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Additive manufacturing (AM) provides 
enormous flexibility in design

Images courtesy Fraunhofer IWU, Lawrence Livermore National Lab, EOS, Added Scientific, and Imperial Machine & Tool Co.
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•• Founded in parametric studies that are not easily 
generalizable to complex geometries
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Scan strategy can be manipulated for 
site-specific microstructure

RR Dehoff, MM Kirka, WJ Sames, H Bilheux, AS Tremsin, LE Lowe, and SS Babu, Materials Science and Technology, 2015
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Scan strategy can be manipulated for 
site-specific microstructure

RR Dehoff, MM Kirka, WJ Sames, H Bilheux, AS Tremsin, LE Lowe, and SS Babu, Materials Science and Technology, 2015

How do we leverage
processing-microstructure 

relationships?



•• Processing maps help predict microstructure
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Local microstructure control relies on 
understanding solidification conditions
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Local microstructure control relies on 
understanding solidification conditions

MM Kirka, Y Lee, DA Greely, A Okello, MJ Goin, MT Pearce, and RR Dehoff, JOM, 2017 

Equiaxed Columnar
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Local microstructure control relies on 
understanding solidification conditions

Solidification 
Begins

Solidification 
Ends

Combine 3D data and 
advanced modelling to 

understand microstructure 
evolution during 

solidification
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The TriBeam collects rich multi-modal 
datasets in three dimensions

EBSD
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TriBeam tomography generates data in
a set of slices
• Secondary electron images taken after laser machining*

250 μm*Additively Manufactured AlNiCo magnet



810 μm

Femtosecond laser ablation makes the 
TriBeam material agnostic 
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Isolated melt pool on a bulk raster block
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• Can fuse data modalities using TPS algorithm in 3D
• Also removes any distortions in EBSD data
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EBSD data shows nucleated grains, 
BSE data shows melt pool boundary
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Data fusion can be achieved via the Thin
Plate Spline Algorithm (TPS)*

*Extended to 3D using 2D form described in Y. B. Zhang, A Elbrond, F. X. Lin, Materials Characterization (2014)

Affine Portion Bending Portion

• Radial basis function:

• Solve for weighting coefficients wi and a1, ax, ay, and az using n control 
points (CP) to create a system of n+4 equations
• CPs are shared locations in distorted (Xi, Yi, Zi) and reference (xi, yi, zi) images

• Triple points, voids, precipitates, sample edges

(", $, %) = ((), *, +)
Distorted frame is a function of the reference frame



• 3894 control points used for thin plate spline algorithm
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EBSD aligned with BS imaging using  
TPS, allowing melt pool segmentation
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• 878 slices collected (~20 minutes per slice)
• 3.6 TB of data
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Reconstruction of isolated melt pool on a  
bulk raster block
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Need to accurately predict the columnar
to equiaxed transition (CET)

Video Courtesty HKDH Bahdeshia
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Need to accurately predict the columnar
to equiaxed transition (CET)
• Gäumann’s modification of Hunt’s CET model at high G

• Developed for laser deposition on single-crystal Ni superalloys

,!
- = . ! −412"

3 ln 1 − 7
1

8 + 1

!

., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity
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Need to accurately predict the columnar
to equiaxed transition (CET)
• Gäumann’s modification of Hunt’s CET model at high G

• Developed for laser deposition on single-crystal Ni superalloys

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!
Rearrange to yield:

., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

,!
- = . ! −412"

3 ln 1 − 7
1

8 + 1

!
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!
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Apply model to isolated melt pool on top
of raster melt block

10 mm

Raster Melt

0.5 mm

(b)

Build 
Direction

30 mm

30 mm

10 mm

2 mm

5 mm

(a)

(c) Build Direction

500 !"

1 ""

Build Direction

Build Direction 
taken as RD

111

001 101
1.5 μm

1.3 μm

1.5 μm

795 μm
1144 μm

510 μm

Build 
Direction



29

G and R can be calculated for this 
solidification event using TRUCHAS
• Want to predict the formation of nucleated grains

., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface VelocityTRUCHAS

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!



•

• Enables 3D calculation of 
thermal gradient and solid-
liquid interface velocity on 
μm and ms scales 
• Inaccessible to in-situ 

monitoring
• Code has been validated 

against Abaqus and that of 
Debroy et al.

