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> | Motivation

!
Despite improved algorithms and powerful supercomputers, “high-fidelity” models
are often too expensive for use in a design or analysis setting. |

Sandia application areas in which this situation arises:

« Captive-carry and re-entry environments: Large Eddy
Simulations (LES) runs require very fine meshes and can take
on the order of weeks.

« Fastener failure modeling: modeling fastener
behavior in a full system presents meshing and
computational challenges, which limits the
number of configurations that can be studied.

1+ Climate modeling (e.g., land-ice, atmosphere): high-fidelity
simulations too costly for uncertainty quantification (UQ);
Bayesian inference of high-dimensional parameter fields is
intractable.




POD/LSPG* Approach to Model Reduction

Full Order Model (FOM) =

Ordinary Differential Equation (ODE):
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*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al.,

2011; K. Carlberg et al., 2017]
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POD/LSPG Approach to Model Reduction

Advantages of POD/LSPG projection:

« Computes a solution that minimizes the [,-norm of the time-discrete residual arising in each At

» Ensures that adding basis vectors yields a monotonic decrease in the least-squares objective
function defining the underlying minimization problem [Carlberg et al., 2011]

» Possesses better stability and accuracy than POD/Galerkin for certain classes of problems (e.g.,
compressible flow) [Carlberg et al., 2013, Carlberg et al., 2017, Tezaur et al., 2018].

Room for improvement for realistic predictive applications:

Accuracy for time-predictive problems can be inadequate

Method may fail to converge for some realistic problems run
in the predictive regime

Method may struggle when applied to multi-physics problems
with disparate scales [Washabaugh, 2016]

— FOM
-- 1000 mode POD/LSPG ROM
— 2000 mode POD/LSPG ROM
— 3000 mode POD/LSPG ROM
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Solution: introduction of preconditioning into LSPG/ROM formulation.



s | Preconditioned LSPG ROMs

LSPG Formulation:
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yERM

Optimization problem

55?;’2 = argmin 1JF Dy + r| B
yeERM
~(k ~(k—1 ~(k
xl(DkG)= xl(DGk) + ak5x§,G)
%I(DG): ¢/x\l(DG) Gauss-Newton iteration

Normal equations

(k) oo(k) _ (k)
Jpg 0Xpg = —T'pg

k
]l(DG) — (DT](R)T ](k)(p

rch): = T (T (k)

Preconditioned LSPG Formulation:

X = argmin ||Mr(®y)||5
yERM

Optimization problem

AN k -
6x§P)G = argmin | |M® JE dy + r*)||3
yERM
=) _ ~(k-1)
S
Xppe= PXppg

+ ak5/x\f)lf))G

Gauss-Newton iteration

Normal equations

(k)
e
i,
Tppg

5359 — 133

— (pT](k)T MKT M(k)](k)¢
— ¢Tl(k)TM(k)TM(k)r(k)




Preconditioned LSPG ROMs

Adding preconditioning to the POD/LSPG formulation can improve
not only ROM efficiency but also ROM accuracy.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

« Upper limit on ROM accuracy is obtained by taking solution increment computed by FOM, §x®), at
each time step k and projecting it onto the POD basis:

%) = (DT P) 1pT 5xK) (1)

« Ideal preconditioned ROM (M = (J())~1) gives rise to “projected solution increment” solution (1)

« As quality of preconditioner is improved (M — (J®*))~1) the ROM solution approaches the most
accurate ROM solution possible for a given basis @.

Preconditioning ensures all residual components are on approximately the same scale.

* Minimizing the raw (unweighted) residual r can be problematic for systems of PDEs where different variables
have drastically different magnitudes (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].

« Adding a preconditioner amounts to scaling the ROM residual to get all the equations to be roughly the same
order.



Numerical Examples: Albany and SPARC codes

7

element code

‘bﬁﬂg multi-physics finite SPARC3 Flow Solver

* Next-generation transonic and hypersonic C++

° - 1
Open-source’, parallel, C++ code CFD code developed at Sandia

« Component-based design for rapid development - Simulates compressible flow

« Contains a wide variety of constitutive models for

mechanical/thermo-mechanical problems. * Used for analyses involving captive carry and

reentry vehicles
* Makes extensive use of libraries from the open-

source Trilinos project?, including preconditioners
from the Ifpack library

* Primary discretization is cell-centered finite
volume method

« Leverages libraries from the Trilinos project?

Problems tested: quasi-static mechanical and

, ) o Problems tested: transient compressible laminar
thermo-mechanical with prediction across

flow over an open cavity with prediction in time

material parameter space.

