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ABSTRACT
The How To Manual supplements the User’s Manual and the Theory Manual. The goal of
the How To Manual is to reduce learning time for complex end to end analyses. These
documents are intended to be used together. See the User’s Manual for a complete list of
the options for a solution case. All the examples are part of the Sierra/SD test suite.
Each runs as is.
The organization is similar to the other documents: How to run, Commands, Solution
cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents
and index are indispensable.
The Geometric Rigid Body Modes section is shared with the Users Manual.

3



This page intentionally left blank.

4



CONTENTS

1. Training Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Thread Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Debugging Threading Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Batch Submission / Optimal Parameters for KNL . . . . . . . . . . . . . . . . . . 5
2.3. Parameters for Running on HPC Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Nonlinear Sierra/SM Preload Followed by Linear Sierra/SD Transient . . . . 10
4. Coupled Sierra/SM- Sierra/SD Modal Analysis with Fiber Shells . . . . . . . . . 14

4.1. Sierra/SD parameters for file transfer with Sierra/SM . . . . . . . . . . . . 16
4.1.1. Sierra/SD parameters for file transfer with custom variables

in Sierra/SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2. Sierra/SM output parameters for Sierra/SD modal analysis . . . . . . . 20

4.2.1. Syntax differences and design tips . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2. Modifications for modal analysis following SST analysis . . . . . 21

4.3. Rigid Rims, Coupling with Concentrated Masses, and Superelements . . 23
5. Encore Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1. Define Solid Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2. Encore Transfer Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3. Simulation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4. Encore Transfer Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5. Input/Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. Linear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7. Frequency response linear solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1. Insufficient virtual memory problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2. Divergence problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8. Comparing Sierra SM Explicit Transient to Direct and Modal FRF . . . . . . . . . . 33
8.1. Frequency Response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2. Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3. Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9. Craig-Bampton Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2. Input Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.2.1. Exodus Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2.2. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.3. CBModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.4. Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2.5. History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



9.2.6. Wtmass and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.4. Verification of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.4.1. Comparison of Reduced and Full Eigenvalues . . . . . . . . . . . . . . 43
9.4.2. Comparison of Reduced and Full Displacements . . . . . . . . . . . . 43

9.5. What to do with the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5.1. solving the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5.2. Incorporate the reduced model into another system model . . . 45

9.6. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10. Accuracy in Linear and Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.1. Linear Solver Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.2. Eigen Solver Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11. Wet Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.1. Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.2. Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12. Linear Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.1. Shifted Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2. Buckling Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13. Geometric Rigid Body Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14. Modal Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14.1. Process for serial integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.1.1. Compute modes of the system model . . . . . . . . . . . . . . . . . . . . . 58
14.1.2. Extract Modal force, F̃ (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.1.3. Perform Time Integration of Modal Space . . . . . . . . . . . . . . . . . 59
14.1.4. Expand to Physical Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14.2. How to Use Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.3. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.4. Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

15. Modal Random Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
15.1. Input Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

15.1.1. Exodus Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
15.1.2. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
15.1.3. RanLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
15.1.4. Matrix-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
15.1.5. Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
15.1.6. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.7. Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.8. Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.9. Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

15.2. Example Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.3. Verification of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
15.4. What to do with the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
15.5. Limitations, Suggestions and Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ii



16. Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
16.1. Example Fatigue Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

16.1.1. Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
16.1.2. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
16.1.3. Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

16.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
16.2.1. Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
16.2.2. Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
16.2.3. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

17. Coupled Electro-mechanical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
17.1. Piezoelectric Material Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
17.2. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
17.3. Transient Response Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
17.4. Linear System Solver Issues and Recommendations . . . . . . . . . . . . . . . . . 82

18. System Level Matrices of Viscoelastic FEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
19. Superelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

19.1. Superelement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
19.2. Submodel Model Extraction and Reduction . . . . . . . . . . . . . . . . . . . . . . . . 88
19.3. Superelement Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
19.4. Units and Wtmass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
19.5. Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

20. Infinite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
20.1. Far-Field Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

21. Acoustic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
21.1. Scattering Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

22. Random Pressure Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
22.1. Example Problem Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
22.2. Example: Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
22.3. Example: Verifying the Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

22.3.1. Average Nodal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
22.3.2. Variance of Nodal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
22.3.3. Temporal Nodal Force Autocorrelation . . . . . . . . . . . . . . . . . . . . 106
22.3.4. Spatial Cross Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

22.4. Random Pressure Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
22.5. Memory, Performance, Parallel and Anything Else of Interest . . . . . . . . 109

23. Lighthill Tensor Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
23.1. Mesh Deformation For Fuego . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
23.2. Fuego Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
23.3. Processing Fuego output for Sierra/SD . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
23.4. Mesh for Sierra/SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
23.5. Sierra/SD simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

24. Tied Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
24.1. Lap joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
24.2. Joint with Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

iii



1. Example Problem Input Files 118
1. Input. static.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2. Input. eigen.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3. Input. transient.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4. Input. modaltransient.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5. Input. modalfrf.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6. Input. random_vibration.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7. Random Vibration Input. Vran1.inp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8. Infinite Element Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9. Random Pressure Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10. Geometric Rigid Body Mode Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11. Wet Modes Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12. CBR Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
13. Acoustic Scattering Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
14. Lighthill Function Loading - Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
15. Linear Buckling - Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16. Sierra SM FRF Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

16.1. Modal FRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
16.2. Direct FRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
16.3. Adagio Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

17. Piezoelectric Transient Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 155
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

iv



LIST OF FIGURES

Figure 3-1. Model Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3-2. Model with Merged Conmass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3-3. Total Stress Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4-4. SM/SD Transfer Model Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4-5. Internal Steps in Sierra/SD Coupled Analysis . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4-6. Salinas input deck, coupled Adagio-Salinas example . . . . . . . . . . . . . . . . . . 17
Figure 8-7. Cantilever Beam FRF Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 8-8. Relevant Portions of Direct FRF Input File. . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8-9. FRF Z-axis Modes Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 9-10. Example CBR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 9-11. Example CBR transient computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 10-12. dd_solver.dat output from GDSW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 10-13. Output of eigenvalues and Associated Error Bounds. . . . . . . . . . . . . . . . . . 49
Figure 11-14. Floating Cylinder Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 11-15. Relevant Portions of Wet Modes Input File. . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 11-16. Wet Modes Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 12-17. Ring Model for Buckling and Associated Deformation. . . . . . . . . . . . . . . . . 54
Figure 12-18. Solution Dependence on Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15-19. Example Random Vibration Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 15-20. Example Matrix-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 15-21. Single Input, Random Vib Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 15-22. Scale factors for SI units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 15-23. Example scale factors for inches and pounds. . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 15-24. Example scale factors for English units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 16-25. Generic Circuit Board geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 16-26. Generic Circuit Board components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 16-27. Frequency Domain Loading ASD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 16-28. Time Domain Load Snapshot (left), and ASD (right). . . . . . . . . . . . . . . . . 76
Figure 16-29. Histogram of time domain loads with vertical bars at 1-sigma intervals. . 76
Figure 16-30. Frequency Domain Damage Rate Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 16-31. Time Domain Damage Estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 17-32. The single patch bimorph model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 17-33. Time history of voltage input (Gaussian pulse). . . . . . . . . . . . . . . . . . . . . . . 82
Figure 17-34. Time history of voltage response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 18-35. Sample Input to determine Viscoelastic Matrices. . . . . . . . . . . . . . . . . . . . . 85
Figure 19-36. Superelement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 19-37. Inserting the superelement connectivity in the model. . . . . . . . . . . . . . . . . . 90
Figure 19-38. Modal Response of the Superelement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



Figure 21-39. Elastic Sphere in Fluid Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 21-40. Example Scattering Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 22-41. Example Random Pressure Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 22-42. Example Random Pressure PSD and Correlation Functions. . . . . . . . . . . . 102
Figure 22-43. Random Pressure Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 22-44. Random Pressure Load Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 22-45. Variation of Mean and STD of Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 22-46. Distribution of Mean Forces on Surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 22-47. Nodal Force Autocorrelation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 22-48. Nodal Force Spatial Cross Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 22-49. Nodal Effective Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 23-50. Fuego mesh of Lighthill fluids domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 23-51. Sierra/SD domain for acoustic noise propagation . . . . . . . . . . . . . . . . . . . 111
Figure 24-52. Lap Joint with Contact Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 24-53. Lap Joint Finite Element Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 24-54. Conventional Input for Whole Lap Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 24-55. Tied Joint Input for Whole Lap Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 24-56. Conventional Input for Whole Lap Model with Sliding Contact. . . . . . . . . 116
Figure 24-57. Tied Joint Input for Whole Lap Model with Sliding Contact. . . . . . . . . . . 117

vi



LIST OF TABLES

Table 4-1. Orthotropic_layer Quantities Available for FROM_TRANSFER . . . . . . . . . 18
Table 8-2. Solver Timer Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11-3. Wet Mode Floating Cylinder Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 18-4. Elastic/Viscoelastic Equivalent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 20-5. Available parameters for the infinite element section. . . . . . . . . . . . . . . . . . . . 94

vii



This page intentionally left blank.

viii



Acknowledgments

The Sierra/SD software package is the collective effort of many individuals and teams. A
core Sandia National Laboratories based Sierra/SD development team is responsible for
maintenance of documentation and support of code capabilities. This team includes Dagny
Beale, Gregory Bunting, Mark Chen, Nathan Crane, David Day, Clark Dohrmann, Sidharth
Joshi, Payton Lindsay, Justin Pepe, Julia Plews, Brian Stevens, and Johnathan Vo.

The Sierra/SD team also works closely with the Sierra Inverse and Plato teams to jointly
enhance and maintain several capabilities. This includes contributions from Volkan
Akcelik, Ryan Alberdi, Wilkins Aquino, Brett Clark, Murthy Guddati, Sean Hardesty,
Cameron McCormick, Clay Sanders, Chandler Smith, Benjamin Treweek, Timothy Walsh,
and Ray Wildman.

The Sierra/SD team works closely with other Sierra teams on core libraries and shared
tools. This includes the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams.
Additionally, analysts regularly provide code capabilities as well as help review and verify
code capabilities and documentation. Other individuals not already mentioned directly
contributing to the Sierra/SD documentation or code base during the last year include
Samuel Browne, Victor Brunini, Jared Crean, Mike Glass, Mario LoPrinzi, Scott Miller,
Tolu Okusanya, Heather Pacella, Kendall Pierson, Tim Shelton, Greg Sjaardema, Timothy
Smith, Jeremy Trageser, and Alan Williams.

Historically dozens of other Sandia staff, students, and external collaborators have also
contributed to the Sierra/SD product its documentation.

Many other individuals groups have contributed either directly or indirectly to the success
of the Sierra/SD product. These include but are not limited to;

• Garth Reese implemented the original Sierra/SD code base. He served as principal
investigator and product owner for Sierra/SD for over twenty years. His efforts and
contributions led to much of the current success of Sierra/SD.

• The ASC program at the DOE which funded the initial Sierra/SD (Salinas)
development as well as the ASC program which still provides the bulk of ongoing
development support.

• Line managers at Sandia Labs who supported this effort. Special recognition is
extended to David Martinez who helped establish the effort.

• Charbel Farhat and the University of Colorado at Boulder. They have provided
incredible support in the area of finite elements, and especially in development of
linear solvers.

• Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and
includes the summer of 2001 where he visited at Sandia and developed the HexShell
element for us.

1



• Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for
eigenvalue problems.

• Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for
much of the performance in Sierra/SD linear solvers.

