta x^{(k)}$, at each time step k and **projecting it onto the POD basis**:

$$\delta \tilde{x}^{(k)} = \Phi (\Phi^T \Phi)^{-1} \Phi^T \delta x^{(k)} \quad (1)$$

- Ideal preconditioned ROM** ($M^{(k)} = (J^{(k)})^{-1}$) gives rise to “projected solution increment” solution (1)
- As quality of preconditioner is improved ($M^{(k)} \rightarrow (J^{(k)})^{-1}$), the ROM solution **approaches** the most accurate ROM solution possible for a given basis Φ .

Preconditioning ensures all residual components are on approximately the same scale.

- Minimizing the raw (unweighted) residual r can be problematic for systems of PDEs where different variables have **drastically different magnitudes** (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].
- Adding a preconditioner amounts to **scaling** the ROM residual to get all the equations to be roughly the same order.

Numerical Examples: Albany and SPARC codes

multi-physics finite element code

- Open-source¹, parallel, C++ code
- Component-based design for rapid development
- Contains a wide variety of constitutive models for mechanical/thermo-mechanical problems.
- Makes extensive use of libraries from the open-source Trilinos project², including preconditioners from the Ifpack library

Problems tested: quasi-static mechanical and thermo-mechanical with prediction across material parameter space.

¹https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end

²<https://github.com/trilinos/trilinos>

SPARC³ Flow Solver

- Next-generation transonic and hypersonic C++ CFD code developed at Sandia
- Simulates compressible flow
- Used for analyses involving captive carry and reentry vehicles
- Primary discretization is cell-centered finite volume method
- Leverages libraries from the Trilinos project²

Problems tested: transient compressible laminar flow over an open cavity with prediction in time

³Sandia Parallel Aerodynamics and Reentry Code

Thermo-Mechanical Beam (Albany)

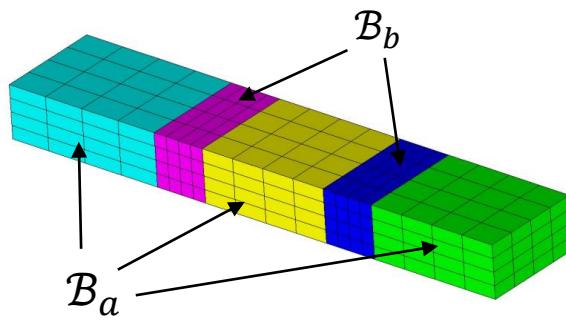
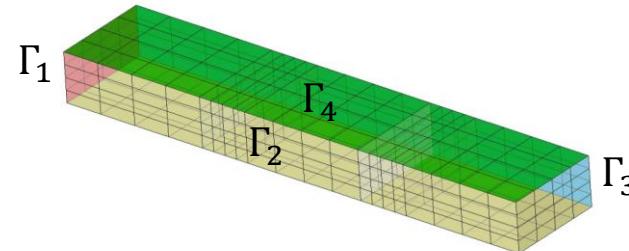
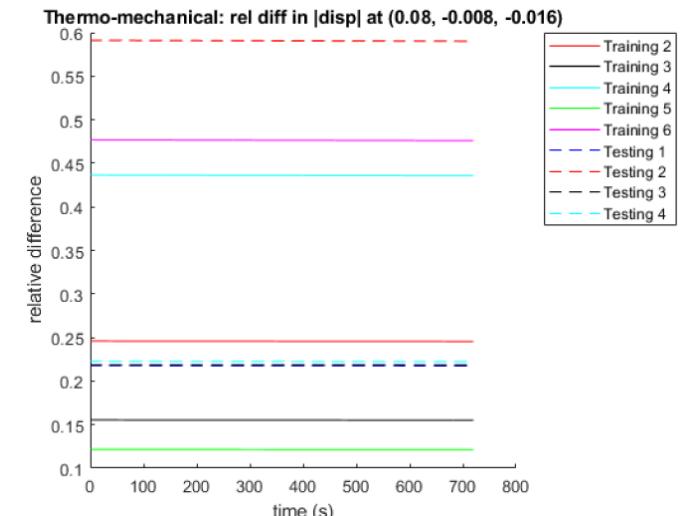


Table 1. Parameters in block \mathcal{B}_b for thermo-mechanical beam problem.