Thttps://github.com/SNLComputation/Albany/releases/tag/MOR_support_end 3Sandia Parallel Aerodynamics and Reentry Code
Zhttps://github.com/trilinos/trilinos



https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end
https://github.com/trilinos/trilinos

8 ‘ Thermo-Mechanical Beam (Albany) Table 1. Parameters in block B, for

thermo-mechanical beam problem.

Regime Case | Ep(x10°) [Pa) Vb p(x1077) [kg/m?] Ty rer [K]
1 2.01313 0.285907 7.94827 273.657
2 1.71637 0.332083 6.93965 318.406
training 3 1.96881 0.3478 9.37181 301.406
- 4 1.28954 0.29427 9.14636 365.378
51 1.61326 0.262464 6.32164 223.434
6 1.54724 0.374118 7.31561 245.778
1 1.52473 0.27925 8.80694 266.674
testing 2 1.31153 0.345538 7.58234 333.462
' - 3 1.37015 0.246513 7.73303 345.942
4 1.703 0.32 7.92 293

Coupled thermo-mechanical problem involving Neohookean material

2 sets of material blocks, B, and B,, each having set of material parameters "o or T nEATOmAMATE
> Material parameters in block B, are fixed
> Material parameters in block B,, are varied (see Table 1) T

Linearly varying time-dependent pressure and temperature BC is
prescribed on I',; other boundaries are fixed

Problem is run quasi-statically to pseudo-time t =7200s with 2100 dofs 02

0.15

Training is performed for 6 sets of parameters; testing/prediction is o

0.35

relative difference

0 100 200 300 400 500 600 700 800

performed for 4 sets of parameters (see Table 1) tme (5
» Significant variations in displacement (up to 60%) are observed with the parameter variations considered
(right figure)

[Lindsay et al., in prep.]



9‘ Thermo-Mechanical Beam (Albany)
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« Figure plots global relative error in ~—a o
. . -6 GsSdl g g
approximate ROM solutions: symGssdl £ 5
e £
p A Iégl ai 16| E
Y I = ' E
i=0||xi _xillz ILU?SI e < b
€ ) | |x | | = projSoln o _\.&\
i=0 l 2 —_— Ny
Basis Size 2 v MI)” o Basis Size mz v
* Preconditioners evaluated: Jacobi, Gauss-Seidel, (a) Testing case 1 (b) Testing case 2
Symmetric Gauss-Seidel, Incomplete Cholesky, ILU 0
and (J%))~1 (denoted by projSoln)
102
» By introducing preconditioning, it is possible to
. Z 107t Z
reduce e by 2-6 orders of magnitude
« All preconditioned LSPG ROMs achieve errors close : :
to (less than one order of magnitude greater than) o\\k
the error obtained by the projected solution T | |
increment mOdel "o T — 102 T 10 10! _— 0 10°

(c) Testing case 3 (d) Testing case 4



10‘ Thermo-Mechanical Beam (Albany)
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» Reduced Jacobians for regular LSPG ROM are o ILU2
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very ill-conditioned (0(10%*) — 0(10%)) o > | Y

> Ill-conditioning is due to extreme differences ,J | | 1
in scale b/w displacement and temperature Basis e Basis Sie

solutions (9 orders of magnitude) (a) Testing case 1 (b) Testing case 2

101 | &/
_e— —— |

Jacobian Condition Number
Jacobian Condition Number
=
<L
R

« Results demonstrate that simple preconditioning T
strategy can reduce condition numbers by as many I |
as 10 orders of magnitude - .

» Gauss-Seidel preconditioners produce the
lowest condition humber
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 As expected, projected solution increment '/ | )
reduced Jacobian has perfect condition number :
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Thermo-Mechanical Beam (Albany)

Figures shows CPU-times for all ROMs
considered

Preconditioned LSPG ROMs achieve CPU-
times that are comparable or marginally
larger than unpreconditioned LSPG ROM

Since preconditioned ROMs are substantially
more accurate than vanilla LSPG, there is a
significant computational advantage in
applying preconditioning

Gauss-Seidel preconditioners give rise to
lowest CPU-times of preconditioned ROMs

As expected, the projected solution
increment is the most expensive to
compute
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12 I Thermo-Mechanical Pressure Vessel (Albany)

Table 2. Parameters in block B, for thermo-
mechanical pressure vessel problem.

Regime Case | E,(x10”) [Pa] U pp(x107%) [kg/m?|  Tyrer [K]

1 1.64424 0.39524 8.33058 311.094

frainine 2 1.771178 0.3(000765 9.6'7843 267.396

© 3 1.9893 0.32161 7.17625 223.746

4 1.45551 0.266385 6.67746 331.116

Costine 1 2.06416 0.391368 7.79804 252.102
e 2 1.703 0.32 7.92 293

* Coupled thermo-mechanical problem involving Neohookean material
« 2 sets of material blocks, B, and B,,, each having set of material parameters
» Material parameters in block B, (magenta, cyan) are fixed
» Material parameters in block B, (green, yellow, blue) are varied (see Table 2)
» Pressure vessel is heated and pressurized from the lateral side
» Problem is run quasi-statically to pseudo-time t =720s with 370K dofs

Training is performed for 4 sets of parameters; testing/prediction is
performed for 2 sets of parameters (see Table 2)

[Lindsay et al., in prep.]