• The metis team at the University of Minnesota. Metis is an important part of the
graph partitioning schemes used by several of our linear solvers. These are copyright
1997 from the University of Minnesota.

• Padma Raghaven for development of a parallel direct solver that is a part of the
linear solvers.

• The developers of the SuperLU Dist parallel sparse direct linear solver. It is used
through GDSW for a variety of problems.

• Leszek Demkowicz at the University of Texas at Austin who provided the HP3D1

library and has worked with the Sierra/SD team on several initiatives. The HP3D
library is used to calculate shape functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development
(LDRD) program.

The analyst community has begun their own website to address means of working various
solutions in Sierra/SD. See the SNL-wiki. The documentation is dynamic, but has details
on eigenvalue extraction, modal based solutions, and reading sideset data.

2

https://snl-wiki.sandia.gov/pages/viewpage.action?pageId=217777228


1. Training Problems

The sections of a Sierra/SD input file are described in the Sierra SD Users’ Guide. An
input file has seven required sections: solution, file (Exodus mesh), load(s), outputs, echo,
block (one per element block in the input Exodus file) and material (one per unique
material). In the file section, the string FILEPATH must be replaced by the name of the
input Exodus mesh file.

The input file for the statics solution method, 1, provided in the Appendix has the required
sections, and three optional sections: parameters, boundary and GDSW. The parameter
Wtmass, typically 1/(32.2ft/s2 12in/ft), is used so that for example densities may be
specified in units of lbs/in3, as described in the Users’ Guide. Boundary conditions on a
side set, or in this case a node set, are specified in the boundary section. The GDSW
section indicates that the threshold on the relative residual norm be decreased from the
default 1.e-6 if using the GDSW linear solver.

The input file 2 for the eigen solution method requests that the twelve lowest frequency
modes be computed. The eigen norm parameter indicates that the mode shapes will be
normalized in a way that is convenient for visualization. The default normalization uses
the mass matrix. Here solver_tol has been further reduced to 1.e−10.

The transient simulation input file 3 uses the default Newmark method and has the total
simulation time of 1/100 seconds. The load specified by a tabulated Haversine pulse. The
history section indicates that the output quantities at each time step and at the specified
node sets only will be written to a different Exodus output file with the suffix h. In this
case the history file name is fixture-out.h. The history file is 20,000 times smaller than
the ordinary output file. Finally, the restart option in the solution section means that the
file fixture-out.rslt_trans will be written. It is possible to restart the simulation using this
restart file, as described in the Users’ Guide.

In a modal transient simulation, the transient problem is projected onto the subspace
spanned by the mode shapes of a user specified number of the lowest frequency modes.
Modal transient simulations are often convenient when a system has to be modeling using
several loads. The transient keyword has been replaced by the modaltransient keyword.
Also, a single input file is used for both the initial eigenvalue problem (20 modes), and the
following modal transient solution. This is called a multicase solution. Another difference is
that the plural loads section has been replaced by a numbered load block; this is always
the case with a multicase simulation.

Returning to the first solution case in the modal transient simulation, the eigenvalue
problem, a shift is set to −1e+ 6. The default shift is −1. Here the first eigenvalue is
1e+ 8. The eigenvalue problem is solved more efficiently and accurately if the shift is
approximately −1 times the lowest nonzero eigenvalue (flexible mode).

The frequency response function is used for example to confirm engineering assumptions
about the frequency content of the accelerations. The modalfrf solution case showing in

3



the input file 5 concerns the frequency response function

û(ω) = (K+ iωC−ω2M)−1f̂(ω), i=
√
−1.

Modal frequency response refers to using the mode shapes to diagonalize the transfer
function. A linear solver is not used to evaluate the transfer function, but is used in solving
the eigenvalue problem. The function here describes the frequency dependent load, the
Fourier transform of the temporal load. The damping section supplies the coefficient for
mass proportional damping, C = γM . The frequency block sets the spatial location and
frequency range of the load.

In the modal frequency response problem note that there is both a history section and a
frequency section. The input file is for a multicase simulation. The history file section
applies to the solution of the eigenvalue problem, and is ignored during the solution of the
frequency response problem. And the frequency response section is ignored during the
solution of the eigenvalue problem, and applies only to the frequency response problem.

The last input file 6 will be discussed in the next section.

2. Thread Parallelism

In addition to decomposition based MPI parallelism, Sierra/SD also supports thread
parallelism on some platforms (currently Trinity and GCC development platforms).
Threads are activated by the command line option “-nt <numThreads>”. The
‘numThreads’ given will be the number of OpenMP threads to use on each MPI rank.
Threaded execution is most valuable on large models. Using a mixture of thread
parallelism and MPI parallelism can give optimal performance when the number of MPI
processes required would otherwise be very large. As a rule of thumb thread parallelism
will provide benefit when exceeding about 200 MPI processes or when more cores are
required than MPI ranks to obtain more memory. When using thread parallelism, the
number of threads used times the number of MPI ranks used should be setup to be equal
the total number of processor cores available on compute nodes.

Note: while the number of threads used in Sierra/SD is controlled by the command line
option “-nt”, it is recommended that the user also set the environment variable
‘OMP_NUM_THREADS’ to be the same value. While Sierra/SD doesn’t depend on
‘OMP_NUM_THREADS’, there might be other aspects of your workflow that would, and
so we recommend setting both to be consistent. In fact, Sierra/SD will output a warning
if ‘OMP_NUM_THREADS’ does not match the value set by “-nt”.

2.1. Debugging Threading Approaches

Choosing an ideal set of parameters for a threaded run can be complex. There are many
options to choose from, and availability can vary. As such, it is frequently useful to obtain
information about exactly what your chosen set of parameters is doing on a given system.
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There are several stand-alone codes that will accomplish this goal, but in Sierra/SD we
have incorporated a summary table that includes information about MPI ranks, threads,
the physical core on which each thread is running, and the core affinity of each thread.
This table will be output in a typical run if the “timing_summary” or
“threading_summary” options are requested in the echo block. Alternatively, you can
output this table directly with the - -threading command line option, i.e.

mpirun -n 4 salinas -nt 2 --threading

This option allows you to check your run command and the effect of any environment
variables without invoking a full Sierra/SD run. Additionally, we will always issue a
warning if we detect any over-subscribed cores.

2.2. Batch Submission / Optimal Parameters for KNL

If you are not familiar with using a queued system, proceed with caution. A project can
easily go behind schedule. Due diligence (as described in the Users Manual) is necessary to
minimize the possibility of an input file error. Also, there may be more than one queue. It
is also important to do as much work as possible in the fastest queue.

Batch submission scripts for threaded runs must be tailored to the system you’re running
on. In the following example, we will focus on the Knights Landing (KNL) processor, as
found on the Mutrino-KNL platform.

There are 68 CPUs on a KNL node. Each has 4 hyperthreads. They are numbered 0 -
271.

• Cores 0 - 67 are the first hyperthread on CPUs 0 - 67

• Cores 68 - 135 are the second hyperthread on CPUs 0 - 67

• Cores 136 - 203 are the third hyperthread on CPUs 0 - 67

• Cores 204 - 271 are the fourth hyperthread on CPUs 0 - 67

The following will like the “Sierra" script set up a run on Mutrino/KNL including the
number of nodes needed.

#!/bin/bash
module load sierra/release.knl
export PATH=path_to_salinas:$PATH

#sbatch settings
accountNumber="your_WC_ID"
time="04:00:00"

# input/decomp settings
inputFile="myExampleProblem.inp"
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numRanks=51 # number of MPI procs/ranks
numThreadsPerRank=4 # number of threads per proc/rank

# machine-specific information... obtain using lscpu
numSocketsPerNode=1 # number of sockets per node

# for KNL, this is 1
numCoresPerSocket=64 # number of cores per socket

# 68 for KNL, but we don’t want to use them all
# -> say 64

numThreadsPerCore=4 # number of CPUs/threads per core (hyperthreads)
# for KNL, this is 4

###################### USER INPUT SECTION FINISHED #######################

# Determine number of sockets/nodes needed for procs*threads requested
# NOT USING HYPERTHREADS
maxNumRanksPerSocketNeeded=$[numCoresPerSocket/numThreadsPerRank];
minNumThreadsPerRankNeeded=\
$[numCoresPerSocket*numThreadsPerCore/maxNumRanksPerSocketNeeded];

minNumSocketsNeeded=$[numRanks/maxNumRanksPerSocketNeeded]
remainder=$[numRanks%maxNumRanksPerSocketNeeded]
if [ $remainder -gt 0 ]; then

minNumSocketsNeeded=$[minNumSocketsNeeded+1]
fi

minNumNodesNeeded=$[minNumSocketsNeeded/numSocketsPerNode]
remainder=$[minNumSocketsNeeded%numSocketsPerNode]
if [ $remainder -gt 0 ]; then

minNumNodesNeeded=$[minNumNodesNeeded+1]
fi

echo
echo "Machine info..."
echo -n "# sockets per node = $numSocketsPerNode, "
echo -n "# cores per socket = $numCoresPerSocket, "
echo "# threads per core = $numThreadsPerCore"
echo
echo -n "Requested $numThreadsPerRank threads "
echo "and $numRanks MPI ranks"
echo
echo -n "Allocated $minNumThreadsPerRankNeeded threads per rank, "
echo -n "$maxNumRanksPerSocketNeeded ranks per socket, "
echo -n "$minNumSocketsNeeded sockets, "
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echo "and $minNumNodesNeeded nodes"
echo

echo "Generating sbatch submission script s̈batchScript.sh"̈
echo

echo "#!/bin/bash" > sbatchScript.sh
echo "#SBATCH --account=$accountNumber" >> sbatchScript.sh
echo "#SBATCH --nodes=$minNumNodesNeeded" >> sbatchScript.sh
echo "#SBATCH --time=$time" >> sbatchScript.sh

# MUTRINO... use these to get to the KNL partition
echo "#SBATCH -p knl" >> sbatchScript.sh
echo "#SBATCH -C knl,compute,quad,cache" >> sbatchScript.sh

echo "export OMP_NUM_THREADS=$numThreadsPerRank" >> sbatchScript.sh
echo "export OMP_PROC_BIND=true" >> sbatchScript.sh

echo "srun --cpu-bind=threads --cpus-per-task=$minNumThreadsPerRankNeeded \
-n $numRanks \
salinas -nt $numThreadsPerRank -i $inputFile" >> sbatchScript.sh

sbatch sbatchScript.sh

The command “source script.name” runs the script. The script was designed to be
adaptable to systems other than Mutrino/KNL. In the following section it is modified to
run on HPC Clusters. Users are strongly advised to verify that their approach behaves as
expected. After writing a script, but before running it, reduce the duration to say one
minute and replace “-i ${inputFile}” with “–threading”. It should run quickly. And it
shows where threads are allocated. Also, run the script provided here without the actual
sbatch command. It should generate “sbatchScript.sh”.

2.3. Parameters for Running on HPC Clusters

Every HPC platform will have different chip architectures, necessitating changes to the
environment variables used for launching applications that use both MPI and threading. In
this section, we provide the required modifications to the above Mutrino script needed for
optimally running threaded applications on an Instritutional Cluster. These script
modifications include different environment variables that account for the differences in
chip architectures as well as changes to account for differences in the executables needed
for launching MPI jobs. Sierra/SD is traditionally run as a MPI only process on an
Institutional Cluster. However, in some instances cores on each compute node are left idle,
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and it therefore makes sense to put those idle cores to use by using threads. This is often
the case for memory bound problems, in which case the use of threads is an attractive
solution as it does not lead to an increase the in memory. As such, we have modified the
Mutrino/KNL script from the previous section with settings that we have found to work
for the cluster, and which may be useful when setting up a run on other machines using
threading.