Regime	Case	$E_b (\times 10^9)$ [Pa]	ν_b	$\rho_b (\times 10^{-5})$ [kg/m ³]	$T_{b,\text{ref}}$ [K]
training	1	2.01313	0.285907	7.94827	273.657
	2	1.71637	0.332083	6.93965	318.406
	3	1.96881	0.3478	9.37181	301.406
	4	1.28954	0.29427	9.14636	365.378
	5	1.61326	0.262464	6.32164	223.434
	6	1.54724	0.374118	7.31561	245.778
testing	1	1.52473	0.27925	8.80694	266.674
	2	1.31153	0.345538	7.58234	333.462
	3	1.37015	0.246513	7.73303	345.942
	4	1.703	0.32	7.92	293

- Coupled thermo-mechanical problem involving Neohookean material
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material parameters
 - Material parameters in block \mathcal{B}_a are fixed
 - Material parameters in block \mathcal{B}_b are varied (see Table 1)
- Linearly varying time-dependent pressure and temperature BC is prescribed on Γ_2 ; other boundaries are fixed
- Problem is run quasi-statically to pseudo-time $t = 7200$ s with 2100 dofs
- Training is performed for 6 sets of parameters; testing/prediction is performed for 4 sets of parameters (see Table 1)
 - Significant variations in displacement (up to 60%) are observed with the parameter variations considered (right figure)



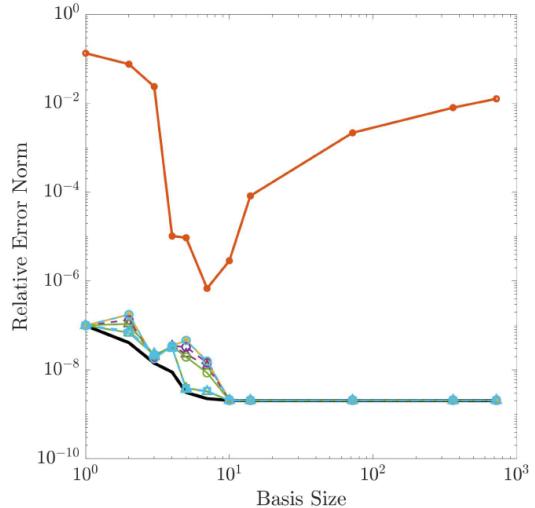
Thermo-Mechanical Beam (Albany)

- Figure plots **global relative error** in approximate ROM solutions:

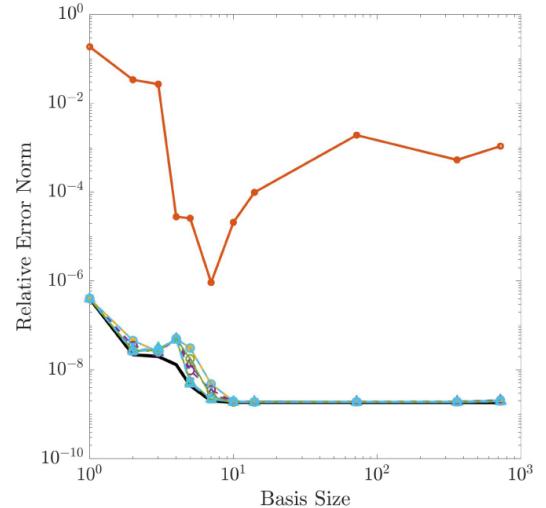
$$\epsilon := \frac{\sum_{i=0}^P \|x_i - \tilde{x}_i\|_2}{\sum_{i=0}^P \|x_i\|_2}$$

- LSPG
- scaling
- Jacobi
- IC0
- GsSdl
- symGsSdl
- ILU0
- IC1
- ILU1
- IC2
- ILU2
- projSoln