13 ‘ Thermo-Mechanical Pressure Vessel (Albany)

Table 3. Errors € for thermo-mechanical pressure vessel problem

Basis size M

 Three basis sizes considered: M =

Testing case Method 8 79 790
) LSPG 2.6 x 101 — = 8,79, 790 modes
GsSdl Preconditioned LLSPG | 1.4 x 107 | 1.9x10°% | 1.7x 10°° . .
ILSPC 18 < 102 = - « One preconditioner considered:
2 GsSdl Preconditioned LSPG | 1.1 x 10~ | 2.2 x 10-5 | 2.0 x 10~ Gauss-Seidel

Table 4. CPU-times for thermo-mechanical pressure vessel problem

Basis size M

Testing case Method 8 79 790

1 LSPG 19,490 — —
GsSdl Preconditioned LSPG 5449 | 6903 | 44,400

5 LSPG 9785 — —
GsSdl Preconditioned LSPG 4670 5057 | 14,620

Table 5. Number nonlinear iterations for thermo-mechanical pressure

vessel problem

Basis size M

Testing case

Method

8

79

790

1

LSPG
GsSdl Preconditioned LSPG

7849
2104

1963

1971

2

LSPG
GsSdl Preconditioned LSPG

4963
1628

1700

1717

Vanilla LSPG ROM results are unsatisfactory
» LSPG ROM did not converge for larger basis
sizes (M = 79 and M = 790)

» For smaller basis size (M = 8), the LSPG ROM
was only able to achieve a global error of
0(10~1) — 0(1072)

Preconditioned LSPG ROM converges for all basis
sizes and achieves errors of 0(107°) — 0(107°)

For M = 8 case, the preconditioned LSPG ROM
achieved a speedup of up to 3.6x over LSPG ROM

Preconditioned LSPG ROM reduces the total
number of nonlinear iterations by a factor of 3-4x



4 | Compressible Cavity Flow (SPARC)

« 2D viscous laminar flow around an open cavity geometry
» Simple model for the captive carry scenario

* Mach number = 0.6, Reynolds number =~ 3000

* Problem is run non-dimensionally

« Domain is discretized using 104,500 hexahedral cells (right)

« Of primary interest are long-time predictive simulations

» ROM is run at same parameters as FOM but much
longer in time

> Relevant QOIs: statistics of the flow (e.g., pressure
power spectral densities or PSDs)

y-axis

x-axis

[Tezaur et al. 2017, Fike et al. 2018]
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5 ‘ Compressible Cavity Flow (SPARC)

» Figure top left: pressure time history for a point halfway up
the downstream wall of the cavity for an LSPG ROM having
327 modes with a Jacobi preconditioner (PC)

» Figure bottom left: pressure PSD for the signal in the top
left figure (solid line is mean PSD, shaded regions indicate
range of values used to construct the mean)

* Preconditioned LSPG ROM captures well the pressure PSD,
including its peaks (Rossiter modes) and the RMS OASPL

« Vanilla LSPG ROM did not run successfully

Method RMS OASPL" in dB | % Difference from
FOM in dB
FOM 66.176 —
projSoln 67.552 2.08%
LSPG N/A N/A
LSPG + Jacobi PC 68.033 2.80%

'Overall sound pressure level



6 I Summary & Future Work

Summary:

« Adding preconditioning to the LSPG formulation gives rise to ROMs with improved accuracy and stability,
especially in the predictive regime

> Preconditioning attempts to emulate projection of FOM solution increment onto POD basis (the ROM
“best-case scenario” for a given basis)

» Preconditioning ensures all components of residual being minimized are of the same magnitude

> Results on predictive (across parameter space) thermo-mechanical and predictive (in time)
compressible flow problems are compelling

Ongoing/future work:

« Two manuscripts on this work are in preparation
> P. Lindsay, J. Fike, K. Carlberg, |. Tezaur. “Preconditioned LSPG Reduced Order Models”, in prep.
> J. Fike, P. Lindsay, K. Carlberg, |. Tezaur. “Preconditioned Least-Squares Petrov-Galerkin Reduced Order
Models for Compressible Flows”, in prep.
« Application of preconditioned LSPG approach to more sophisticated problems relevant to Sandia’s mission
spaces

» Preconditioning LSPG ROMs has been helpful for hypersonic aero, thermal/ablation and reacting
hypersonic flow problems
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