#!/bin/bash
module load sierra-devel/intel-17.0.1-openmpi-1.10
export PATH=path_to_openmp=on_salinas_build:$PATH

#sbatch settings
accountNumber="your_WC_ID"
time="04:00:00"

# input/decomp settings
inputFile="myExampleProblem.inp"
numRanks=51 # number of MPI procs/ranks
numThreadsPerRank=4 # number of threads per proc/rank

# machine-specific information... obtain using lscpu
numSocketsPerNode=2 # number of sockets per node

# for chama, this is 2
numCoresPerSocket=8 # number of cores per socket

# for chama, this is 8
numThreadsPerCore=1 # number of CPUs/threads per core (hyperthreads)

# for chama, this is 1

###################### USER INPUT SECTION FINISHED #######################

# Determine number of sockets/nodes needed for procs*threads requested
# NOT USING HYPERTHREADS
maxNumRanksPerSocketNeeded=$[numCoresPerSocket/numThreadsPerRank];
minNumThreadsPerRankNeeded=\
$[numCoresPerSocket*numThreadsPerCore/maxNumRanksPerSocketNeeded];

minNumSocketsNeeded=$[numRanks/maxNumRanksPerSocketNeeded]
remainder=$[numRanks%maxNumRanksPerSocketNeeded]
if [ $remainder -gt 0 ]; then

minNumSocketsNeeded=$[minNumSocketsNeeded+1]
fi

minNumNodesNeeded=$[minNumSocketsNeeded/numSocketsPerNode]
remainder=$[minNumSocketsNeeded%numSocketsPerNode]
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if [ $remainder -gt 0 ]; then
minNumNodesNeeded=$[minNumNodesNeeded+1]

fi

echo
echo "Machine info..."
echo -n "# sockets per node = $numSocketsPerNode, "
echo -n "# cores per socket = $numCoresPerSocket, "
echo "# threads per core = $numThreadsPerCore"
echo
echo -n "Requested $numThreadsPerRank threads "
echo "and $numRanks MPI ranks"
echo
echo -n "Allocated $minNumThreadsPerRankNeeded threads per rank, "
echo -n "$maxNumRanksPerSocketNeeded ranks per socket, "
echo -n "$minNumSocketsNeeded sockets, "
echo "and $minNumNodesNeeded nodes"
echo

echo "Generating sbatch submission script s̈batchFile"̈
echo

echo "#!/bin/bash" > sbatchFile
echo "#SBATCH --account=$accountNumber" >> sbatchFile
echo "#SBATCH --nodes=$minNumNodesNeeded" >> sbatchFile
echo "#SBATCH --time=$time" >> sbatchFile

# use this to run in the much faster "short" queue (16 nodes, 4 hours max)
echo "#SBATCH -p short,batch" >> sbatchFile

echo "export OMP_NUM_THREADS=$numThreadsPerRank" >> sbatchFile
echo "export OMP_PROC_BIND=true" >> sbatchFile

echo "mpiexec --map-by socket:pe=$minNumThreadsPerRankNeeded \
-n $numRanks \
salinas -nt $numThreadsPerRank -i $inputFile" >> sbatchScript.sh

sbatch sbatchFile

Note that this script will only work with a maximum number of threads equal to the
number of cores per socket. Note also that there is currently threads are disabled. To use
threads a special version of Sierra/SD needs to be build with openmp=on.
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3. Nonlinear Sierra/SM Preload Followed by Linear Sierra/SD Transient

This section will present a simple example for a nonlinear preload of a cantilever beam
followed by a linear transient analysis around that preloaded state. The content for this
section is based on an example and explanatory information provided by Vince Pericoli.
The full inputs to this model can be found on Sandia systems at:

/projects/sierra/tests/master/tests/sd_sm_coupled_rtest/howto_manual/sm_sd_handoff

This type of analysis could be used to model the shock or vibration response of a body that
has undergone substantial perturbations due to preload. In this case those perturbations
include change of shape and an initial stress state which contributes to alterations in
stiffness. The overall sequence of events being modeled are shown in Figure 3-1.

Figure 3-1. – Model Sequence.

First the cantilever beam is statically loaded in Sierra/SM.

unix> sierra adagio -i simple_cantilever_sm.i

Within the adagio deck specific output must be requested in order to pass the relevant
preload information on to Sierra/SD.

begin Results Output sd_handoff
database name = sm_output/sm_to_sd.e
additional times {end_time}
nodal variables = displacement as disp
element variables = stress
component separator character = none

end

Sierra/SM has only one output step due to additional times. This reduces file size and
also eliminates any ambiguity as to which step provides the initial state to Sierra/SD.
The component separator character = none command is used with stress and
displacement field renaming to ensure the Sierra/SM output field names are the same as
the names Sierra/SD uses internally. In this case Sierra/SM will output fields named
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“dispx”, “dispy”, “stressxx”, etc. this naming consistency is not always required, but can
simplify later steps.

For the handoff to make sense, Sierra/SM and Sierra/SD must use a consistent material
definition. For this model, Sierra/SM uses an elastic-plastic and Sierra/SD uses the
small strain linearization of that model. This is achieved by matching the youngs modulus
and poissons ratio in Sierra/SM input to the Sierra/SD input E and nu.

The bottom of the cantilever beam is fixed in the Sierra/SM analysis. In the Sierra/SD
model, the vibration will be applied via a force to a conmass which is spider-connected to
the fixed side of the beam. This conmass approach is versatile as it can also be used in
modal and frequency domain analyses. In order to get the conmass into the model for use
by Sierra/SD the conmass and spider must be merged into the adagio results.

unix> ejoin -output mesh/sm_to_sd_with_spider.e -match_node_ids \
-evar ALL -gvar ALL -nvar ALL -info_records ALL \
output_sm/sm_to_sd.e mesh/simple_cantilever_spider.g

The file create_spiders.jou is the Cubit journal file used to generate the conmass and
spider connections in a way that will be compatible with the Sierra/SM output file. The
conmass is placed at the approximate deformed shape centroid which allows applying an
applied force in Sierra/SD which will not cause a net model moment. The ejoin
match_node_ids option merges the nodes on the spider mesh fragment onto the existing
adagio output, preserving all existing output fields. In general, care should be taken to
ensure that the model is merged properly, for example visually inspecting the result or
ensuring that the merge added the expected number of nodes and elements to the model.
The output merged geometry is shown in Figure 3-2.

Figure 3-2. – Model with Merged Conmass.

The next step is run Sierra/SD.

unix> salinas -i simple cantilever_sd_shock.inp

In the Sierra/SD input first the preload state is imported via receive_sierra_data.
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case preload
receive_sierra_data
include_internal_force = off

This case will read in the Sierra/SM provided displacement and stress and use it to
update the geometric configuration and geometric stiffness for the Sierra/SD analysis. By
default, Sierra/SD would compute the internal force associated with the stress state and
apply that as force during the transient analysis. In this example the internal force is
turned off. Typically, there are two ways to define loads in the handoff analysis. If in
Sierra/SD the full physical load is applied to the model (e.g. the preloading external force
plus whatever perturbation of force is being applied for the structural dynamics results)
then include_internal_force should be on. In this case the internal force
counterbalances the external preload force applied in Sierra/SD. If only the forces for the
structural dynamic vibration are applied in Sierra/SD (as in this example), then the
include_internal_force option should be off, and the Sierra/SD model with no
external load will be in perfect static equilibrium.

For this example Sierra/SD is set up to run a transient analysis

case ’shock’
transient
start_time = 0.0
time_step = time_step
nsteps = nsteps
solver = GDSW
rho = 0.9

Note the start time is explicitly set to zero. If start time is unspecified, the Sierra/SD
transient analysis will start at the end time of the Sierra/SM analysis.

A key point to remember is that the Sierra/SD output of stress will not be a total stress
(i.e. a superposition of the preload stress and the linear perturbation around that preload
stress). Instead, the Sierra/SD output will only contain the linear stress perturbation
output. Similarly, the displacement output by Sierra/SD will not be the displacement vs.
the original undeformed model configuration, but rather the displacement vs. the preload
deformed shape.

The example problem mentioned previously demonstrates a rather convoluted set of
commands to yield a superimposed total stress state. It is documented here for the
interested reader.

# Rename preload and transient variables, so they exactly match
unix> algebra output_sd/shock-preload.e output_sd/preload_mod.e

algebra> vstressx = stressxx
algebra> vstressy = stressyy
algebra> vstressz = stresszz
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algebra> vstressxy = stressxy
algebra> vstressxz = stresszx
algebra> vstressyz = stressyz
algebra> save vstressx
algebra> save vstressy
algebra> save vstressz
algebra> save vstressxy
algebra> save vstressxz
algebra> save vstressyz
algebra> time = time-1

unix> algebra output_sd/shock-shock.e output_sd/shock-shock_mod.e
algebra> save vstressx
algebra> save vstressy
algebra> save vstressz
algebra> save vstressxy
algebra> save vstressxz
algebra> save vstressyz

# Combine preload and transient state to single time series
unix> conjoin -output output_sd/comb.e output_sd/preload_mod.e \

output_sd/shock-shock_mod.e

# Compute total stress by adding preload and transient stress
unix> algebra output_sd/comb.e output_sd/total_stress.e

algebra> total_stress_xx = vstressx + vstressx:1
algebra> total_stress_yy = vstressy + vstressy:1
algebra> total_stress_zz = vstressz + vstressz:1
algebra> total_stress_xy = vstressxy + vstressxy:1
algebra> total_stress_yz = vstressyz + vstressyz:1
algebra> total_stress_xz = vstressxz + vstressxz:1
algebra> save all

# Remove the first step of the file (it now has double the preload stress)
unix> ejoin -steps 2:51 -output output_sd/total_stress_trunc.e \

output_sd/total_stress.e

Note: when superimposing stress, von Mises outputs should not be added together. If von
Mises stress output is needed, the stress tensor components should be added and the von
Mises stress result recomputed from that total stress tensor. An example total stress
output is given in Figure 3-3. Note that the stress starts at the initial preload stress value
and then oscillates around that value in response to the applied vibration loading.
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Figure 3-3. – Total Stress Output.

4. Coupled Sierra/SM- Sierra/SD Modal Analysis with Fiber Shells

In this section, we describe how to run a modal analysis using Sierra/SM, also known as
Adagio. This is a multi-step approach that uses Sierra/SM and Sierra/SD separately,
and couples the data using receive_sierra_data. A nonlinear preload is computed in
Sierra/SM, followed by a modal analysis in Sierra/SD. In this approach, the modal
analysis is performed about the nonlinear state that is computed in Sierra/SM. An
updated Lagrangian approach is used - this implies that the nodal coordinates in
Sierra/SD are computed as the sum of the initial coordinates, plus the final set of
displacements computed in Sierra/SM. This is the most convenient approach, since the
modes about the deformed state are typically of most interest. 1

Handoff between Sierra/SM and Sierra/SD uses a handoff of files between separate
runs. In this approach, Sierra/SM writes the necessary data to the output Exodus file,

1Receive_sierra_data has 3 primary use cases.

a. Preload from Sierra/SM, where displacements and stresses are passed, Sierra/SD reads those
in, adjusts the tangent stiffness matrix, and computes modes.

b. Preload from SM, where displacements and stresses are passed, Sierra/SD reads those in, adjusts
the tangent stiffness matrix and equilibration forces, and then computes a transient response to
some load that is specified in SD input.

c. Implicit or Explicit transient analysis in SM, followed by a handoff to an implicit transient in
Sierra/SD. By default, Sierra/SD will start at the end time of the SM handoff analysis.
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and then Sierra/SD reads this data in and executes the modal analysis. This approach
has been found to be useful for running large models, since it breaks the overall
computation into two phases, and thus acts as a restart.