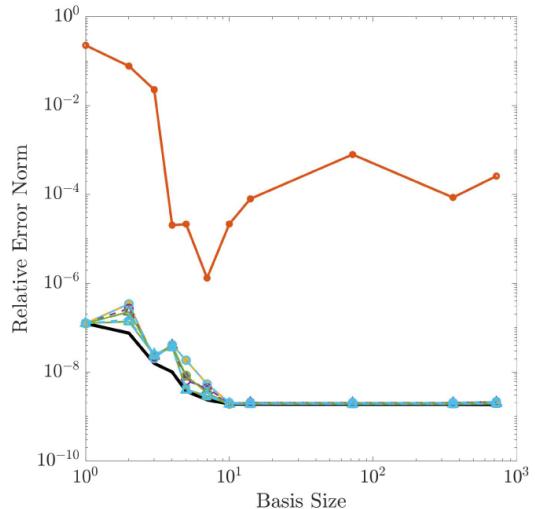
- Preconditioners evaluated:** Jacobi, Gauss-Seidel, Symmetric Gauss-Seidel, Incomplete Cholesky, ILU and $(J^{(k)})^{-1}$ (denoted by projSoln)
- By introducing preconditioning, it is possible to reduce ϵ by **2-6 orders of magnitude**
- All preconditioned LSPG ROMs achieve **errors close to** (less than one order of magnitude greater than) the error obtained by the **projected solution increment model**



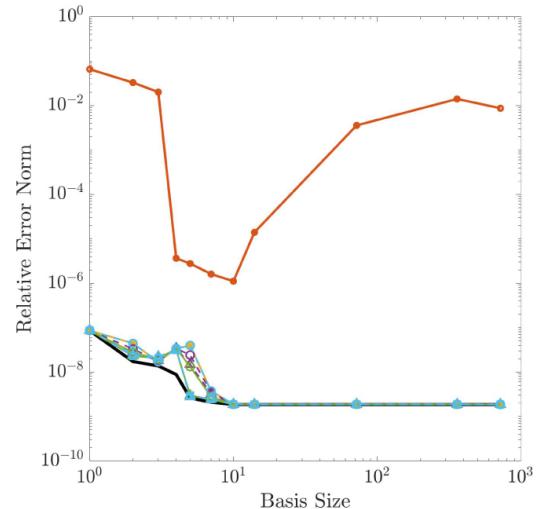
(a) Testing case 1



(b) Testing case 2



(c) Testing case 3

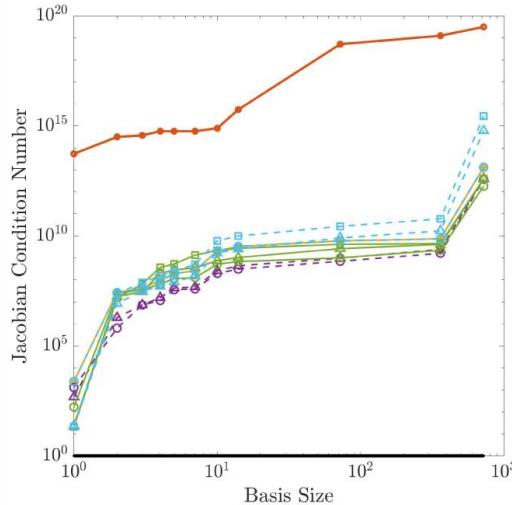


(d) Testing case 4

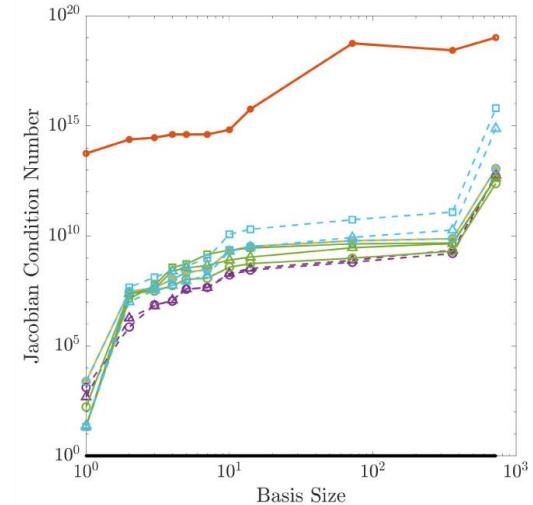
Thermo-Mechanical Beam (Albany)

- Figure plots **condition numbers** of reduced Jacobian ($J_{PPG}^{(k)}$ or $J_{PG}^{(k)}$) for each ROM.
- Reduced Jacobians for regular LSPG ROM are **very ill-conditioned** ($\mathcal{O}(10^{14}) - \mathcal{O}(10^{16})$)
 - Ill-conditioning is due to extreme differences in scale b/w displacement and temperature solutions (9 orders of magnitude)
- Results demonstrate that **simple preconditioning** strategy can reduce condition numbers by as many as **10 orders of magnitude**
 - **Gauss-Seidel** preconditioners produce the **lowest condition number**
- As expected, projected solution increment reduced Jacobian has **perfect condition number**

