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ABSTRACT

International safeguards currently rely on material accountancy to verify that declared nuclear material
is present and unmodified. Although effective, material accountancy for large bulk facilities can be
expensive to implement due to the high precision instrumentation required to meet regulatory targets.
Process monitoring has long been considered to improve material accountancy. However, eftective
integration of process monitoring has been met with mixed results. Given the large successes in other
domains, machine learning may present a solution for process monitoring integration. Past work has
shown that unsupervised approaches struggle due to measurement error. Although not studied in
depth for a safeguards context, supervised approaches often have poor generalization for unseen classes
of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for
training, can improve the generalization of supervised approaches. Further, the underlying models
needed to generate these datasets need only accurately model certain high importance features.
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EXECUTIVE SUMMARY

Material accountancy is an important cornerstone of international safeguards that helps to determine if
nuclear material is present and unmodified. However, implementing material accountancy at large scale
bulk facilities can be expensive as high precision equipment is often required to meet regulatory targets.
Process monitoring, or the use of non-nuclear data streams (e.g., tank level measurements,
temperatures, pressures, etc.) has been considered since at least the 1980s [2] as a way to improve
material accountancy. Efforts to integrate these signals have been met with mixed results, but have been
used in production facilities to some extent.

Machine learning has seen successes in several domains for a variety of tasks and may be suitable for
anomaly detection tasks for safeguards applications. While machine learning has been applied
successfully for safeguards tasks where there is a close analog in the commercial domain (e.g., video or
text applications) [3, 4], its’ suitability for process monitoring applications is not yet proven. Prior work
that considered unsupervised machine learning showed that performance was ultimately limited by
measurement uncertainty and would likely perform worse than existing material accountancy
techniques for most cases (although direct comparisons are challenging) [5, 6]. Supervised learning is
more powerful than unsupervised, but requires labeled examples of anomalous conditions. This is
problematic for safeguards applications where it is impossible to know all potential anomalies. Limited
efforts have shown that supervised approaches can reliably identify labeled anomalies, however, their
ability to generalize has not been well studied within a safeguards context [7].

This work is focused on the generalization of supervised approaches to unseen material loss patterns by
using gaseous centrifuge enrichment facilities as a use case. A computational model simulates features
observable by the OnLine Enrichment Monitor [8, 9]. This data is then used by a supervised
classification algorithm, specifically state-of-the-art InceptionTime algorithm [1] to attempt detection
of material loss scenarios.

Three different material loss scenarios of increasing difficulty are modeled; scenario 1 is the easiest to
detect whereas scenario 3 is the most difficult. The baseline case trains the classification algorithm on
one of the scenarios with the goal of classifying the others. For example, InceptionTime is trained on
scenario 1, and then classification performance is evaluated on all three scenarios. This baseline case is
analogous to a situation wherein only a single high consequence loss pattern is known and available for
training.

Results are reported based on the classification performance for each training scenario. Specifically, the
F1-score, which is a balance between the precision and recall of a classification algorithm, is used to
explore the performance of InceptionTime when trained on different scenarios. Note that these values
are not directly comparable to probability of detection and are employed to compare the relative impact
of different training strategies (e.g., trying to generalize to multiple unseen scenarios when only training
on single scenario). The results for the baseline case are shown in Figure 0-1 below.

The baseline case performs as expected; poor generalization (i.e., low F1-score) is observed for all
scenarios not seen in training. For example, when trained on scenario 1, InceptionTime performs well
on scenario 1 and the no loss case only (i.c., high F1-score). It would be advantageous to leverage
supervised algorithms for anomaly detection in safeguards, but the algorithms must be able to
generalize, as the baseline performance shown in Figure 0-1 is insufficient. Prior work indicated that
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Figure 0-1 Summary of baseline performance expressed as a binary F1-score

InceptionTime might generalize to unseen loss patterns if a loss pattern at the same facility location was
previously observed [10].

Dataset engineering, wherein unrealistic training datasets are generated to improve generalization, is
considered. This approach serves as a prior by injecting domain knowledge into training of the machine
learning algorithm through labeled examples. Specifically, five different dataset engineering schemes are
explored. Each of these schemes refers to a different genernated anomaly present in the training dataset.
Uniform refers to a uniform loss at all locations whereas random refers to a random loss at all
locations. The performance of InceptionTime, when trained on these engineered datasets and evaluated
on the baseline material loss scenarios is shown in Figure 0-2.
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Figure 0-2 Summary of InceptionTime performance trained on engineered datasets as expressed by a binary F1-
score

Training with the engineered datasets significantly improve the ability of InceptionTime to generalize
to material losses not observed during training. Using an explanability technique called SHAP [11, 12]



to probe feature importance, it can be shown that training on these engineered datasets result in models
that more heavily weigh anomaly-relevant features, thus improving generalization. However, one
drawback of dataset engineering is that synthetic datasets are needed. In practice, dataset engineering
could require individual high fidelity talored to specific facilities, which could be difficult to create.

A final experiment was conducted to determine the impact of incomplete facility knowledge on data
generated from computational models. Datasets are generated where some feature means during
normal operation are shifted from their true value (i.e., a bias is applied to normal behavior). This
should negatively impact algorithm performance as the training dataset would no longer represent
real-world facility behavior as a consequence of modeling biases.