A file transfer approach that couples Sierra/SM and Sierra/SD proceeds as follows. We
assume that the Sierra/SM input file is named ‘sierra.i’, and the Sierra/SD input file is
named ‘salinas.inp’. The model consists of four layers of material, with a membrane layer
between the bottom layers, as shown in Figure 4-4.

1. Construct input decks for both Sierra/SM (sierra.i) and Sierra/SD (salinas.inp).
There are modifications to the standard that are required for both input decks, and
these will be described below.

2. Execute Sierra/SM

3. The output Exodus file that is assigned in Sierra/SM is used as the geometry file
for the Sierra/SD analysis. This step will need to be inserted manually by the user.

4. Execute Sierra/SD. Some of the steps of the analysis are indicated in Figure 4-5.

5. The eigenvalues and modal frequencies are listed in the salinas.rslt file, and both
the modal frequencies and mode shapes are in the file salinas-two.exo, assuming
that the second case in the Sierra/SD input deck has the name two (see example
below).

Figure 4-4. – SM/SD Transfer Model Geometry.

The Sierra/SM input specifications for how to create this output Exodus file is in a later
section (4.2). A verification test is available in the Sierra/SD verification section in the
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1. Read displacements, stresses and some material parame-
ters from previous SM analysis. These are found in the
Exodus output from SM.

2. Move coordinates, X ′ =Xo+U .

3. Compute element stiffness matrices from material proper-
ties.

4. Adjust stiffness matrices for stress preload.

5. Generate constraints.

6. Assemble system level matrices and compute eigen prob-
lem.

Figure 4-5. – Steps in Sierra/SD Coupled Analysis. Most properties and element matrices
are recomputed in SD.

test repository, where a prescribed displacement is applied in the X-direction in
Sierra/SM, and then a modal analysis is performed in Sierra/SD.

For tire models, the thickness scale factor variable in the Sierra/SM input deck is
required for a coupled Sierra/SM-Sierra/SD analysis. This parameter is the same as the
fiber diameter, which is specified in the material section for the membranes. This
parameter is needed for the coupled analysis, because it is used to determine the modulus
of the fibers, which are in turn used in Sierra/SD to construct the stiffness matrix.

4.1. Sierra/SD parameters for file transfer with Sierra/SM

Next, we consider a typical Sierra/SD text input in Figure 4-6. There are several sections
of interest in this input deck. The syntax involved in a Sierra/SD input is described in
User’s Manual. Here, we assemble an example that collects the inputs in different sections,
and highlight those areas that are different due to the SM coupling.

The solution section contains two cases. Case one uses the receive_sierra_data
solution procedure to receive the necessary data from Sierra/SM. This is where all of the
data transfer takes place, including data such as stresses, displacements, and analysis time.
The second case instructs Sierra/SD to perform a modal (or eigen) analysis about the
nonlinear state that was received from Sierra/SM. In this case, 10 modes are requested.
Also, the GDSW solver is requested in this case. This solver is usually needed in problems
with large numbers of constraint equations that are generated with tied data pairs.

The boundary section specifies nodesets and sidesets that are to be fixed. The four edges
of the plate, which are denoted by sidesets 21, 22, 11, and 20, are fixed. These boundary
conditions diff from those used in the Sierra/SM analysis. The boundary conditions in
the Sierra/SD modal analysis may be the same or different than those used in the
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SOLUTION
case one

receive_sierra_data
scale=no
lumped

case two
eigen
nmodes 10
solver=gdsw

END

FILE
geometry_file ’mesh.g’

END

Boundary
sideset 21

fixed
sideset 22

fixed
sideset 11

fixed
sideset 20

fixed
end

LOADS
END

OUTPUTS
disp

END

ECHO
INPUT

END

BLOCK 11
QuadM

layer 1
material ply
thickness = from_transfer
fiber orientation = from_transfer

END

BLOCK 1
material 2

END

BLOCK 2
material 2

END

BLOCK 6
material 2

END

BLOCK 5
material 2

END

MATERIAL 2
name "steel"
E 30.0e6
nu 0.0
density 2.61e-4

END

MATERIAL ply
name "ply"
density = from_transfer
orthotropic_layer
E1 = from_transfer
E2 = from_transfer
nu12 = from_transfer
G12 = from_transfer
percent_continuum 0.005

END

Tied Data
surface 2 1
search tolerance 0.2
edge tolerance 1.0e-8
method = inconsistent

END

Figure 4-6. – Salinas input deck for coupled Adagio-Salinas analysis
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Sierra/SM analysis, depending on the goals of the analysis. Only one Boundary section is
applied in the Sierra/SD input, and it applies to the entire SD analysis.

Since there are no loads associated with a modal analysis, the loads section is empty.

In this example, Block 11 is a block of membrane elements. These elements are currently
setup as layered elements in Sierra/SD, even though there is only one layer. Thus, the
layer 1 specification is needed. Following this, the material name, layer thickness and fiber
orientation are needed. In this case, the latter two come in as data from the Sierra transfer,
and from_transfer is used in lieu of a numerical value. If this were an uncoupled analysis,
numeric values would be used instead. The remaining four blocks are hex elements, and
thus the only required input syntax is the specification of the material identifier.

For the ’orthotropic_layer’ material many element attributes may be specified as
from_transfer. Table 4-1 summarizes some of the quantities that may be exchanged in
the read_sierra_data process using the from_transfer option for the ’orthotropic_layer’
material.

Quantity Descriptor

element attribute
Nearly any element attribute that can be stored
in the Exodus file may also be exchanged using
from_transfer.

fiber orientation 2D fiber orientation in a layer
thickness 2D shell layer thickness
E1 material modulus
E2 material modulus
nu12 material modulus
G12 material modulus
density material density

Table 4-1. – Orthotropic_layer Quantities Available for FROM_TRANSFER Exchange in
Read_Sierra_Data.

Next, the two material blocks are specified. Material 2 is specified to be an isotropic elastic
material, with Young’s modulus, Poisson ratio, and material density. These values can be
different than those used in the Sierra/SM analysis, and in fact they typically are.

Material ‘ply’ corresponds to the membranes. Here, there are several parameters that are
required to fully specify the orthotropic material properties, and density. However, all of
these properties are transferred from Sierra/SM, and thus the from_transfer option is
used in lieu of numerical values.

Next, we consider the Tied Data block. As mentioned earlier, most of the parameters in
this section are described more fully in User’s Manual. Here, we only focus on the special
considerations needed for coupled Sierra/SM-Sierra/SD analysis. In particular, the
search tolerance parameter is used by Sierra/SD to determine which nodes are in contact.
We recommend using a very small search tolerance in Sierra/SD, since at the end of the
Sierra/SM analysis the surfaces will already be in close contact.
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Finally, although the previous example did not involve pressure forces, we note that when
pressure loads are used in the Sierra/SM preload analysis, a follower stiffness term needs
to be activated in Sierra/SD. For example, if a pressure of 0.2 was applied to sideset 1 in
the Sierra/SM input deck, then the following block would be needed in the Sierra/SD
input deck

LOADS
sideset 1

pressure = 0.2
follower = y

END

Although no error will be reported if this block is left out, the results may be inaccurate.

4.1.1. Sierra/SD parameters for file transfer with custom variables in Sierra/SM

The purpose of receive_sierra_data is transfer of data from a previous Sierra/SM
analysis to Sierra/SD. Relevant data is mostly transferred automatically based on
expected naming conventions. However, Sierra/SM supports user-defined variables and
user-defined labels for common variables such as stresses, displacements, and analysis time,
which are written to the Exodus file. Only accurately labeled data will be transferred
from the Exodus file. An exact match is required. Sierra/SD also supports user-defined
label mappings using initialize variable name, read variable, and variable type
options in the FILE section. An example for displacements is shown below, where nodal
displacements are stored as “dx”, “dy”, and “dz” on the input geometry file input_mesh.g.

FILE
geometry_file = input_mesh.g

initialize variable name = displacement(x) # x-component of displacement
variable type = node # is stored in a nodal field
read variable = dx # on input_mesh.g named "dx"

initialize variable name = displacement(y) # y-component of displacement
variable type = node # is stored in a nodal field
read variable = dy # on input_mesh.g named "dy"

initialize variable name = displacement(z) # z-component of displacement
variable type = node # is stored in a nodal field
read variable = dz # on input_mesh.g named "dz"

END

A complete list of valid label keys for (initialize variable name) can be found in the
Users manual.
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4.2. Sierra/SM output parameters for Sierra/SD modal analysis using file
transfer

When running Sierra/SM a list of quantities needs to be written to file for the subsequent
Sierra/SD modal analysis. The names of the variables must be set properly in the
Sierra/SM output or Sierra/SD will not read the data.

For a typical analysis, the only parameters needed are the stress and displacement.

begin Results Output output_adagio
Database Name = stage1.e
Database Type = Exodus
At Step 0, Increment = 1
nodal Variables = displacement as displ
element Variables = stress

end results output output_adagio

The following parameters need to be added to the Sierra/SM output section for a tire
model.

begin Results Output output_adagio
Database Name = stage1.e
Database Type = exodus
At Step 0, Increment = 1
component separator character = ""
nodal Variables = displacement as displ
element variables = cord_modulus as fibermod
element variables = memb_stress as memb_stress
element Variables = stress
element Variables = density as fiberdensity
element Variables = element_thickness as fiberthickness
element variables = cord_ax as ax
element variables = cord_ay as ay
global Variables = timestep as timestep

end results output output_adagio

This will then create the stage1.e file, which will contain all of the data necessary for
Sierra/SD.

The next step is to decompose this file into the number of required partitions for the modal
analysis. For example, if the modal analysis expects to use 10 processors, then one could
use the commands

unix> mpirun -np 10 stk_balance stage1.e split
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These commands will create the 10 partitioned files. Sierra/SD can then be executed
using the command

unix> mpirun -np 10 ./salinas salinas.inp

After the Sierra/SD analysis is complete, it is typically desirable to join the parallel
results files into a single file. This is typically done with the tool epu. Although some of
joining tools allow the user to specify a base Exodus file, for these coupled nonlinear-modal
analyses, the incoming Exodus file for Sierra/SD has both initial coordinates and
displacements. The current configuration for the modal analysis is determined by adding
the original coordinates and the displacements to obtain the “deformed” configuration.
Thus, for the joining process, it is necessary to use a base Exodus file that has the
displacements added to the original model coordinates. Otherwise, the final joined file will
not have the correct updated coordinates. The safest and easiest approach is to not specify
a base Exodus file in the joining process. With epu the base file is optional.

