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Additive manufacturing (AM) provides

enormous flexibility in design

Aerospace

Images courtesy Fraunhofer IWU, Lawrence Livermore National Lab, EOS, Added Scientific, and Imperial Machine & Tool Co. 4



Additive manufacturing (AM) provides

enormous flexibility in design

Aerospace Biomedical

i A

Images courtesy Fraunhofer IWU, Lawrence Livermore National Lab, EOS, Added Scientific, and Imperial Machine & Tool Co. 5



Additive manufacturing (AM) provides

enormous flexibility in design
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Scan strategy can be manipulated for

site-specific microstructure

* Founded in parametric studies that are not easily
generalizable to complex geometries
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Scan strategy can be manipulated for

site-specific microstructure

* Founded in parametric studies that are not easily
generalizable to complex geometries

How do we leverage
processing-microstructure
relatlonshlps'?
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| ocal microstructure control relies on

understanding solidification conditions

* Processing maps help predict microstructure
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| ocal microstructure control relies on

understanding solidification conditions

* Processing maps help predict microstructure
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| ocal microstructure control relies on

understanding solidification conditions

» Solidification conditions are not static
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| ocal microstructure control relies on

understanding solidification conditions

» Solidification conditions are not static
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. ocal microstructure control relies on

understanding solidification conditions

e Solidification conditions are not static

”’ e Soliification gy g Soldiication
: o Combine 3D data and
% ol advanced modellingto | |&*
s understand microstructure .
i evolution during e
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Outline

 Three-dimensional Characterization
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The TriBeam collects rich multi-modal
datasets in three dimensions
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TriBeam tomography generates data in

a set of slices

» Secondary electron images taken after laser machining*

250 um | .
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Femtosecond laser ablation makes the

TriBeam material agnostic
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EBSD data shows nucleated grains,

BSE data shows melt pool boundary

» Can fuse data modalities using TPS algorithm in 3D
 Also removes any distortions in EBSD data
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Data fusion can be achieved via the Thin

Plate Spline Algorithm (TPS)*

Distorted frame is a function of the reference frame
X Y.Z2)=f(xy2)

Affine rortion BendingA Portion
( I
(X,Y,2) = f(z,y,2) = a1 + azx + ayy + a,z + Z w;U(|P; — (z,y, 2)|)
i=1

« Radial basis function:
U(r) = r?log(r?)

 Solve for weighting coefficients w; and a,, a,, a,, and a, using n control
points (CP) to create a system of n+4 equations
* CPs are shared locations in distorted (X, Y,, Z) and reference (x;, vy, z;) images
* Triple points, voids, precipitates, sample edges

*Extended to 3D using 2D form described in Y. B. Zhang, A Elbrond, F. X. Lin, Materials Characterization (2014) 20



EBSD aligned with BS imaging using

TPS, allowing melt pool segmentation

» 3894 control points used for thin plate spline algorithm

Build
Direction




Reconstruction of isolated melt pool on a

bulk raster block

- 878 slices collected (~20 minutes per slice) ~ Fesertet,
- 3.6 TB of data E so o

795 um

1144 um
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Outline

« Calibrating a Microstructure-Processing Map
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Need to accurately predict the columnar

to equiaxed transition (CET)
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Need to accurately predict the columnar

to equiaxed transition (CET)

« Gaumann’s modification of Hunt’'s CET model at high G
« Developed for laser deposition on single-crystal Ni superalloys
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Need to accurately predict the columnar

to equiaxed transition (CET)

« Gaumann’s modification of Hunt’'s CET model at high G
« Developed for laser deposition on single-crystal Ni superalloys

n
¢* || —amn, 1
R Y)Y [3m[l=o]n+1
R = Interface Velocity

Rearrange to yield: N, = Nuclei density

_ 3/n 3/n .
=1—exp AmtNoa ( R ) a,n = Material constants
3(n+1)3 \G"

G = Thermal Gradient
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains

—47N,a3/m f R\3/"
=1-
exp{ 3(1 + 1)3 (G") }

G = Thermal Gradient
R = Interface Velocity
N, = Nuclei density
a,n = Material constants

OO 0O

27



Apply model to isolated melt pool on top

of raster melt block

Raster Melt
TR A S,

Build
Direction 111
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G and R can be calculated for this

solidification event using TRUCHAS

» Want to predict the formation of nucleated grains

—4mNya3/™ R \3/"
=1-
exp{ 3(n + 1)3 (G") }

[0 G = Thermal Gradient
TRUCHAS .
0 R = Interface Velocity

[0 N, = Nuclei density
[1 a,n = Material constants

29



Can use TRUCHAS to model differences

in temperature profile during solidification

 Can model heat transfer and fluid flow

» Designed for casting, so does not currently consider powder-
beam interactions or multiple melt layers

* Enables 3D calculation of
thermal gradient and solid-
liquid interface velocity on
UM and ms scales