Contrary to the initial hypothesis, experimentation shows that the model bias has little impact on
performance of the classification algorithm. This results from the minimal weight that the shifted
features have in the trained model (i.e., the model relied very little on these features to make accurate
classification predictions). This shows that an engineered dataset approach might not require a high
precision model for all facility behavior as long as important features are modeled accurately.
Identification of these features could be accomplished through modeling and simulation or expert
opinion. Future work should further investigate the dataset engineering approach by considering other
parameters not considered in depth here, such as quantity of training data or time series window

length.



NOMENCLATURE

GCEP Gascous Centrifuge Enrichment Plant

IAEA International Atomic Energy Agency

MUF Material Unaccounted For

NRTA Near Real Time Accounting

OLEM OnLine Enrichment Monitoring

PCA Principal Component Analysis

SHAP SHapely Additive exPlanation

SITMUF Standardized Independent Transformed Material Unaccounted For
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1. INTRODUCTION

The International Atomic Energy Agency (IAEA) is tasked with implementing international safeguards
in non-proliferation signatory countries. This can be difhicult given the increasing number of nuclear
facilities and flat budgets. The IAEA has solicited new technologies to help reduce costs of safeguarding
facilities to remain effective despite these challenges. One potential area for improvement is safeguards
at large throughput facilities. Material accountancy, the practice of establishing the quantities of nuclear
material present in defined areas, often requires expensive, high precision measurements to reach
regulatory goals (see Appendix A). It has long been theorized that the inclusion of process monitoring
data, which refers to measurements that do not directly quantify nuclear material, but often have
relatively high precision, could improve safeguards. Examples of process monitoring data include
signals such as temperatures, pressures, tank level measurements, and more. Deep learning, which is a
subset of machine learning characterized by the use of neural networks, is considered here to detect
anomalous patterns in process monitoring data given its’ success in similar tasks from other domains.

Deep learning for anomaly detection [13] has been shown to perform well in a variety of domains.
However, past work [14, 15] has demonstrated that unsupervised deep learning, which is desirable for
safeguards applications as it requires no explicit example of abnormal behavior, offers worse
performance for safeguards material loss detection than traditional material accountancy. This low
performance is likely due to a lack of strong assumptions (i.e., priors) about the underlying process data
(see Appendix B). Simpler models considered in [14] oftered competitive anomaly detection
performance compared to traditional material accountancy approaches but required calibration of
numerous alarm thresholds. Previous work [7] showed that supervised approaches could outperform
traditional material accountancy for anomaly detection. The increase in performance over unsupervised
approaches is due to a direct description of anomalous conditions rather than specification of some
proxy problem as is the case for unsupervised. However, [7] did not perform a robust analysis on
generalization, which is a known problem for supervised methods and the target of this work.

Contributions: The goal of this paper is to better define the limitations of deep learning for safeguards
anomaly detection by exploring the generalization of supervised approaches to unseen anomalies. A
simulated enrichment facility was used as an exemplar due to the number of observable process
monitoring signals using existing technologies such as the OnLine Enrichment Monitor (OLEM)

[8, 9]. Specific contributions are as follows:

* Evaluation of baseline supervised performance (section 4.1): This section establishes
baseline performance using the state-of-the-art supervised classification algorithm InceptionTime
[1]. These results show the out-of-the-box generalization performance to InceptionTime to
unseen anomalies. Baseline performance in this section reflects a scenario wherein very few high
consequence material loss scenarios are known, simulated, and incorporated into training.

— This corresponds to a situation wherein only a single high consequence loss scenario is
known and available for training.

* Impact of scenario engineering (section 4.2): Past work [10] suggests that generalization of
InceptionTime could be improved through manual engineering of loss scenarios. These scenarios
do not necessarily correspond to plausible real-world scenarios and instead focus on improving
generalization of the learned model parameters by avoiding overfitting to a few known scenarios.
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— This section seeks to develop effective priors to train the model by developing additional
examples of material loss. However, these priors are not formed based on specific high
consequence material loss and are instead formed based on randomized patterns that might
improve generalizability.

* Imperfect system knowledge (Section 4.3): Although good results were observed in Section
4.2, it was assumed that facility patterns seen in training reflected reality at test time. This section
evaluates the impact of imperfect knowledge about facility processes might impact performance.

— Although training on randomize loss scenarios improved performance, high fidelity models
might be required to obtain sufficient training data as real-world data is scarce.

12



2. RELATED WORK

The use of process monitoring for improving safeguards has been considered since at least the 1980s.
However, most safeguards literature focuses on the development and application of “near-real-time”
accounting [2] (i.e., traditional material accountancy) rather than process monitoring based strategies.
Near real time accounting involves the calculation of statistical quantities such as Material Unaccounted
For (MUF) [16, 17], the standardized independent transformed material unaccounted for (SITMUF)
[18], and Page’s trend test [19, 20, 21, 22, 23, 24]. The NRTA approach requires direct accountancy of
nuclear material through high precision measurements.