4.2.1. Syntax differences and design tips

Key syntax differences and design tips between Sierra/SM and Sierra SD

1. The search tolerance for the tied contacts in Sierra/SD must be set carefully in
order to ensure that nodes that are in contact in Sierra/SM are in contact in Sierra
SD and vice versa.

a) Use very small search tolerance, in the range of one to two orders of magnitude
smaller than the capture tolerance in Sierra/SM should be sufficient.

b) Ideally, nodal contact information should be passed directly from Sierra/SM to
Sierra/SD (not currently available).

2. The sidesets used to define the tied contacts in Sierra/SD must be defined in the
input Exodus file used by Sierra/SM, even if they are not used in Sierra/SM.

3. The material properties for each element are not passed from Sierra/SM to
Sierra/SD. This is important with nonlinear models.

4.2.2. Modifications for modal analysis following SST analysis

When Sierra/SM is used for an SST analysis, the same procedure for computing modes in
Sierra/SD can be followed, with minor modifications.

For each block, a rotational_type has to be specified to indicate the rotational state of
that block. For a rotating body, this quantity would either be set to Eulerian or none,
indicating that the block is rotating in an Eulerian framework or not at all. For the blocks
on the rotating body, use Eulerian, whereas for the stationary block, use none. An
example is given below.
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BLOCK 1
material 1
hex8u
sd_factor=1
rotational_type Eulerian

END

The rotational speed of the rotating body is specified in the loads section. This speed is
specified as a vector with three components, each one giving the rotational speed about the
corresponding global coordinate axis. An example is given below

LOADS
body

rotation = 0 2.95 0
END

For SST analysis, a torque is typically specified in Eagle, and a corresponding rotational
velocity is computed. Since this speed is not known beforehand, it must be output from
the Eagle run as a global variable. Then, that variable can be input into Sierra/SD. The
following output section will write the steady-state rotational velocity to a global variable
called sstrvel.

begin results output output_1
database name = model.e
database type = exodusII
component separator character = ""
at step 0 increment = 1
global variables = TOTAL_ITER AS I_TOTAL
global variables = sstrvel_1 as sstrvel

end results output output_1

Once sstrvel is known, it can then be copied to the Sierra/SD input deck.

The projection method to approximate the eigenvalues of rolling bodies. The syntax for
this in the solution section is given below.

SOLUTION
solver=gdsw
case one

receive_sierra_data
lumped

case two
qevp
method=projection_eigen
lumped
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nmodes=20
shift = -100.0

END

4.3. Rigid Rims, Coupling with Concentrated Masses, and Superelements

In some cases, it is desirable to treat parts of the mesh as rigid bodies during the modal
analysis. This can be accomplished in Sierra/SD using the rigid set capability. For
example, if sidesets 901 and 902 surround two pieces of the mesh, then the following
command block will make the surfaces rigid. Although, in theory, these parts would be free
to deform, the resulting modes would be very high frequency and thus out of range of the
normal interest.

rigidset set1
sideset 901
sideset 902

END

It is also often effective to add the mass properties of a rigid body onto its centroid. This
can be accomplished by coupling to a concentrated mass. For this, a sphere element needs
to be added to the mesh file. This can be done with a tool to manipulate the mesh such as
Patran (with gjoin) or Cubit. The sphere can be added to the Sierra/SM input file, and
it will be inactive for the first stage analysis. For the Sierra/SD portion, the following
blocks would connect the concentrated mass to the rigid body

rigidset set1
sideset 901
sideset 902
centernode tied to node 28539 block 20

END
BLOCK 20

coordinate 1
Joint2G
kx=elastic 1.0e+10
ky=elastic 1.0e+10
kz=elastic 1.0e+10
krx=elastic 1.0e+10
kry=elastic 1.0e+10
krz=elastic 1.0e+10

END
BEGIN RECTANGULAR COORDINATE SYSTEM 1

origin 0 0 0
z point 0 0 1
xz point 1 0 1
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END
BLOCK 17

conMass
mass 1.0e1
Ixx 1.0e1
Iyy 1.0e1
Izz 1.0e1
Ixy 0.0
Ixz 0.0
Iyz 0.0
offset 0 0 0

END

In this example, block 17 is the concentrated mass, and contains both the mass and inertial
properties of the rigid body. Thus, the actual rigid body would be given zero density.
Block 17 is also node 28539, and is connected to the reference node of the rigidset through
block 20 via the statement the statement "centernode tiedto node 28539 block 20".
The reference node of the rigidset is chosen to be the node in the rigidset that is closest to
its geometric centroid (which is computed by averaging the coordinates of the nodes in the
rigidset). Since that node will most likely not be at the same location as the concentrated
mass node, block 20 will usually have a non-zero length.

We also note that in the statement "centernode tiedto node 28539 block 20", Node
28539 must be connected to a virtual Joint2G block, in this case block 20. That is, block
20 is not part of the mesh file in Exodus, but instead is created internally in Sierra/SD
during execution of the code. It is necessary that block 20 be a virtual Joint2G block,
otherwise the code will die with a fatal error message. This element provides 6 components
of elastic resistance (3 translations and 3 rotations) between the concentrated mass and the
reference node of the rigid body. As these elastic stiffnesses increase, the effect converges to
a rigid bar between the pair of nodes.

This same approach can be used to couple to a superelement in the case where the
superelement has a single interface node. In that case, the superelement is also represented
in the mesh with a sphere element, and the coupling between the superelement and the
reference node of the rigid body is specified in exactly the same manner. In this case,
however, block 17 is defined to be a superelement rather than a concentrated mass, and is
given a corresponding netcdf file that contains the reduced mass and stiffness matrices of
the superelement.

rigidset set1
sideset 901
sideset 902
centernode tiedto node 28539 block 20

END

BLOCK 20
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coordinate 1
Joint2G
kx=elastic 1.0e+10
ky=elastic 1.0e+10
kz=elastic 1.0e+10
krx=elastic 1.0e+10
kry=elastic 1.0e+10
krz=elastic 1.0e+10

END
BEGIN RECTANGULAR COORDINATE SYSTEM 1

origin 0 0 0
z point 0 0 1
xz point 1 0 1

END
BLOCK 17

superelement
file=’superelement.ncf’
map

// local grid id cid
1 1
1 2
1 3
1 4
1 5
1 6
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

END

5. Encore Transfers

In this section, we will describe how to transfer velocity data to an acoustic mesh using
Encore. The purpose is to transfer velocity data written by Presto to data that can be
used by Sierra/SD to generate an acoustic analysis. We will present an example of a
script that would accomplish this transfer. In order to execute this script, the following
command would be used.
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sierra encore -i gw_transfer.i -j 1

Encore maps the data from a standard Presto output (.e) file to a new (.e) file that is
subsequently read in by Sierra/SD and used for the acoustic analysis. The new data file is
now ready to be called by Sierra/SD for acoustic analysis.

In order to understand how the Encore Procedure works, a step-by-step tutorial of the
input deck (gw_transfer.i) is provided. The code begins as follows to call the Encore
procedure:

Begin Sierra Encore

5.1. Define Solid Mesh

Before executing Encore, it is necessary to define the various files that will be read and
written to. In this case, a gw.e file that contains the velocity data required to perform the
Encore function is given the identifier solid_mesh. Whenever called, this keyword will
direct the script to the gw.e file. Note that the keyword can be any name the user
chooses.

Begin Finite Element Model solid_mesh
Database Name = gw.e
Component separator character is NONE

End Finite Element Model

Similarly, the next block defines a keyword,acoustic_mesh, which points Encore to the file
containing acoustic mesh data.

Begin Finite Element Model acoustic_mesh
Database Name = deform_acoustic_mesh.exo

End Finite Element Model

5.2. Encore Transfer Procedure

The following is the Encore Procedure that uses the Sierra input defined above to complete
a mapping from the solid mesh to the acoustic mesh. Note that there are two regions listed
in this block that have not been defined yet, but will be defined later in the code.
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Begin Encore Procedure encore_transfer_proc

Begin Solution Control Description
Use System main
Begin System main

Begin Transient encore_trans
Advance solid_region
Transfer solid_to_acoustic

Event Reinitialize solid_to_acoustic
Advance acoustic_region

End

There are four basic steps that make up the Encore procedure. They are:

1. Advance solid_region

At the start of the loop, the solid mesh region will advance one time step.

2. Transfer solid_to_acoustic

A transfer will take place from the solid to the acoustic mesh at the time step defined
in the previous step. This process will match nodes from the solid region with nearby
nodes in the acoustic region. Keep in mind that the tire is rolling while the acoustic
mesh is stationary, and therefore the nodes on the boundary of the tire that contain
velocity data are constantly changing with respect to the fixed acoustic mesh.

3. Event Reinitialize solid_to_acoustic

Due to the movement of the nodes in the solid region, the paired nodes will separate
beyond a specified tolerance. This causes a need for re-initialization for the next time
step. The data obtained just before the re-initialization will map to a time step in
the acoustic region, and will create the desired acoustic data.

4. Advance acoustic_region

The acoustic region will then advance one time step and the loop will repeat.

5.3. Simulation Time

The next block determines how much of the Presto mesh will be transferred and then ends
the transfer procedure. Considering that the Presto mesh has data corresponding to time 0
through time x, the Simulation Termination Time is set to some arbitrary time much larger
than x to ensure that all the data is transferred. If only a portion of the data is desired,
the Simulation Start Time and the Simulation Termination Time can be set to values in
between 0 and x, but these capabilities have not been extensively tested.
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Simulation Start Time = 0
Simulation Termination Time = 100000000000
Simulation Max Global Iterations = 3106 #Arbitrarily Large

End
End

5.4. Encore Transfer Definition

This block defines how Encore will interpolate data from one region to another. There are
three surfaces in the solid_region, surface_1000, surface_1001, and surface_1002,
which will map to a single surface, surface_3, in the acoustic_region. The data to be
transferred is identified as velocity data, which is specific to this particular problem.
Options other than velocity mapping can be used and include displacement, acceleration.
Consider the already mentioned example of a rotating tire. The solid_region is the outer
surface of the tire that contains sending elements. The acoustic_region wraps around this
outer surface and contains receiving points to gather information from the sending
elements. In between the sending element nodes and the receiving point nodes exist very
small gaps. A contact search is done to find out which nodes are near enough to one
another to be considered neighbors. There are two tolerances used to define how far these
elements can be apart before they are no longer candidates for data transfer. The first is a
surface gap tolerance which checks to see if the receiving point intersects a bounding
box volume around the sending element plus some small amount. This small amount is the
surface gap and in this example can not exceed 1 mm. The second tolerance specified is a
geometric tolerance that will check to see if the receiving point intersects the element
volume plus a small amount. For this example, this gap must also be within 1 mm. Thus,
the surface gap tolerance narrows the search to a small number of elements while the
geometric tolerance searches through that smaller number of elements to find the “best”
sending element to map from.

begin Transfer solid_to_acoustic
interpolate surface nodes from solid_region to acoustic_region
send block surface_1000 surface_1001 surface_1002 to surface_3
Send field vel State New To vel State New
search surface gap tolerance = 1.0
search geometric tolerance = 1.0 ## 1.e-6

end

5.5. Input/Output Data

The next four blocks of code describe the nature of the input information and where output
data from Encore can be found. Take notice that both blocks contain the line At Step 0
Increment = 1 which prescribes that all time steps are to be processed. If Increment =
2, Encore should process every other step, but this capability has not been tested.
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In the next block, data is obtained from the Presto .e file. The description Model
Coordinates Are displaced tells Encore that the solid_mesh is a moving mesh that
outputs different coordinates at every time step. Continuing, the call Import Field vel
as Nodal Field vel reads in the velocity data from the solid_region. This data is then
read back out to another .e file that can be used for debugging purposes. This file can be
directed to the location of the user’s choosing using the Database Name command.