• Can model heat transfer and fluid flow
• Designed for casting, so does not currently consider powder-

beam interactions or multiple melt layers
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Can use TRUCHAS to model differences 
in temperature profile during solidification
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TRUCHAS Simulations performed with
and without fluid flow
• Performed simulations with relevant beam settings 

• 10 mA 0.5 ms dwell, 1273 K preheat
• All simulations with heat transfer, two also include fluid flow

• Fluid flow incorporates temperature dependence of surface tension (ɣ)

N Raghavan, PhD dissertation, 2017
Adapted from PD Lee, PN Quested, and M Mclean, Phil. Trans. R. Soc. Lond., 1998

Liquidus
Low S (6 ppm)
High S (20 ppm)
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TRUCHAS Simulations performed with
and without fluid flow
• Performed simulations with relevant beam settings 

• 10 mA 0.5 ms dwell, 1273 K preheat
• All simulations with heat transfer, two also include fluid flow

• Fluid flow incorporates temperature dependence of surface tension (ɣ)

N Raghavan, PhD dissertation, 2017
Adapted from PD Lee, PN Quested, and M Mclean, Phil. Trans. R. Soc. Lond., 1998

6 ppm S Alloy

20 ppm S Alloy

Alumina moves 
away from beam 
and then stays at 
side

Alumina moves 
towards the beam 
and then stays 
under beam near 
center

Liquidus
Low S (6 ppm)
High S (20 ppm)
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Results of TRUCHAS simulations

• Incorporation of fluid flow increases interface velocity in 
middle stages of solidification
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Higher S content increases local 
solidification time

No Fluid Flow Fluid Flow (Low S) Fluid Flow (High S)

Local Solidification Time (ms)
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Pool spreads more with lower S content, 
which is also seen in 304 steel welds
• ,                    , and
• Maximum extent of melt pool at t ≈ 3 ms

No Fluid Flow Fluid Flow (Low S) Fluid Flow (High S)
(mm) (mm) (mm)
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Visualizing fluid flow
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• Nucleated grains form radially around center of pool

37

Isolated melt pool from full dataset
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Results of TRUCHAS simulations

• Predicts nucleated grain fraction (!) of 80.8%
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Results of TRUCHAS simulations

• Predicted nucleated grain fraction (!) of 80.8%
• Measured nucleated grain fraction (!) of 11.4%
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Results of TRUCHAS simulations

• Predicted nucleated grain fraction (!) of 80.8%
• Measured nucleated grain fraction (!) of 11.4%

How can we account 
for this discrepancy?
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

✓
✓TRUCHAS

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

7 = 1 − :;< −412".#/!
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-
,!

#/!
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!

., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

✓
✓3D data shows N0
is three orders of 
magnitude lower
2×1015 à 5.3×1012 m-3
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

TRUCHAS

3D Data
., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

✓
✓
✓

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!
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-
,!

#/!
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!
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✓
✓
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Material constants are alloy dependent, 
but can be determined using KGT model
• Want to predict the formation of nucleated grains

TRUCHAS

3D Data
., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

✓
✓
✓

KGT Model

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!
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Kurz Giovanola Trivedi (KGT) model 
predicts undercooling at the dendrite tip
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Kurz Giovanola Trivedi (KGT) model 
predicts undercooling at the dendrite tip

• a decreases by an 
order of magnitude 
(smaller equiaxed 
processing window)

• n decreases        
(larger equiaxed 
processing window)

1.25×106 à 1.23×105

3.4 à 3.13
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Checklist for Columnar to Equiaxed 
Transition (CET) Model
• Want to predict the formation of nucleated grains

TRUCHAS

3D Data
., 8 =Material constants
2" =Nuclei density

7 = Probability of              
d grain nucleation               
d ahead of interface

, = Thermal Gradient
- = Interface Velocity

✓
✓
✓

KGT Model

7 = 1 − :;< −412".#/!
3 8 + 1 #

-
,!

#/!

✓
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Calibrated processing map accurately
predicts microstructure
• Measured! = 11.4% from 3D data

Original Map
! = 80.8%

Calibrated Map
! = 10.7%
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Summary

• 3D provides direct 
measurement of ground truth 
microstructures for calibration 
of processing maps

• Advanced simulations can 
provide insight to 
microstructure evolution 
during solidification

• Processing maps are alloy-
and processing-dependent, 
and must be calibrated for the 
specific application of interest
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Thanks!

Image courtesy ORNL MDF