In contrast, process monitoring based approaches aim to leverage measurements that do not directly
quantify nuclear material. These measurements could include spectral data from gamma or neutron
sensors, flow rates, temperatures, or pressures. Process monitoring data streams often have lower
uncertainties, which is beneficial as this could result in higher detection probability for anomalous
conditions [25, 26]. The majority of previous efforts to incorporate process monitoring have largely
focused on using residual signals calculated from models [27, 28], event marking [26, 29, 30] or
through simple statistical models [31, 14]. These approaches have been limited by required inclusion of
domain knowledge, difficulties setting multi-variate alarm thresholds, and limitations from using
simplistic models. Yet other attempts have tried to develop new measurement technologies to improve
the ability of NRTA to directly quantify material [32, 33].

Machine learning for anomaly detection [34] has been a recent topic of interest for safeguards given the
potential for improved performance over simple statistical models. Principle component analysis (PCA)
was applied to gamma spectroscopy for anomaly detection [35, 36, 37] with some limited success.
However, PCA has limited expressive power and a detailed study of measurement error was not
conducted.

Deep learning for anomaly detection [13], an extension of machine learning that relies on neural
networks, has had broader success in other areas of safeguards for tasks such as video surveillance [3, 4]
and prediction of burnup in spent fuel [38]. Efforts to apply deep learning to process monitoring data
has been met with mixed results. Measurement error has been shown to severely reduce anomaly
detection performance in unsupervised algorithms [5, 6, 14]. Supervised algorithms have been shown
to perform well [7], but common challenges, such as generalization to unseen classes was not explored.
However, some recent work [10] has suggested that supervised algorithms might be pre-trained with
domain knowledge through curated training datasets to improve generalization.
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3. METHODOLOGY

3.1. Algorithms

The goal of this work is to explore the application of supervised deep learning to process monitoring
data. If successtul, this approach would reduce costs to the IAEA and would be potentially applicable
to other large throughput facilities. Enrichment facilities were used as an exemplar due to the process
monitoring streams collected by existing measurement systems such as OLEM (e.g., pressure and
temperature).

The data from enrichment facilities could be represented to an algorithm in a number of ways, but
perhaps the most obvious would be in a time series format. That is, given streaming data from a OLEM
measurement system, segments of facility operation would be consumed by an algorithm with the goal
of classifying individual time series segments. There are a multitude of possible algorithms, each with
their own trade-offs, that could be implemented to perform this task. A more mature state-of-the-art
algorithm based on the Inception network [39] rather than a cutting edge Transformer-based
architecture was selected based on improved reproducibility and ease of implementation. Specifically,
this work implements and applies the InceptionTime algorithm [1] which has demonstrated high
accuracies on the UCR dataset archive [40].

The InceptionTime algorithm, shown in Figure 3-1, is comprised of a few key components. First, the
algorithm consists of several Inception modules that are stacked together and connected by shortcut
connections which help mitigate issues that arise when neural networks try to learn from long time
series segments (e.g., vanishing gradients). Next, a global average pooling layer averages the output over
the temporal dimension. Finally, a fully connected neural network with a softmax layer is used to
predict the time series class, which for this application, is either 0 for normal (e.g., no loss) or 1 for
anomalous (e.g., loss). It is important to note that both the Inception modules themselves and the use
of multiple modules have an important impact on the overall algorithm’s ability to classify time series,
which is particularly relevant given the temporal nature of process monitoring data.

channels input tiry .
i series
i ” output
N classes
1

average connected

residual pooling
connections

Figure 3-1 Overview of InceptionTime algorithm [1]

Inception modules start with a bottleneck layer wherein sliding filters significantly reduce the
dimensionality of the time series in order to reduce model complexity and potential for overfitting. The
next component of the Inception model is comprised of sliding filters of different lengths to capture
features of different lengths. A separate MaxPool layer followed by a bottleneck layer is applied in order
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to reduce impact of small perturbations. Finally, the MaxPool and bottleneck layer are concatenated
with the multi-length sliding filters to form the module output. Stacking multiple Inception modules
allows for extraction of features of multiple resolutions due to specification of filters with various

lengths.

There are a number of hyperparameters that must be set for the InceptionTime algorithm. The default
values specified by the algorithm’s authors are used for most hyperparameters, except batch size, as they
provided good empirical performance. Many of the hyperparameters that required tuning varied with
number of classes and time series length, as discussed by the original authors. The relatively short length
of the input time series and few number of classes further reinforce the choice of the default
hyperparameters for this work.

InceptionTime Hyperparameters
Parameter Value
Batch Size 128
Bottleneck True
Residual connections True
Depth 6
Filter length {10,20,40}
Number of filters 32

Table 3-1 InceptionTime hyperparameters used in this work.

Machine learning algorithms are often described as “black-box” and can be difficult to interpret as
learned features can often make little sense to a human. To better understand decisions made by the
InceptionTime algorithm, analyses are performed using SHAP (SHapely Additive exPlanation)

[11, 12]. The basic concept behind SHAP is that features in an input dataset have different level of
contribution to the output of a machine learning algorithm, which can be used to obtain some local
understanding. SHAP unified six popular methods and is currently the state-of-the-art explanability
framework for deep learning models.