Begin Encore Region solid_region
Use Finite Element Model solid_mesh Model Coordinates Are displaced #mode\

l_coordinates
Process Initial Condition
Import Field vel as Nodal Field vel # of Type VECTOR_3D
Begin Results Output Label solid_region_results
Database Name = /var/scratch/tfwalsh/gw2.e
Database Type = exodusII
Title Grosch Wheel Solid Debug Output
At Step 0 Increment = 1
Nodal Variables = vel
Nodal Variables = displaced

End Results Output
End

While the solid_region experiences constant motion, the acoustic_region, on the other
hand, is fixed. This is denoted by the line Model Coordinates Are model_coordinates
and means that the nodes associated with the acoustic mesh remain still and collect data
regarding their position in relation to the moving solid mesh nodes. The data collected is
output with the velocity data to a .e file in the location of the users choosing, and is then
used in a subsequent acoustic analysis. The separator characters can be controlled with the
keyword component separator character = NONE. When set to none, velocities will be
written as velx, vely, etc., without the underscores.

Begin Encore Region acoustic_region
Use Finite Element Model acoustic_mesh Model Coordinates Are model_coordi\

nates
Process Initial Condition
Create Nodal Field vel Of Type VECTOR_3D
Disable Compute Timestep
Begin Results Output Label encore_results

component separator character = NONE
Database Name = /var/scratch/tfwalsh/gw_transfer_new.e
Database Type = exodusII
Title Grosch Wheel Solid To Acoustic Transfer
At Step 0 Increment = 1
Nodal Variables = vel
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End Results Output
End Encore Region

End Encore Procedure
End Sierra

The Encore Transfer is now complete!

6. Linear Solvers

Many solution methods rely on reliable and efficient linear solvers. However, there are
features in models that may either impede convergence or degrade accuracy. The
Helmholtz linear solver is discussed separately in Section 7. In this section, common issues
are tabulated and an example with before and after configurations is reviewed.

1. Some problems occur only for models with lots of constraint equations, due to large
surfaces that are tied together (e.g. one large sideset constrained to another with
many nodes). A way to confirm that this is the issue is the check whether or not the
problem is mitigated if tied contact over large surfaces is turned off.

2. Decreasing the time step (e.g. halving) can mitigate convergence issues.

3. Suppose there are accuracy issues. Note that the tolerance on the residual is always
larger than the uncertainty in the solution vector. A linear system has a condition
number, which is always greater than 1. The uncertainty in the solution vector is the
product of the condition number and the tolerance on the residual.

4. There are alternative to GDSW. Sierra/SD provides serial sparse linear solvers,
sparsepak for symmetric positive definite systems, and SuperLU for other systems.
In addition, Pardiso is a general-purpose sparse solver that is available on Intel
platforms. These solvers are at least as robust as the iterative methods. It can be
enlightening to try to use the appropriate serial sparse linear solver as problem size
permits.

Consider, for example, the following user provided configuration of the GDSW linear
solver.

GDSW
prt_summary = 3
solver_tol = 1.0e-5
max_iter = 5000
orthog = 200
overlap = 1
diag_scaling = diagonal
scale_option = 1

END
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The options are generally intuitive. If the solver diverges, then trying a larger solver_tol
or a larger max_iter is recommended. If the solver converges, and accuracy issues arise,
then trying a smaller solver_tol, and a larger max_iter is recommended.

If the solver diverges, a larger orthog is recommended. However, there are memory usage
limitations. If there is an immediate error that could be related to running out of memory,
then try a smaller value of orthog or use more processors. See the discussion of reducing
memory usage in the training documents for details.

There is a hidden constraint on these options. With some Krylov methods, e.g. the default
of krylov_method = 1 (GMRES), it turns out that orthog ≥ max_iter. For this reason,
when divergence is a problem, users often switch to gmresClassic, which allows orthog <
max_iter.

In this example, overlap = 1 is a small value for overlap. If you are running out of
memory with a higher value, then this might be a great idea. If the linear solver is
diverging, you might try a larger value (the default is 2).

The diag_scaling = diagonal option can be used either to find a convergent solver, or to
find a more accurate solver. On the other hand, there are cases in which selecting the
option decreases accurate.

In this case study, the user ultimately changed the GDSW configuration to the following to
address convergence issues.

GDSW
solver_tol = 1e-12
overlap = 2
num_vectors_keep = 0
orthog = 4000
max_iter = 4000
krylov_method = gmresClassic

END

The option num_vectors_keep can only be used with the classic version of GMRES
(krylov_method gmresClassic). The parameter orthog controls how many search direction
are stored. We store search directions in order to make the linear solver faster. Generally
more is better but not always. The point to understand is which search directions are
stored. In this example, the first 4000 search directions are stored. On later solves, the first
num_vectors_keep are saved and recycled. The default value of num_vectors_keep is
orthog/2. In this case the solution has changed significantly and you don’t want to use
any of the old search directions. num_vectors_keep = 0 tells GDSW to start afresh and
remove all search directions every time the maximum is reached. Thus, the benefits of
recycling are still retained, but the entire search space is periodically purged of older search
directions.
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7. Frequency response linear solver

This section is about using the Helmholtz linear solver. The reader is assumed to be
familiar with all the other documentation. Iterative linear solvers for some other types of
problems are discussed in Section 6. At this time using solver_tol below the default
value is not recommended due to observed inconsistencies suggesting that the wrong
answer can be returned to the user. Clarifying this issue has a low priority at this time.

7.1. Insufficient virtual memory problems

If insufficient memory problems arise, users must determine their cause and explain them.
This is difficult.

Zeroing out orthogH conserves memory. Note that the Helmholtz linear solver is less
mature than some other parts of GDSW. I have noticed in the past that setting
krylov_methodH to 1 changed orthogH to 1000 (of course 1000 is the default value of
orthog and 20 is the documented default value of orthogH). The Sierra/SD parser has
default value 0 for orthogH. It is necessary to monitor the value reported for orthogH in
dd_solver.dat.

Experiments with alternative mesh partitioners have been surprisingly productive for
structures.

precision_option_O single conserves memory in theory, but in practice it has been
problematic. It would help to use it with Flexible GMRES. Note that Flexible GMRES
may interact with orthogH like krylov_methodH.

7.2. Divergence problems

Address divergence either by adjusting the preconditioner configuration parameters or by
increasing the magnitude of the damping matrix. The former has the disadvantage that
there are many parameters. Given time the variety of parameters exposed to the user will
decrease. The latter has the disadvantage that it can change the solution.

Determining how much damping to use is beyond the scope of this note. If the response is
independent of the damping, then there isn’t too much damping. The case of slight
increases in the response due to the damping are less clear.

Configuring the preconditioner may involve trial and error. One approach is
useParallelDirectSolver yes. As long as there is enough memory available, the parallel
direct solver will almost surely work.

The remainder of these notes concern the trial and error approach to configuring the
preconditioner. Start by decreasing the preconditioner update frequency, despite the
computational cost.
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Increasing the number of levels of overlap may help, particularly with shell elements. There
is a theoretical explanation for this.

Structural_damping and viscous_damping apply to the custom and the operator
preconditioners. A formula for the dependence of the preconditioner on these parameters
appears in the documentation. The code probably uses this formula. There are two
important things to know here. First: these parameters have nothing to do with the
damping matrix, and only change the preconditioner. The default values of the structural
and viscous damping are respectively 12/100 and 0. Second: sometimes, changing (usually
but not always increasing) the structural damping improves the preconditioner (decreases
iterations and decreases overall time to solution).

The previous max_previous_sols solutions determine an initial guess for the current
linear system. The default is zero. I do not know the default initial guess. Although I
don’t know the initial guess if max previous sols is positive either, it has a canonical value,
and I assume that it (least squares) is used. This helps some.

The Krylov subspaces generated to solve the initial linear systems are applied to the
remaining linear systems. Only the first orthogH Krylov vectors are used. In several
studies, the value 100 has proved optimal.

cull method eigen is in theory the best way to refresh the Krylov vectors, but in my
experience it has never helped.

SC_optionH yes helps less often than the default, no, but is worth trying. It is particularly
important to type this option correctly. A similar option for other types of linear systems,
SC_option, is silently ignored for direct frequency response problems.

Preconditioner effectiveness may vary with both input frequency and the number of MPI
ranks. Subdomain diameter is inversely proportional to the cube root of the number of
MPI ranks. Subdomain mode shape wavelength is proportional to subdomain diameter,
and frequency is inversely proportional to wavelength. For these reasons increasing the
number of MPI ranks can improve simulation reliability at higher frequencies. My
observations are consistent with this prediction. For the same reason at a fixed low number
of MPI ranks, as the frequency increases, the effectiveness of the coarse grid correction
within the preconditioner may deteriorate. Such deterioration theoretically may be
mitigated by setting the coarse_option to the non default value none. Due to software
defects, this strategy only became an option recently (9/2020). However, this strategy has
not helped so far.

8. Comparing Sierra SM Explicit Transient to Direct and Modal FRF

FRFs are a matrix of relationships from forced input to either displacement, velocity, or
acceleration output. Most commonly, analysts use acceleration to show the response of the
system.
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8.1. Frequency Response Functions

The transfer function [H ] relates the force input to the displacement between two points in
the system. The transfer function is symmetric and is formed as a function of mass,
damping, and stiffness. The transfer function is differentiable and the relationship of the
force to the acceleration is shown using the following in matrix form:

Ā= ¨[H]F̄

More information can be found in the theory manual.

8.2. Mesh

Figure 8-7 shows a sample mesh that was used both as an input for Sierra/SD Modal and
Direct FRF as well as for the Sierra Solid Mechanics Code - Adagio. The Node where force
is applied is connected to the beam using a network of rigid Rbars and the force is applied
in the Z-direction.

Figure 8-7. – Cantilever Beam FRF example problem. The Input to the system is the Force
applied at the Node on the left and accelerations are output at nodes on the left. The input
for the problem is provided in Appendix A.16.1-16.3.

8.3. Input File

Figure 8-8 shows the relevant portions of a direct FRF input file. The keyword alpha =5
sets the mass damping of the system. The FREQUENCY section has the frequency range
from .1-50Hz at .1Hz increments. A general rule of thumb is that the load in the LOADS
should be at least 1.5x the max frequency in the FREQUENCY section.
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SOLUTION
case d_frf

directfrf
END

FILE
geometry_file = ’beam_frf.e’

END

LOADS
nodeset 500
force = 0.0 0.0 1.0
scale = 1
function = 1

END

FUNCTION 1
type LINEAR
name "white noise"
data 0.0 1.0
data 200. 1.0

END

DAMPING
alpha = 5
END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

Figure 8-8. – Relevant Portions of Direct FRF Input File.

8.4. Results

Figure 8-9 shows the Z-axis response of the cantilever beam to forced input. The damping
for the modal FRF and direct FRF are both same, and there are enough modes for the
modal FRF to show nearly exact agreement to the direct frf results. Each of the
frequencies used for the adagio input show reasonable agreement. The discrepancies seen
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are possibly due to the possibility that the alpha damping in adagio is not one-to-one
related to the alpha damping in Sierra/SD.
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Figure 8-9. – Acceleration of end node in the Z-axis direction.