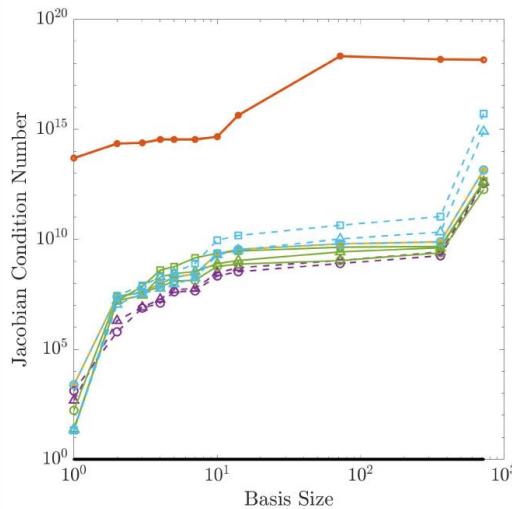
LSPG
 scaling
 Jacobi
 IC0
 GsSdl
 symGsSdl
 ILU0
 IC1
 ILU1
 IC2
 ILU2
 projSoln



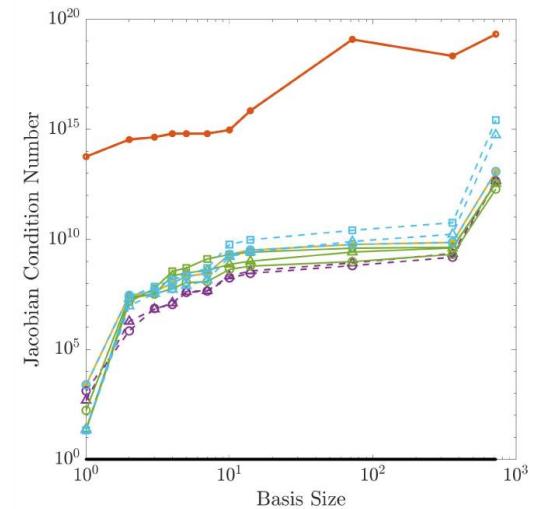
(a) Testing case 1



(b) Testing case 2



(c) Testing case 3

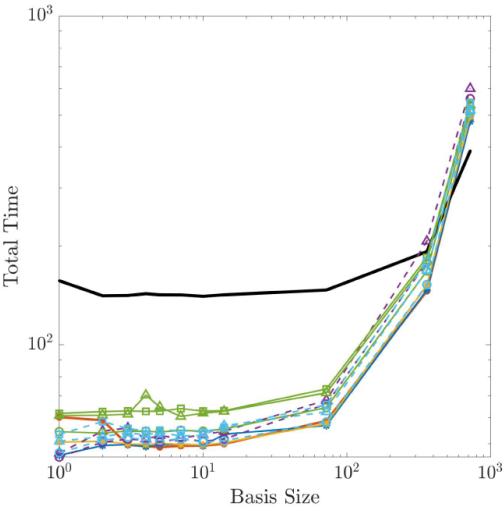


(d) Testing case 4

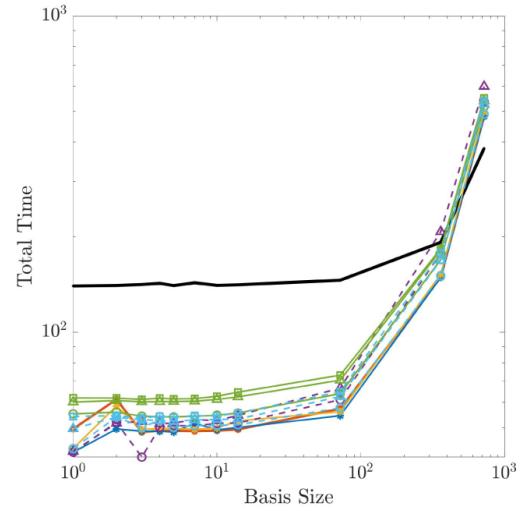
Thermo-Mechanical Beam (Albany)