3.2. Data

Real-world data from nuclear facilities is very challenging to obtain and will not include examples of
adversarial anomalies (i.e., material loss, excess production, higher than declared enrichment, etc.). As
such, synthetic data from a detailed process model formed the basis of this work. A generic systems-level
gaseous centrifuge enrichment plant model was developed in MATLAB Simulink to simulate
fundamental activities to support this analysis. The model simulates feed and withdrawal activities,
flow of material through cascades, OLEM measurements, and more.

The generic model is comprised of 8 parallel cascade halls. Each hall is assigned a dedicated feed station,
though product and tails stations are shared between them. This enables each hall to operate

15



semi-autonomously from the others, similar to how a real facility may operate. Facility-level
characteristics such as size in tSWU/yr, feed enrichment, product enrichment, and tails enrichment can
all be specified by the user. Pressure (kPa), temperature (°C), and several material masses derived from
radiation signatures (kg) are measured at each timestep. Key facility parameters that were selected to
generate data used in this work are listed below in Table 3-2.

GCEP Model Parameters
Parameter Value
Throughput 3200 LSWU

yr

Feed enrichment 0.711 wt% 235U

Product enrichment | 4.5 wt% 235U

Tails enrichment 0.2 wt% 235U

Table 3-2 GCEP model parameters used in analysis.

The GCEP model was designed to support development of strategies that could be feasibly
implemented by the IAEA. As such, the model uses simple empirical relationships to calculate
enrichment of material flows and does not consider facility details such as cascade configuration,
number of stages, centrifuge design, etc. OLEM measurements are only simulated in locations that
could be potentially accessed by the IAEA (i.e., outside the cascade halls).

16



4, EXPERIMENTAL RESULTS

The first two experiments in this work seek to bound the performance of supervised algorithms for
identifying material losses using a set of simulated facility features. The first of these considers a baseline
case wherein only one high consequence material loss sequence is known and is evaluated against other,
unseen scenarios. The second experiment examines the impact of dataset engineering on overall
performance. Here, a variety of different loss scenarios are provided during training, after which the
generalization of the algorithm is evaluated.

Experiments conducted here rely on simulated data; however, a real-world deployment scenario might
rely on synthetic training data and real-world evaluation data. It is possible that the synthetic data will
not accurately represent facility processes, which will impact the ability of a supervised approach to
detect anomalies. The final experiment considers the possibility of imperfect system knowledge and the
impact on classification performance.

All experiments are conducted using datasets generated from the GCEP model described in the
previous section. Specifically, datasets of size [n, m, 144] are generated where 144 refers to the total
number of thermophysical and derived mass features simulated at various facility locations; 7 is the
number of runs, and m is the number of samples. Generally, n > 1 to allow for expression of different
systematic biases that might occur and m ~ 8760 to represent one operational year in hours.

These datasets are processed by performing the following steps:

* Scaling: Datasets are scaled such that X € [0, 1] as a standard preprocessing step to enable
learning during training. The scaling was based on a set of simulated normal data.

* Windowing: Simulated GCEP features have a temporal dependence that must be captured.
This is done by binning the datasets into 200-hour windows that are later classified by the
InceptionTime algorithm.

— Windows are classified as either normal, no loss (0) or abnormal, loss (1) and are not
divided into finer categories (i.e., abrupt and protracted losses are labeled as the same class).

— The 200-hour window was based on expert judgement based on facility operation
characteristics. Windowing and the accompanying labeling approach could have an impact
on performance but was not explored in-depth during this work. For example, should a
window have a fully anomalous segment or only partially anomalous segment before being
classified as abnormal?

* Class balancing: Each dataset run (i.c., for each run n) is simulated to be an operational year,
however, the material loss interval could potentially be small compared to the total run length.
This leads to a class imbalance that could incentivize the classification algorithm to simply predict
everything as normal. A class balancing procedure is performed to generally maintain a 50/50
ratio of normal and abnormal segments for training. In some cases the class balance was adjusted
from 50/50 to 25/75, depending on the quantity of available data.
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* Trimming: The final step is only applicable in some cases where class balance is very skewed,
which leads to a large dataset required to reach a specified class balance. The trimming step
simply reduced the amount of training data by a fixed fraction. This is conducted to enable
reasonable training time within the limits of currently available computational resources.

Each experiment was evaluated against a static set of anomalous scenarios that are generically labeled
‘Scenario 1-3’. These scenarios consist of a material loss at a single, but varied, location with various
levels of intensity. The ratio of the material loss rate to the overall measurement uncertainty decreases
with increasing scenario number leading to a more difficult detection problem (e.g., scenario 1 is easier
to detect than scenario 2). The overall measurement uncertainty was held constant for each scenario,
and only the material loss rates and locations are varied. Equation 4.1 below provides a general
description of the loss scenario.

iy pn it iy At i
dt o dt o dt o

(4.1)

Unless otherwise stated, all scenarios discussed are designed to simulate the removal of one significant
quantity. Therefore, Equation 4.1 can be reduced to Equation 4.2.

d d d

%M > %Hz > %l% (4.2)
The results of these experiments are reported on the basis of a binary F1-score with respect to the
abnormal class for diversion cases and binary F1-score with respect to the normal class unless otherwise
stated’. Fl-score is a better metric than accuracy alone as it expressed the balance between precision (i.e.,
positive predictive value) and recall (i.., sensitivity). This score is calculated based on the abnormal
class, rather than both classes, as the evaluation often involved imbalanced classes. Put simply, the
binary F1-score describes performance in detecting anomalous segments. A higher F1-score indicated
better performance where f1 € [0, 1] and is used here to compare relative performance of different
training strategies.