* |naccessible to in-situ
monitoring

e Code has been validated
against Abaqus and that of

Time: 0.000 ms

Temperature (K)
Debroy et al . 1273.0 ‘1‘3‘5‘7‘.‘2‘ . 1‘4‘41‘.‘5 ‘ ‘1‘5‘25‘.8‘ 1610.0
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TRUCHAS Simulations performed with

and without fluid flow

» Performed simulations with relevant beam settings

10 mA 0.5 ms dwell, 1273 K preheat

 All simulations with heat transfer, two also include fluid flow
 Fluid flow incorporates temperature dependence of surface tension (y)

Liquidus
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e © High S (20 ppm)
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N Raghavan, PhD dissertation, 2017

Adapted from PD Lee, PN Quested, and M Mclean, Phil. Trans. R. Soc. Lond., 1998 31




TRUCHAS Simulations performed with

and without fluid flow

» Performed simulations with relevant beam settings
10 mA 0.5 ms dwell, 1273 K preheat

 All simulations with heat transfer, two also include fluid flow
 Fluid flow incorporates temperature dependence of surface tension (y)
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Results of TRUCHAS simulations

* Incorporation of fluid flow increases interface velocity in
middle stages of solidification
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Higher S content increases local

solidification time

No Fluid Flow Fluid Flow (Low S) Fluid Flow (High S)

Local Solidification Time (ms)

MFI|||||||||I|||||||||I|m

2 3 4 9 o]
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Pool spreads more with lower S content,

which iIs also seen in 304 steel welds

» Fully Solid, Mushy Zone, and ~ully Liquid
« Maximum extent of melt pool att=3 ms
No Fluid Flow Fluid Flow (Low S) Fluid Flow (High S)
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Visualizing fluid flow

Time: 2.014583
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|solated melt pool from full dataset

* Nucleated grains form radially around center of pool

I 200 um

Build
Direction

111
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Results of TRUCHAS simulations

* Predicts nucleated grain fraction (&) of 80.8%
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Results of TRUCHAS simulations

* Predicted nucleated grain fraction (&) of 80.8%
* Measured nucleated grain fraction (®) of 11.4%

510 um \ l
Build
Direction

Build
Direction
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Results of TRUCHAS simulations

* Predicted nucleated grain fraction (&) of 80.8%
* Measured nucleated grain fraction (®) of 11.4%

How can we account

/ for this discrepancy?

o N

& 510 pm
=2 Build
Direction

Build
Direction
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains

—47N,a3/m f R\3/"
=1-
exp{ 3(1 + 1)3 (G") }

M G = Thermal Gradient

™ R = Interface Velocity

0 N, = Nuclei density

O a,n = Material constants

TRUCHAS

41



Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains
—4mN,a3/m f RN\3/"
- 1_exp{ 3(n + 1)3 (G") }
Varying N, )
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains

—47N,a3/m f R\3/"
=1-
exp{ 3(1 + 1)3 (G") }

M G = Thermal Gradient
™ R = Interface Velocity
3D Data «~— M N, = Nuclei density

0 a,n = Material constants

TRUCHAS
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains
_, —4mNya3/™ R \3/"
R I TCREDE (G")

Varying a

10° ; : ,
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains
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Material constants are alloy dependent,

but can be determined using KGT model

» Want to predict the formation of nucleated grains

—47N,a3/m f R\3/"
—1—
exp{ 3(n + 1)3 (G") }

M G = Thermal Gradient

™ R = Interface Velocity
3D Data «~— M N, = Nuclei density

KGT Model «—[O a,n = Material constants

TRUCHAS
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Kurz Giovanola Trivedi (KGT) model

predicts undercooling at the dendrite tip
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Kurz Giovanola Trivedi (KGT) model

predicts undercooling at the dendrite tip
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Kurz Giovanola Trivedi (KGT) model

predicts undercooling at the dendrite tip
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Kurz Giovanola Trivedi (KGT) model

predicts undercooling at the dendrite tip
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Kurz Giovanola Trivedi (KGT) model

predicts undercooling at the dendrite tip
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Kurz Giovanola Trivedi (KGT) model

predicts undercooling at the dendrite tip
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Checklist for Columnar to Equiaxed

Transition (CET) Model

» Want to predict the formation of nucleated grains

—47N,a3/m f R\3/"
—1—
exp{ 3(1 + 1)3 (G") }

M G = Thermal Gradient

™ R = Interface Velocity
3D Data «~— M N, = Nuclei density

KGT Model «— a, n = Material constants

TRUCHAS
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Calibrated processing map accurately

predicts microstructure

* Measured ® = 11.4% from 3D data
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Summary

3D provides direct
measurement of ground truth
microstructures for calibration
of processing maps

 Advanced simulations can

provide insight to
microstructure evolution

during solidification

* Processing maps are alloy-

and processing-dependent, R /A
and must be calibrated for the ot o
specific application of interest s
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