- Figures shows CPU-times for all ROMs considered
- **Preconditioned LSPG ROMs** achieve CPU-times that are **comparable or marginally larger** than unpreconditioned LSPG ROM
- Since preconditioned ROMs are substantially more accurate than vanilla LSPG, there is a **significant computational advantage** in applying preconditioning
- **Gauss-Seidel** preconditioners give rise to **lowest CPU-times** of preconditioned ROMs
- As expected, the **projected solution increment** is the **most expensive** to compute

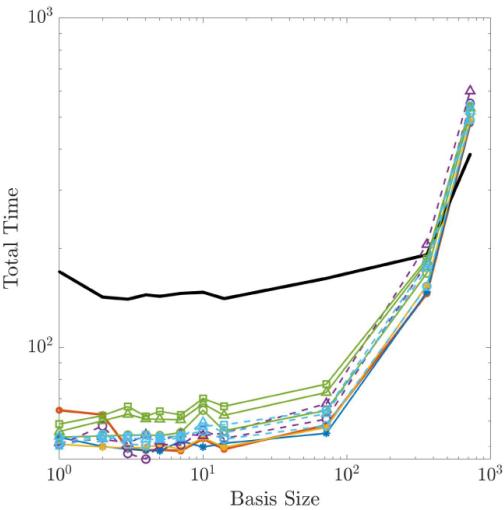
— LSPG
 — scaling
 — Jacobi
 — IC0
 — GsSdl
 — symGsSdl
 — ILU0
 — IC1
 — ILU1
 — IC2
 — ILU2
 — projSoln



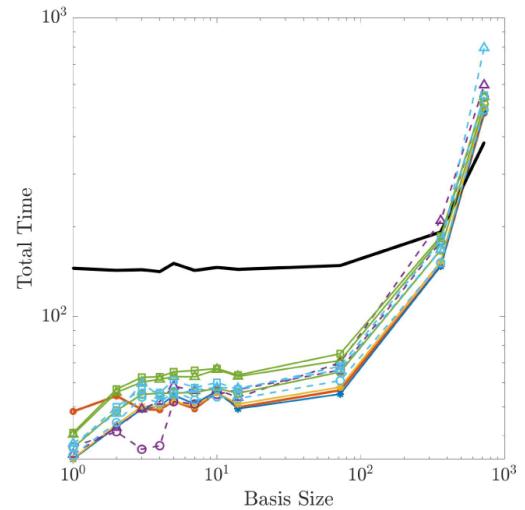
(a) Testing case 1



(b) Testing case 2



(c) Testing case 3



(d) Testing case 4

Thermo-Mechanical Pressure Vessel (Albany)

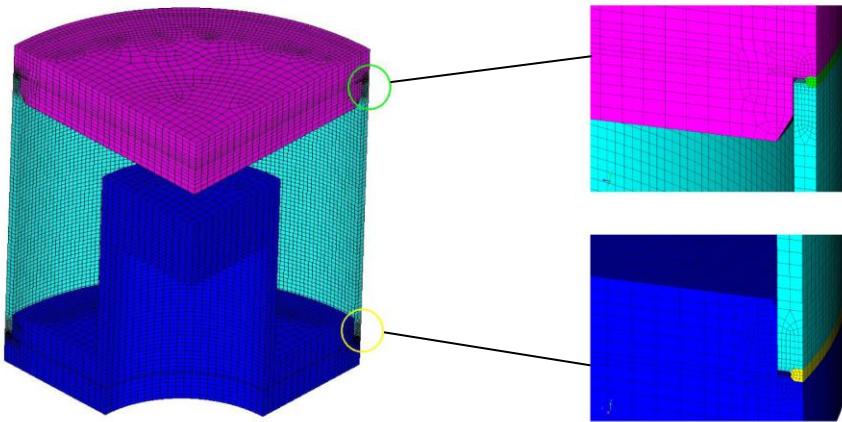


Table 2. Parameters in block \mathcal{B}_b for thermo-mechanical pressure vessel problem.