NOTE: F1-score is a measure of classification performance and is not the same as probability of
detection. While these measures are correlated (e.g., higher F1-score leads to improved
probability of detection), additional work is required to relate the two quantities.

4.1. Evaluation of baseline supervised performance

This first experiment represents a baseline performance level where only a single high consequence loss
scenario is known. Several different potential loss scenarios with a range of material loss rates and
durations are considered. For each case, InceptionTime is only trained on a single scenario and is then
evaluated against the other baseline sets. The purpose of this experiment is to establish the baseline

1Binary F1-score with respect to the abnormal class is undefined for no loss cases, so the binary F1-score with respect to the
normal class is used instead for no loss cases.
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generalization performance of InceptionTime. Results, reported as binary F1-score with respect to the
anomalous class, are shown below in Figure 4-1.

F1 Score

Scenario seen in training
Scenario 3 Scenario 2 Scenario 1

0.10 : 0.2

nolLoss Scenario 1 Scenario 2 Scenario 3
Evaluated dataset

Figure 4-1 Summary of baseline performance expressed as a binary F1-score

The baseline results show that InceptionTime generalizes poorly to unseen cases, but performs well on
classes seen in training. This is further illustrated by considering the SHAP values for a high and low
performance case. First, consider the SHAP values of Scenario 1 when trained on Scenario 1 (i.e., a high
performance case) in Figure 4-2 below. Features are ordered by average SHAP value magnitude (i.c.,
impact on model prediction).

Feature 81 | oijpwe aufesede oo Laree

Feature 82 ¢ @

Feature 13 «3

Feature 1 & E

Feature 99 o %

Feature 86 « 3
Feature 102 e 8

Feature 27 ]

Feature 73 &e

Feature 25 & Small

-0.2 -0.1 0.0 0.1 0.2 0.3

Shap value (impact on model output)
Figure 4-2 SHAP values for a high performance case where the evaluated scenario has been observed during training

First, note the relatively high SHAP values for feature 81, which is associated with inferred mass.
Smaller values of feature 81 push the prediction in a negative direction whereas larger values push the
prediction in a positive direction. Feature 82, which is associated with a thermophysical feature, is
similar in its’ impact on the model prediction, but to a lesser extent. This is expected behavior as feature
81 and 82 are directly related to an OLEM sensor impacted by scenario 1. In contrast to feature 81 and
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82, the SHAP values of the other features vary little during scenario 1. This indicates that although the
model places importance on these features, they are largely unaftected by changes induced by scenario 1.
Next, SHAP values for the low performance scenario where a model trained on scenario 1 is evaluated
on scenario 2, shown in Figure 4-3.

Feature 81 o o Denfys ° ° Large
Feature 1 . Kﬁb ® re o
Feature 13 d o @ilt»
Feature 99 o algme E
Feature 135 e ° Ci ° %j
Feature 63 + o ° é
Feature 25 o Qe §
Feature 27 o 3
Feature 92 ol se
Feature 105 t‘:} » o Small

-0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015 0.0020
Shap value (impact on model output)

Figure 4-3 SHAP values for a low performance case where the evaluated scenario has been observed during training

Unlike the high performance scenario, SHAP values for all feature values are much smaller. This
indicates that changes in feature value have little impact on the model’s prediction of normality for
scenario 2 for all features. The invariance of feature value on SHAP values shows the inability for the
baseline approach to generalize to unseen losses.

Poor supervised generalization for supervised algorithms is well documented in the machine learning
literature [41, 42]. This behavior represents one of the key challenges with using supervised learning for
safeguards applications. Supervised approaches can learn more powerful representations of the data for
classification tasks, leading to good performance, but require explicit examples for each class. In
safeguards, this is particularly challenging as it is impossible to know all anomalies (i.e., classes), or to
even known all anomalies of a particular type (e.g., material diversion, sabotage, etc.).

4.2, Impact of scenario engineering

Previous work [10] has suggested that the generalization of InceptionTime improves if a diversion is
observed at a specific location, even if only a single diversion pattern is observed. The experiments in
this section are aimed at improving generalization by providing a range of randomized loss scenarios for
training. A number of different scenarios were considered for training InceptionTime:

1. Fixed Large: Specifies a material loss rate of 30 that occurred at all observed locations
simultaneously

a) Note that although the material loss was 30, that does not imply the simulated features
change by 30

b) 30 < 1 asloss flow rates cannot exceed 1
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2. Fixed Small: Similar to fixed loss, this scenario Specifies a material loss rate of 10 that occurred
at all observed locations simultaneously

3. Randomized Small: Specifies a randomized loss € [0, 0] at a random location
a) Loss was only simulated at one location per run n
b) Location, loss, and duration were randomized
c) 0 < 1asloss flow rates cannot exceed 1

4. Randomized Large: Specifies a randomized loss € [0, 30] at a random location
a) Loss was only simulated at one location per run n
b) Location, loss, and duration were randomized
c) 30 < 1 asloss flow rates cannot exceed 1

5. Randomized Chaos: Specifies randomized losses € [0, 1] at all locations simultaneously
a) Duration and loss were randomized
b) Occurred at all locations, but each location has a different duration and loss

c) Unlike other scenarios described in this work, the randomization here was unconstrained
by a target loss of one significant quantity

A summary of classification performance of each of the training schemes, when evaluated on the
baseline loss scenarios, is described below in Figure 4-4.