Table 8-2 shows the amount of time that each method uses. A caveat should be noted here
that 10 cycles were used in the adagio input in order to ensure that the system reached
steady state. Reducing the number of cycles reduces the compute time proportionally. In
addition, with complex systems, it is possible that the amount of time to calculate the
eigen solution added to the modal FRF solver time will approach the direct FRF solution
time. It also should be noted that adagio run was performed with the knowledge of mode
frequency locations. If it were not, it is possible that the frequencies needed to plot would
be closer together and more numerous.

Table 8-2. – Solver Timer Comparison.
Method Solver Time (min:sec)

Modal FRF (20 modes) 00:09
Direct FRF 02:41

Sierra SM (8 frequencies) 129:48

9. Craig-Bampton Reduction

CBR solution method makes a superelement as specified in the CBModel section of the
text input file. The requirements for Sierra/SD to use this superelement are in the next
section. This reduction is often called a Component Mode Synthesis (or CMS).
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It can be advantageous to reduce a model to its interface degrees of freedom. This is
important in modeling satellites, where the model of the satellite may be much larger than
the model of the remainder of the missile. Reduction of the satellite model to a linearized,
Craig-Bampton model makes it possible to share the dynamic properties of the model
without requiring details of the interior.

A limitation of Sierra/SD is that the CBR solution reduces the entire structural model to
its reduced system and transfer matrices. Other commercial codes can independently
reduce different portions of a model to a variety of reduced models in a single run.

9.1. Definitions

There are two types of modes computed and discussed using a Craig-Bampton model
reduction.

Fixed interface modes. These are eigen modes of the structure if we fix the interface, by
setting interface degrees of freedom to zero. These modes are represented by Φ. The
analyst decides how many of these modes to retain.

Constraint Modes These are the response of the structure if all interface degrees of
freedom are clamped except one. That degree of freedom has an imposed
displacement of 1.0. These are not modes in the usual sense, but they provide a
spatial basis. Represented by Ψ, there are as many of these constraint modes as there
are interface degrees of freedom.

9.2. Input Required

The following input is required to run the CBR solution.

9.2.1. Exodus Requirements

The only modification of the Exodus database is that a nodeset must be defined that
identifies the interface degrees of freedom. This nodeset must be large enough to ensure
that it constrains the model, i.e. if the node set is fixed, there will be no rigid body modes
of the system.

In addition, the CBR model in Sierra/SD cannot be applied if any MPC or rigid links are
directly applied to the interface. The model must be linearized to perform this reduction,
so nonlinear elements and materials are not very meaningful.
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9.2.2. Solution

The solution section must contain input for the number of modes. This is the number of
fixed interface modes to compute. It must be entered, and will be different than the
number of system modes desired. It must also contain shift to ensure that the matrices are
not indefinite.

The CBR method has not been tested and verified after preloads or other solution cases
that may modify the tangent stiffness matrix. We’ve only looked at cases where the CBR
method is the only case in the solution block. The only exception to this is that an initial
solution case computes the system eigenvalues.

9.2.3. CBModel

The CBModel defines most of the parameters for the solution. It defines the interface
boundary nodes. Note that all degrees of freedom of each of these nodes are a part of the
model. Either define all six degrees of freedom as interface dofs, or permit them to be
reduced in this step. Interface nodes may be connected to any structural element (solids,
shells or beams), but not to a constraint relation.

Selecting the output_vector option will output both the fixed interface modes, Φ, and the
constraint modes Ψ, to the output Exodus file (provided that disp output has been
selected in the OUTPUT section). These modes are not usually required as a part of the
reduction process, but they will be necessary if you should desire to complete a full data
recovery after using the reduced model in a subsequent analysis. These modes are the full
complement of the displacement data written to the OTM.

Because there are no Sierra/SD tests that fail if the OTM is incorrect, CBR solutions
that generate an OTM are beta capabilities. A CBR solution case generates the OTM if
there is a history section in the text input file.

As a check on the consistency of the model, the eigenvalues of the reduced system can be
computed. These eigenvalue and frequencies appear in the text result file, under the
heading eigenvalues of Reduced System. It is strongly recommended that such analysis
be compared with a full system eigen analysis where the interface nodes are fully clamped.
This ensures that the model reduction process has not missed data important in the
frequency of interest. Select this option with the GlobalSolution keyword.

Example,

CBModel
nodeset=1
format=mfile
file=cbr.m
output_vector
GlobalSolution

end
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However, finding the eigenvalues and frequencies of the original full system is potentially
confusing. One way to determine the full system modes is to use a multicase solution
with first case eigen and second case CBR. The eigenvalues of the full system appear in the
text result file under the heading eigenvalues, as expected. The confusing point is that if
the only solution case is CBR, then the Fixed Interface Modes appear in the result file under
the eigenvalues heading.

9.2.4. Output

The output section is used to specify output quantities as well in the usual way. For the
CBR solution case, the output is the shape functions of the fixed interface and constraint
modes.

9.2.5. History

For the CBR solution case, the history file contains the Output Transfer Matrix (OTM).
Only the following will be honored (others will be ignored).

• displacement

• strain

• stress

Note that transfer matrix for acceleration or velocity is obtained by differentiating the
equation.

For MATLAB output, the meaning of the History section of the input text file is
expropriated to simplify the testing of the OTM. The history file is used to specify the
portion of the model that will be put in the output transfer matrix. The CBR method will
use the specification to determine what to write to the OTM if MATLAB format is
specified.

9.2.6. Wtmass and Units

The matrices stored in the reduced model are the matrices for the analysis. Thus, the mass
matrix elements have been multiplied by the Wtmass parameter if applied. As a result, if
the eigen analysis is performed on these matrices the resulting eigenvalues will be correct.
When such a matrix is used as a superelement input (see Section 19), the matrix is not
multiplied by the Wtmass parameter again. 2

2For example, if the analyst has a model in inches and pounds, the Wtmass parameter should be 1/386.4
or about 0.00259. This same Wtmass parameter must be applied to both a model reduction step, and to
a subsequent superelement insertion.
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Since the matrices have an implicit unit associated with them, the analyst must ensure
that the units used in the reduced model properly match the units used in the
superelement system model.

9.3. Example

The geometry as shown in Figure 9-10 consists of a cone with a nodeset on the top and
bottom edge. The model reduction consists in reducing the stiffness matrix from the 80
nodes in this model to the interface nodes (3 nodes on the base in nodeset 3). Thus, there
are 18 constraint modes. We choose to retain 4 fixed interface modes for this example. The
input is included in the chapter 12.

Running the model and examining the output, you will notice the following.

1. For this example there are two sets of eigenvalues (Ritz values) output to the screen.
The first, a set of 10 modes, corresponds to the eigen problem of the unreduced
model which includes 6 zero energy modes. The second set of modes is the fixed
interface modes of the analysis. The first 4 modes in CBR-CBR.exo correspond to
these fixed interface modes.

2. The result file, CBR.rslt, contains three sets of eigenvalues; the two mentioned
above and the eigenvalues of the reduced system. No eigenvectors from the reduced
system can be output since there is no geometry database associated with it. The
last set of eigenvalues includes every eigenvalue of the reduced system.

Notice also that the eigenvalues of the reduced system are not identical to the
unreduced system. However, even with only four fixed interface modes, the first
elastic mode agrees up to the 4th digit. General practice would ensure that the
maximum frequency of the fixed interface modes is at least twice the frequency of
interest.

3. The cbmap is found in both the result file and the reduced model output file. This
map relates rows and columns of the reduced system with physical quantities. The
first of the 3 nodes in the nodeset has global id 1 as shown in the figure. All 6 degrees
of freedom are active at each node. And the cbmap has 18 rows.

4. The reduced system is 22 degrees of freedom, which consists of 4 fixed interface
modes and 18 constraint modes (6 degrees of freedom associated with 3 nodes). The
mass and stiffness matrices are almost full. Generally, the constraint modes
contribute full matrix terms to both mass and stiffness.

5. Rerunning with mfile added to the output section creates many files that will not be
described here including the Φ and Ψ matrices.

6. The output is written to the file CBR.m. Output 9.1 contains extracts from this file
from which you note the following.

a) All the data required for the model reduction is found in a single file.
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Figure 9-10. – Example CBR model.
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b) The map of the reduced model is defined in cbmap. A map of the output
transfer matrix rows is OutMap.

c) There are always 6 degrees of freedom per node in the OutMap. This example
does not show this, but there may be fewer in the cbmap. Note that while Kr
and Mr are reduced system matrices which must be nonsingular, OTM is a
transfer matrix and can include inactive degrees of freedom.

NumC=18;
NumEig=4;
Kr=zeros(22,22);
Kr(1,1)=7.703363317234302e+04;
Kr(2,2)=9.043236930586677e+04;
...

Mr=zeros(22,22);
Mr(1,1)=1.000000000000000e+00;
Mr(1,5)=-9.545115933105166e-03;
...

% map of nodes in the output transfer matrix
% OutMap is the global node number
% There are exactly 6 outputs per node.
OutMap=zeros(1,32);
OutMap=[1 5 6 10 11 15 16 20 21 25 26 30 31 35 36 40 41 45 ...
OTM=zeros(192,22);
OTM(1,5)=1.000000000000000e+00;
OTM(2,6)=1.000000000000000e+00;
...

%cbmap(:,1) is global node id (1:n)
%cbmap(:,2) is coordinate (x=1, y=2, etc.)
%the first 4 dofs in the matrices are modes,
% while the last 18 dofs are interface dofs.
cbmap=[1 1
1 2
1 3
1 4
1 5
1 6
...

Output 9.1. Selected Reduced Model Output
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9.4. Verification of the Model

The following are some things that can be done to ensure that the model has been properly
developed.

9.4.1. Comparison of Reduced and Full Eigenvalues

It is a very good idea to compare the eigenvalues of the full and reduced system. It will
approximately double the computational effort of the model reduction, but there is very
little set up time. The example does this. All that is required is to compute the results in a
multi-case approach. Begin by computing the eigenvalues of a full system. Then, in the
next case compute the reduced order model. By including GlobalSolution in the CBModel
section, the eigenvalues of the reduced system are also computed.

9.4.2. Comparison of Reduced and Full Displacements

It is significantly more complicated to compare the displacements of the two models
because there is no automatic upstream data recovery. Manual data recovery will have to
be done in MATLAB. We illustrate the method with a small transient run, but it could
also be done for a eigen analysis (or statics if the model is statically determinant).

Consider a calculation of 2000 time steps each of 10−5 seconds. We impulsively load the
structure on the interface (nodeset 3) with a force in the y direction only. The load begins
at zero, ramps to 106 at 10µs, and then ramps back to zero at 20µs. Output will be
examined on nodesets 1 and 2. This example is found in CBR_trans.inp.