Regime	Case	$E_b(\times 10^9)$ [Pa]	ν_b	$\rho_b(\times 10^{-3})$ [kg/m ³]	$T_{b,\text{ref}}$ [K]
training	1	1.64424	0.39524	8.33058	311.094
	2	1.77118	0.300065	9.67843	267.396
	3	1.9893	0.32161	7.17625	223.746
	4	1.45551	0.266385	6.67746	331.116
testing	1	2.06416	0.391368	7.79804	252.102
	2	1.703	0.32	7.92	293

- Coupled **thermo-mechanical** problem involving **Neo-hookean** material
- 2 sets of **material blocks**, \mathcal{B}_a and \mathcal{B}_b , each having set of material parameters
 - Material parameters in block \mathcal{B}_a (magenta, cyan) are fixed
 - Material parameters in block \mathcal{B}_b (green, yellow, blue) are varied (see Table 2)
- Pressure vessel is **heated** and **pressurized** from the lateral side
- Problem is run **quasi-statically** to pseudo-time $t = 720$ s with 370K dofs
- **Training** is performed for 4 sets of parameters; **testing/prediction** is performed for 2 sets of parameters (see Table 2)

Thermo-Mechanical Pressure Vessel (Albany)

Table 3. Errors ϵ for thermo-mechanical pressure vessel problem

Testing case	Method	Basis size M		
		8	79	790
1	LSPG	2.6×10^{-1}	—	—
	GsSdl Preconditioned LSPG	1.4×10^{-5}	1.9×10^{-6}	1.7×10^{-6}
2	LSPG	1.8×10^{-2}	—	—
	GsSdl Preconditioned LSPG	1.1×10^{-5}	2.2×10^{-6}	2.0×10^{-6}

Table 4. CPU-times for thermo-mechanical pressure vessel problem

Testing case	Method	Basis size M		
		8	79	790
1	LSPG	19,490	—	—
	GsSdl Preconditioned LSPG	5449	6903	44,400
2	LSPG	9785	—	—
	GsSdl Preconditioned LSPG	4670	5057	14,620

Table 5. Number nonlinear iterations for thermo-mechanical pressure vessel problem

Testing case	Method	Basis size M		
		8	79	790
1	LSPG	7849	—	—
	GsSdl Preconditioned LSPG	2104	1963	1971
2	LSPG	4963	—	—
	GsSdl Preconditioned LSPG	1628	1700	1717

- **Three basis sizes considered:** $M = 8, 79, 790$ modes

- **One preconditioner considered:** **Gauss-Seidel**

- **Vanilla LSPG ROM results are unsatisfactory**

➤ LSPG ROM did not converge for larger basis sizes ($M = 79$ and $M = 790$)

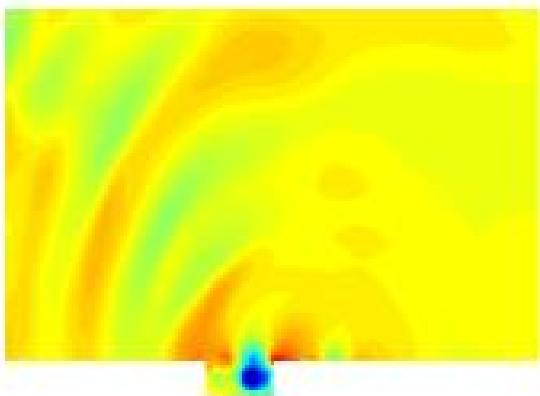
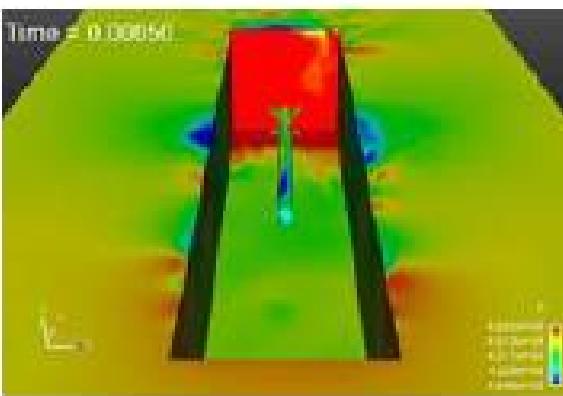
➤ For smaller basis size ($M = 8$), the LSPG ROM was only able to achieve a global error of $O(10^{-1}) - O(10^{-2})$

- **Preconditioned LSPG ROM converges** for all basis sizes and achieves errors of $O(10^{-5}) - O(10^{-6})$