1.0
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zéo 0.8
% uniformLarge
= 06 @
é randomSmall S
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§ randomLarge
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randomChaos
-0.0

nolLoss Scenario 1 Scenario 2 Scenario 3
Evaluated dataset

Figure 4-4 Summary of InceptionTime performance trained on engineered datasets as expressed by a binary F1-
score

Training on engineered scenarios substantially increases performance over the baseline case. The small
engineered scenarios (uniformSmall, ratndomSmall) and chaos scenario (randomChaos) provide better
performance overall than the larger scenarios (uniformLarge, randomLarge). While the large cases
perform well on the more abrupt losses and are more confident in the no loss case, there is a steep
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performance dropoff for scenario 3. The random chaos case and uniform small provide the best
performance across all scenarios with random chaos providing the best performance on scenario 3, the
most difficult to detect. SHAP values for the random chaos case when evaluated on the baseline loss
cases are shown in Figures 4-5, 4-6, and 4-7. These figures provide intuition for how InceptionTime
responds when evaluated on the baseline scenarios.

The random chaos SHAP values respond strongly in both Scenarios 1 and 2 with large separation in
several features. In scenario 1, there is clear separation in features 81 and 82 indicating that they both
have strong impacts on the model’s predictions. Similarly in scenario 2, feature 63, and to a lesser extent
feature 64, both also have a strong impact on the prediction. The other features listed in Figures 4-5 and
4-6 are features that are weighted heavily by the model, but do not change much in the currently
evaluated scenario. For example, feature 87 has high importance in both scenario 1 and scenario 2 but
vary little in these scenarios. If the material loss modeled in scenario 1 occurred at a different location,
then less response would be observed in features 81 and 82 and more response would be observed in
others.

NOTE: SHAP values only describe feature importances for a given subset of the data. Feature
responses here reflect importance for the specific scenario considered. If multiple scenarios were
evaluated at once using the SHAP algorithm, then even more features would exhibit behavior

demonstrated by Feature 81 and 82 in scenario 1.

Feature 87 corresponds to an input feature at another location in the facility. In fact, most of the heavily
weighed features by the model trained on the random chaos dataset reflect locations that have the largest
changes due to modeled anomalies. Further, these features often correspond to inferred mass (e.g., from
gamma observed by OLEM). This shows that the random chaos set helps the model learn important
features for detecting anomalies regardless of location but does not effectively utilize changes in
thermophysical properties due to material loss.

Importantly, the random chaos scenario provides the best performance on the subtle scenario 3. SHAP
values in Figure 4-7 show that Feature 57, a feature close to the anomaly location, is important for
classification of scenario 3. Note that the separation in feature 57 is still present despite the relative
difficulty of detection scenario 3 which shows that the model places heavy importance on the feature,
but the change in that feature is relatively small. The relatively small change is due to the subtly of
modeled loss pattern in scenario 3.
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Figure 4-5 SHAP values for random chaos trained model evaluated on Scenario 1
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Figure 4-6 SHAP values for random chaos trained model evaluated on Scenario 2
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Figure 4-7 SHAP values for random chaos trained model evaluated on Scenario 3

24

Large

Small

Feature Value



4.3. Imperfect system knowledge

This final experiment considers imperfect system knowledge. Real-world deployment of a classification
algorithm to aid material accountancy might require training on synthetic data and evaluation on
real-world data. Supervised machine learning often assumes that the training distribution match the
evaluation distribution [43], but this might not be available in a safeguards use case. This experiment
seeks to provide some intuition regarding the performance reduction when the training data does not
perfectly reflect the real-world dataset. Specifically, this experiment trains on a dataset wherein the
normal thermophysical features have different means than the evaluation dataset. Consequently, the
bebavior is modeled correctly, however the feature mean is shifted.

The evaluation of the imperfect system knowledge experiment follows the baseline performance case;
InceptionTime is trained on a single material loss and evaluated on all others. However, the
thermophysical features of the training dataset differ from the evaluation dataset (i.c., features are mean
shifted). Results are summarized in Figure 4-8 below.
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Figure 4-8 Baseline performance when InceptionTime is trained on a mean shifted dataset

Despite the change in normal mean for thermophysical properties, the supervised classification
algorithm still performs comparable to the baseline case where the mean was not shifted. This is due to
the model’s low weighting of thermophysical features for classification. A follow-on experiment where
the normal mean of the mass features, which are more heavily weighted by the model, would likely
show the expected performance degradation. However, this indicates that high fidelity modeling, which
is required to generate synthetic training data, might only be needed for certain key features.
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5. CONCLUSION

This work progresses the understanding limitations associated with applied deep learning for safeguards
anomaly detection by establishing baseline performance and exploring the impact of dataset engineering
on algorithm generalization. The baseline performance, wherein only a single material loss pattern was
used during training, is relatively poor due to poor generalization to unseen loss conditions. However,
dataset engineering improved the generalization and substantially improved performance over the
baseline case. This improvement was largely driven by improved weighing of relevant features caused by
exposure to a wider range of randomly generated diversion scenarios. The prospect of dataset
engineering to boost supervised performance for safeguards anomaly detection is promising, however,
this approach likely requires generation of synthetic training data given the difficulties of obtaining real
world data.

This work also showed that even imperfect synthetic datasets might still help boost the generalization of
supervised anomaly detection algorithms provided important features were modeled correctly. These
features could be discovered through additional analyses on synthetic data or identified by subject
matter expertise. Future work should focus on further exploring the data engineering approach by
considering the impact of other parameters not considered here such as quantity of training data.
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APPENDIX A. LOWER LIMIT OF DETECTION FOR UNIVARIATE
NORMAL DISTRIBUTION

Generally, high precision measurements are required to meet regulatory targets for high throughput
bulk facilities. These regulatory targets are often based on oy This section discusses the lower limit
of detection (LLD) for MUF in terms of 0y;p, but note the LLD can be generalized to shifts in any
univariate Gaussian distribution. Further background for MUF and statistics for safeguards can be

foundin [17, 16, 18, 44].

NOTE: The below discussion is focused on one-sided testing for a single material balance
period (i.e., testing for material loss only); however, the procedure for determining thresholds
for two-sided (i.c., testing for material loss and gain) testing is similar.

A single material balance instance at a specified time is defined by a distribution such that
MUF ~ N (p, 0yu5)- Under loss conditions, the mean of MUF will shift based on the magnitude of
the loss such that MUF, , = N (u*, op)- This is illustrated below in Figure A-1.

0.4 —— No Loss
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Figure A-1 Shift in MUF distribution due to material loss

One common goal for material accountancy is to set system requirements such that the probability of
detection for a material loss be 95% with a false alarm probability of 5%. A lower limit of detection
probeability for a single material balance instance can be established that relates a mean shift due to a
material loss ({1t — p1*) to 0y g These constraints will be expressed as follows:

P(z > h | N(p,0pyr)) < 0.05

P(m > h ’ N(:U*aO-MUF)) 2 0.95 (Al)
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Where h denotes some threshold, p is the average MUF under normal conditions, and p* is the average
MUF under loss conditions. For simplicity, assume that (¢ = 0 and oy = 1. This leads to an
updated set of constraints that can be used to develop a relationship between p* and oy

P(z > h|N(0,1)) <0.05 (A.2)

P(x>h|N(u*1))>0.95 (A.3)

Specifically note the normal cumulative distribution function and normal quantile function:

F@):@(xa“) ;[l—l—erf(a\/_)] (A.4)

F7(p)=p+0® (p) = p+ov2af 1(2p—1), p€ (0,1) (A.5)

First, determine h by combining the constraint in Equation A.2 with the expression for the quantile

function in Equation A.S to find h = F71(0.95) &~ 1.64 for N'(0,1).

Next, use the constraint from Equation A.4, the expression for the quantile function in Equation A.S,
and the previously determined value for h &~ 1.65. Solving Equation A.S as

F1(p=0.05;0yy = 1) = 1.65 for p* leads to pu* ~ 3.28.

An expression for the relationship between p* and oy subject to the general performance constraints
of 95% detection probability and 5% false alarm probability:

Fl(p)=pu+0d ' (p)=pu+ov2ef(2p—1), pc(0,1)
F~1(p=0.95|N(0,0u)) = F~(p = 0.05|V (1", o))
1.640yr = p* — 1.640 ¢ (A.6)

3.280yur = 1*

*

p
Imur = 379g

Equation A 6 refers to the case of fixed probabilities, it can be expanded to a more general case of

Oyur < 355 by nothing that =1 (p|V(0,01) < F~1(p|N(0,04) where 0y < 0.
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APPENDIX B. MSE LOSS, EXPECTATIONS, AND PRIORS

B.1. Traditional material accountancy includes prior knowledge

The workhorse of traditional material accountancy is Page’s trend test [23, 24] on SITMUF [18].
Rather than testing on a single material balance, as described in Appendix A, this approach utilizes
trend testing on a transformed sequence of values.

A wide range of existing literature has shown this approach to be versatile and perform well on a wide
range of loss patterns [19, 20, 21, 22]. SITMUF is the standardized independent transformed MUF.
With knowledge that MUF should be zero under the no loss condition, but that it is non-zero due to
measurement error, and knowledge of previously observed MUF values, it is possible to transform
MUF to the SITMUF sequence. Specifically, where MB, ~ MVN(p,, 3, ) and

SITMUF, ~ N(0,1) (see [16, 45] for further details). The STTMUF transformation is achieved by

subtracting the conditional expectation from the observed MUF value.