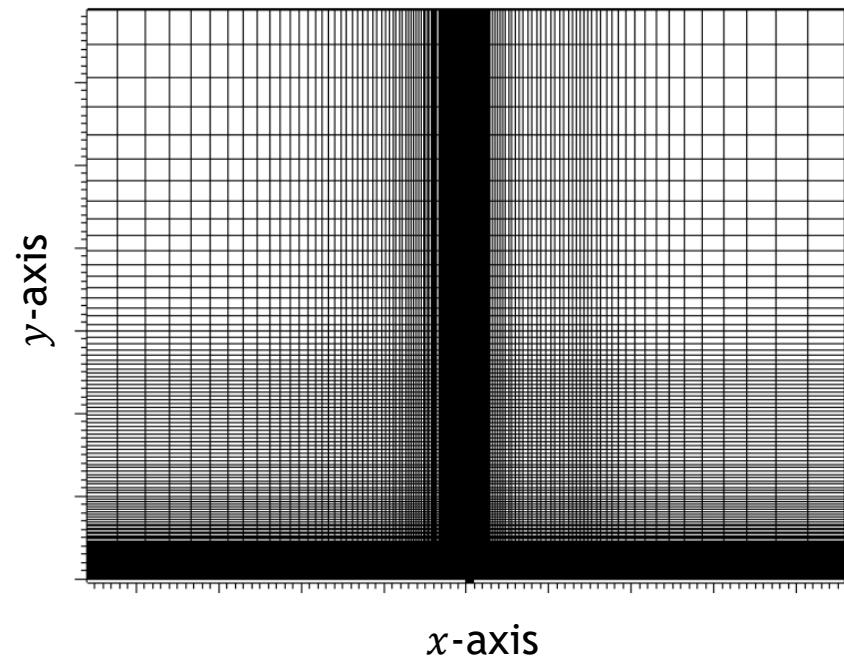
- For $M = 8$ case, the preconditioned LSPG ROM achieved a **speedup of up to 3.6x** over LSPG ROM

- Preconditioned LSPG ROM reduces the total number of **nonlinear iterations** by a **factor of 3-4x**

Compressible Cavity Flow (SPARC)

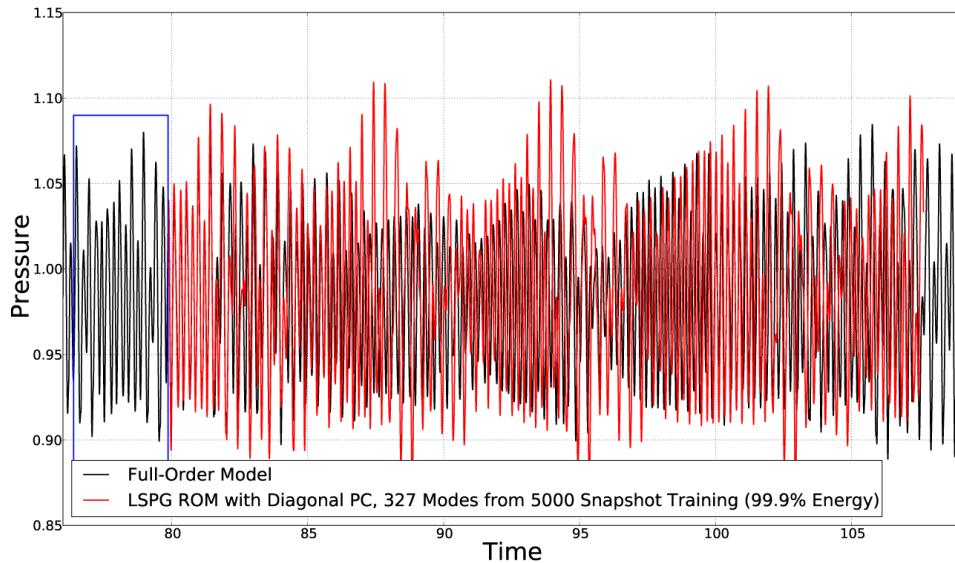
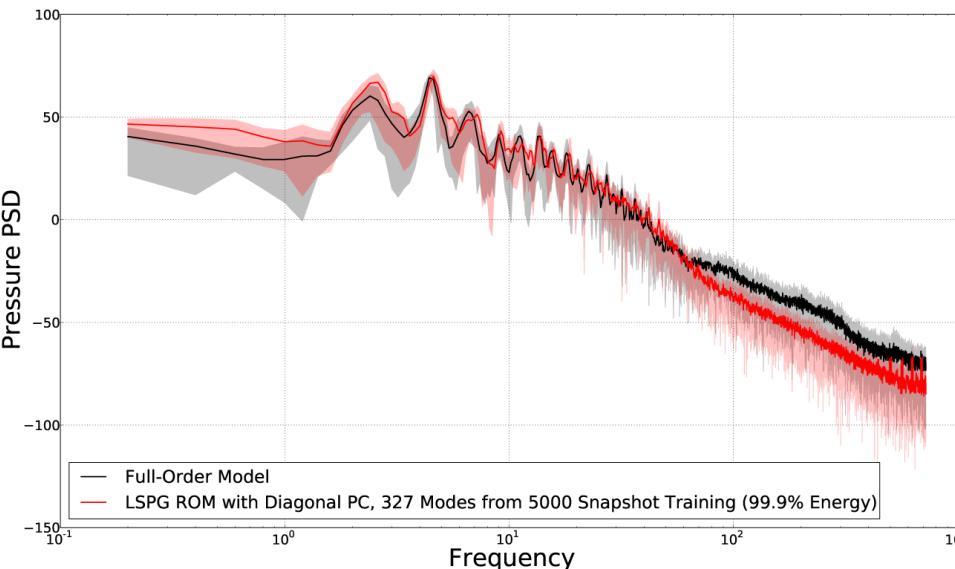


- 2D viscous laminar flow around an **open cavity** geometry
 - Simple model for the **captive carry** scenario
- Mach number = 0.6, Reynolds number \approx 3000
- Problem is run **non-dimensionally**
- Domain is discretized using 104,500 hexahedral cells (right)
- Of primary interest are **long-time predictive simulations**
 - ROM is run at **same parameters** as FOM but much **longer in time**
 - **Relevant QOIs:** statistics of the flow (e.g., pressure power spectral densities or PSDs)



[Tezaur *et al.* 2017, Fike *et al.* 2018]

Compressible Cavity Flow (SPARC)



- **Figure top left:** pressure time history for a point halfway up the downstream wall of the cavity for an LSPG ROM having 327 modes with a Jacobi preconditioner (PC)
- **Figure bottom left:** pressure PSD for the signal in the top left figure (solid line is mean PSD, shaded regions indicate range of values used to construct the mean)
- **Preconditioned LSPG ROM** captures well the **pressure PSD**, including its peaks (Rossiter modes) and the **RMS OASPL¹**
- **Vanilla LSPG ROM did not run successfully**

Method	RMS OASPL ¹ in dB	% Difference from FOM in dB
FOM	66.176	—
projSoln	67.552	2.08%
LSPG	N/A	N/A
LSPG + Jacobi PC	68.033	2.80%

¹Overall sound pressure level

Summary:

- Adding **preconditioning** to the LSPG formulation gives rise to ROMs with **improved accuracy and stability**, especially in the predictive regime
 - Preconditioning attempts to **emulate projection of FOM solution increment onto POD basis** (the ROM “best-case scenario” for a given basis)
 - Preconditioning ensures all components of residual being minimized are of the **same magnitude**
 - Results on **predictive** (across parameter space) thermo-mechanical and **predictive** (in time) compressible flow problems are **compelling**

Ongoing/future work:

- **Two manuscripts** on this work are in preparation
 - P. Lindsay, J. Fike, K. Carlberg, I. Tezaur. “Preconditioned LSPG Reduced Order Models”, *in prep.*
 - J. Fike, P. Lindsay, K. Carlberg, I. Tezaur. “Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models for Compressible Flows”, *in prep.*
- **Application** of preconditioned LSPG approach to **more sophisticated problems** relevant to Sandia’s mission spaces
 - Preconditioning LSPG ROMs has been helpful for **hypersonic aero, thermal/ablation and reacting hypersonic flow** problems

1. Motivation
2. POD/LSPG Approach to Model Reduction
3. Preconditioned LSPG ROMs
4. Numerical Results
 - Thermo-Mechanical Beam
 - Thermo-Mechanical Pressure Vessel
 - Compressible Cavity Flow
5. Summary & Future Work