Consider the MB residual, ’L(t) at time ¢, which can be formulated as
Z(t) = MB,; — 0‘{_1 2;11 MB,_ ;. The term i(t), sometimes called Independent MUF (ITMUF), is
the residual between the observed MB, (i.e. MB,) and the conditional expectation O’%F_l Zt__ll MB,_,

~

given a particular covariance estimate (33), previously observed MUFs (e.g., MB,_;,MB,_,,...,MB;),
and the assumption no loss of material (1t = 0).

Picard [45] showed a convenient way to calculate this quantity by way of Cholesky decomposition.
Specifically, given the Cholesky decomposition of the covariance such that 3 = LU where Liisa
lower-triangular square matrix and U = LTisa upper-triangular transpose of U. Then

SITMUF, = L_lMBt where SITMUF = % and 5; is the standard deviation of the ITMUF. One
particular benefit is that the variance in the transformed, uncorrelated sequence (STTMUF) decreases
over time as the conditional expectation improves which results in increased probability of detection for
material loss. Put simply, the conditional expectation under loss conditions will more closely align to

the no-loss case, which will lead to a larger residual that can be detected through a trend test.

It is difficult to bound the performance of this approach as was done in Appendix A for the single
material balance. Some complexities include generalizing to sequence length, expression of the
cumulative distribution function, expression of the inverse cumulative distribution function, and
more. There have been some attempts to bound performance of Page’s trend test on SITMUF [44, 24],
however, they often have simplifications. Generalized performance bounds could be a target for future
work.

Key takeaway: Trend testing on SITMUF has been shown to perform well for most material loss
patterns, but analytical performance bounds are difficult to determine. The covariance used in the
conditional expectation on MUF uses domain knowledge to calculate an analytical estimate as empirical
in-field estimates can be difficult.
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B.2. Unsupervised deep learning has less powerful assumptions about process
monitoring data

Unsupervised methods for anomaly detection are attractive candidates for safeguards process
monitoring as they do not require specific examples of anomalies. Instead, unsupervised methods use
some intermediate proxy methods to estimate data abnormality. There are a wide range of techniques to
estimate abnormality; probabilistic, distance-based, reconstruction-based, and information-theoretic
approaches [34]. Unsupervised methods are limited by constraints described in Appendix A. Namely,
their performance will be limited by the overall measurement error of the underlying process
monitoring data.

For example, consider a reconstruction-based unsupervised anomaly detection approach called
autoencoders. The goal of this family of algorithm is to learn compressed (i.e., lower-dimensional)
representations of data that can effectively represent the input dataset. This lower-dimensional
representation, if learned using normal data, should poorly represent anomalous data leading to a
larger-than-normal reconstruction error.

Concretely, an autoencoder consists of an original dataset X = R™ and latent representation Z = R"
where m > n with an encoder E, : X — X and decoder Dy : Z — X. Foranyz € X and z € Z
the encoder are usually expressed as z = E/ P (z) and 2" = Dy(z) respectively as & # z in practice
due to imperfect encoder and decoder functions.

The training objective to learn FE P and DG is often described using the mean squared error loss
function:

. 1 N 4
rg,ld)n L(6,¢),where L(0,¢) = ]—V; |z; — 3

1N
=527 = Do(Ey ()3
=1

The mean squared loss function described above, which is used to train many unsupervised training
algorithms, can be expressed in terms of distributions. In fact, it can be shown under i.i.d. assumptions
that minimization of the mean squared error loss function is equivalent to maximization of the

conditional log likelihood [43]:

N N

1

argmax E log P(z; | x;;60,¢) = argminﬁ E |z; — ;|2 (B.2)
0,0 =1 0,9 i=1

This is important to note as the use of mean squared loss functions, often used for training
unsupervised algorithms, is equivalent to finding the set of parameters to maximize the conditional log
likelihood. Put simply, this common training procedure tries to find a set of parameters that results in
an output distribution most closely matches the training target distribution.
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Autoencoders will be limited by constraints applicable normally distributed random variates described
in Appendix A. Similar arguments can be made for other unsupervised algorithms as their optimization
target is also impacted by process monitoring measurement error.

Meaningful gains in anomaly detection for process monitoring over testing of single material balance
periods will be dependent on specific responses of process monitoring streams to anomalies. The shift
in the mean process monitoring value die to an anomaly must be significant compared to the relative
change in MUF under the same conditions:

|1U’PM - N§M| > |NMUF - M;/IUF| (B.3)

Opm O MUF

Comparing unsupervised methods to trend testing on SITMUF is more difficult given the challenges to
analytically bound performance of trend testing on SITMUF. Currently, comparison of machine
learning on process monitoring must be directly compared to STTMUF trend testing via empirical
means. This is a potential area for future work.

Key takeaway: Direct analytical comparisons of unsupervised machine learning to trend testing on
SITMUF is difficult and must be performed empirically. However, comparisons between unsupervised
machine learning to non-sequential material balances can be developed analytically. Performance gains
using unsupervised machine learning will only be realized if the relative change in the process
monitoring signal is greater than the change in MUF.
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