Following the calculation, data from any of the output nodes can be evaluated using the
history file. The following commands evaluate the x displacement on node 70.

unix% exo2mat CBR-transient.h
unix% matlab
load CBR-transient
k=find(node_num_map==70);
plot(time,nvar01(k,:));

The reduced model can be used to perform the same calculation. The MATLAB
commands to do this work once CBR.m has been read into MATLAB are included here.

nsteps=2000;
ff=zeros(1,nsteps);
ff(2)=1;
neq=max(size(Kr));
force=zeros(neq,1);
rows=NumEig + find(cbmap(:,2)==2);
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Figure 9-11. – Example CBR transient computations.

force(rows)=1e6;
dt=1e-5;
u=CBRint(Kr,Mr,force,ff,dt);
time=(1:nsteps)*dt;
k=find(OutMap==70);
orow=(k-1)*6+1; % x component of node 70
U70x=OTM(orow,:)*u;

The time integration is a standard Newmark integration performed using CBRint.m, which
is available in the test directory.

Finally we can compare the results, which are shown in Figure 9-11. The data in the figure
is obtained by running the CBR reduction with a varying number of fixed interface modes.
Note that 4 modes, and even 10 modes are not sufficient to capture the gross response of
the structure at node 70. Even at 50 modes there is high frequency data that has been lost.
This is as expected since the reduced model is designed to capture only the low frequency
response of the structure. The first elastic mode at 21 Hz has a period of 48 ms.
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9.5. What to do with the Results

9.5.1. solving the system

The reduced mass and stiffness matrices contain the dynamics of the system. These could
be solved in an eigen analysis for example in MATLAB.

[e_value,e_vector]=eig(Kr,Mr);

The eigenvalues, e_value, represent the system natural frequencies. The eigenvectors are a
mix of generalized and physical degrees of freedom. The OTM is used to compute the
response on the physical degrees of freedom on the nodesets in the history file.

Out=OTM*e_vector;

To find the response on a specific degree of freedom use the OutMap. For example, to find
the Z degree of freedom on node 25 of the model.

index = find(OutMap==25);
k = (index-1)*6 + 3;
for i=1:size(Out,2)

fprintf(’Mode %d, Z value on node 25 = %g\n’,i,Out(k,i))
end

When this document was written no process was available to take these results back into
an Exodus database so the resulting displacement mode shapes can be plotted on the
original model.

9.5.2. Incorporate the reduced model into another system model

This is one of the more important reasons for doing a model reduction. The approach
depends on the format of the new model. The following are options.

MATLAB. The model can be combined with other models in MATLAB. The trick is to
use the cbmap to tie together different degrees of freedom. I have not done this, but
others have expressed interest.

NASTRAN. NASTRAN can do this.

Sierra/SD. As of release 2.5, Sierra/SD can input a CBR model in netcdf format as a
superelement. See Section 19.
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9.6. Limitations

CBR should work with any element. However, none of the interface degrees of freedom
should be part of either an SPC or an MPC of any kind.

10. Accuracy in Linear and Eigenvalue Problems

Modal solutions form the basis of much of the analysis performed in Sierra/SD. It is
essential that we understand the accuracy of the solution computed. eigen pairs may have
errors for a variety of reasons, the most common is that the linear solvers all have
tolerances, and errors in these solutions feed directly into errors in eigenpairs. It is well
known that errors in eigenvectors are typically significantly larger than errors in
eigenvalues. If the relative error in an eigenvalue is ε, the relative error in the eigenvector is
of the order of

√
ε.

10.1. Linear Solver Accuracy

Linear solver errors are especially troublesome when the condition of the dynamic matrix is
high. This can be caused by various sources.

• Singular mass matrices.

• Lack of a large shift for floating structures.

• Some complex constraint systems.

• Connection of very stiff and very compliant materials.

• Large concentrated masses.

• Poor decomposition, which affect the preconditioner and convergence rate.

• Redundant and/or conflicting constraints.

Any of these items can impact the linear solver sufficient to cause solution failure.

When using the GDSW solver, information on solver accuracy is readily obtained from
dd_solver.dat, which is written by default. Figure 10-12 provides an example of a portion
of this file. The top portion of the file contains information about the general solution. The
operator diagonal magnitudes provide a lower bound on the condition of the matrix, in this
case 448463. Condition numbers up to 1.e14 are solvable. Higher condition numbers are
rarely solvable. The condition numbers are determined after application of the MPCs.

The default name of this file can be overridden by the dd_solver_output_file option in
the GDSW section. Likewise, the default name of the Krylov solver output file
(“krylov_solver.dat”) can be overridden with the krylov_solver_output_file option.
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Rigid body norms are then reported. Each row is the product, |ARj |, where Rj is the
geometrically determined rigid body vector, and A is the dynamic matrix3. Low values for
these norms may indicate singularity.

The lower portion of the file provides information about each linear solve. The “recursive
relative residual” is computed indirectly as part of the solution. It is used to control the
solution. At the end of the solution, an ”actual relative residual” is computed,
ra = |Ax− b|/|b|. Large differences between relative and actual residuals are a concern that
the solution may lack accuracy.

The solver is designed to reduce the relative residual to a low tolerance. This residual
relates to the error in force in a statics problem. The error in displacement, δx, may be
more important for many applications. This error in the displacement depends on κ, the
condition of A, and the relative residual. It is not directly computed nor reported.

δx

|x|
≤ κra

3For eigenvalue problems, A=K−σM , where σ is the shift.
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–- domain decomposition solver summary –-
preconditioner = GDSW
Krylov method = Right GMRES
solver option = Esmond
number of processors = 1
...
solver tolerance = 1e-09
maximum number of iterations = 11
maximum number of restarts = 1
maximum stored directions = 0
solving scaled problem = no
operator diagonal magnitudes –-
min = 31145.6
max = 1.39676e+10
max/min = 448463
Rigid Body Norm for Mode 1 = 0.0123875
Rigid Body Norm for Mode 2 = 8.43938e-07
Rigid Body Norm for Mode 3 = 0.012616
Rigid Body Norm for Mode 4 = 0.00206949
Rigid Body Norm for Mode 5 = 0.000878705
Rigid Body Norm for Mode 6 = 0.00423774
coarse space type = large
number of coarse levels = 0
solver initialization time = 0.0306559 seconds

Recursive Actual
Relative Relative

Solve Iter Total Avg Residual Residual CPU (s) Total (s) Avg (s)
1 1 1 1 7.22136e-12 1.16949e-11 0.00170898 0.00170898 0.00170898
2 1 2 1 4.55332e-12 1.7662e-11 0.00142002 0.00312901 0.0015645
3 1 3 1 8.1699e-13 7.89586e-13 0.00141907 0.00454807 0.00151602
4 1 4 1 5.69584e-14 5.92117e-14 0.00142908 0.00597715 0.00149429

...
39 1 39 1 2.51249e-14 2.34535e-14 0.00145912 0.0559211 0.00143387
40 1 40 1 2.08119e-14 2.18612e-14 0.00142503 0.0573461 0.00143365

total time for overlap preconditioner (seconds) = 0.0491779

Figure 10-12. – dd_solver.dat output from GDSW.
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10.2. Eigen Solver Accuracy

At the conclusion of an modal analysis, the Sierra/SD application reports the eigenvalues
and associated error estimates. Figure 10-13 provides an example of this output. The first
column of data is the eigenvalue, λj = (2πfj)2, where fj is the frequency of the mode. The
second column is an estimate of the error bound on the eigenvalue, εj = |(K−λjM)φj |2.
Generally, except for zero energy modes, the error bound should be significantly smaller
than the eigenvalue itself.

Ritz values (Real, Imag) and direct residuals
––––––––––––––––––––––-

Col 1 Col 2
Row 1: -2.16338D-06 7.34617D-07
Row 2: 2.07696D+07 2.25677D-06
Row 3: 2.07858D+07 8.73909D-07
Row 4: 3.56376D+08 1.48725D-06
Row 5: 4.84777D+08 1.69662D-06
Row 6: 4.84906D+08 5.01020D-06
Row 7: 9.59039D+08 6.06316D-06
Row 8: 1.11917D+09 1.22741D-05
Row 9: 1.11917D+09 3.30643D-06

Figure 10-13. – Output of eigenvalues and Associated Error Bounds.

11. Wet Modes

Wet modes is a solution procedure that computes the normal modes for a structure
partially submerged in a fluid. In appropriate approximations, this may be analyzed as a
real Eigen problem of the structure with added mass on the wetted surface.

11.1. Mesh

Figure 11-14 shows a sample mesh for a wet modes problem. The structural mesh is a
cylinder composed of four node NQUAD shell elements, and the fluid mesh is composed of
four node tetrahedral elements. The wet mode solution case can be run either with a
conforming mesh, or using tied-data with a nonconforming mesh.
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Figure 11-14. – Wet Modes Sample Problem. The structural mesh is shown in blue, and the
acoustic/fluid mesh is shown in orange and green. The input for the problem is provided in
Appendix A.11.

11.2. Input File

Figure 11-15 shows the relevant portions of a Wet Modes input file. The keyword
fluidloading=yes enables the wet-modes solution case. The parameter num_rigid_mode 6
removes the null space for the structural problem. A boundary section is required to set
the pressure on the outside of the acoustic mesh to zero. Both structural and acoustic
elements are required for a wet mode analysis.
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SOLUTION
eigen

nmodes 20
fluidloading=yes

END

PARAMETERS
num_rigid_mode 6

END

MATERIAL fluid
acoustic
density 3.46822e-003 // artificially high to demonstrate wet mode capability
c0 22878

END

MATERIAL steel
e = 3.0e7
density = 7.324e-4
nu = 0.3

END

BOUNDARY
sideset 1
p=0

END

Figure 11-15. – Relevant Portions of Wet Modes Input File.
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11.3. Results

Table 11-3 shows the results for the floating cylinder. Note that the density of the acoustic
material is artificially high to increase difference between the wet and dry solutions.
Adding the fluid mass to the structure reduces the natural frequency of the cylinder.

Figure 11-16 shows the results from the wet mode solution case. Note that much of the
symmetry that would normally be found in the dry case is missing. The location of the
waterline (located at the midpoint of Figure 11-16) can often discerned from the mode
shapes.

Figure 11-16. – Wet Modes Results. The mode shapes from wet modes can be visualized like
any other Eigen solution case.

Table 11-3. – Wet Mode Floating Cylinder Results.
Mode Dry Wet
1 79.82 18.07
5 177.994 46.72
10 207.878 70.11
15 307.325 91.70
20 367.93 117.266
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12. Linear Buckling

Several code errors were discovered and fixed in the buckling solution method during May
of 2020. This section has not been updated to document the current behavior.

12.1. Shifted Eigenvalue

A challenging part of buckling analysis is determination of the shift parameter. The shift
parameter provides a convergence point for the solution, so it should be chosen to be near
the final solution, but not so near that the solver will fail due to a singularity. The eigen
problem of the following system is to be solved is,

A=Km−λKg

Where Km is the material stiffness and Kg depends on the loading. The problem is solved
using a shift invert strategy using ARPACK, where the operator is defined as,

A= (Km−σKg)−1Km

The buckling load must be multiplied by −λ to determine the critical buckling load.

Estimating a shift is easy if the solution has been found, but it is difficult until the loading
is determined. Iteration may be necessary in many cases. First, note that the shift, σ, will
typically be a negative number for a structure in compression.

Figure 12-18 illustrates data for the ring model shown in 12-17 as a function of the shift
parameter, σ. As the shift value approaches the eigenvalue, the solution is found more
readily. However, too large a shift results in an incorrect solution. 4

4The input for this example is found in Appendix A.15.
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Figure 12-17. – Ring Model for Buckling and Associated Deformation.

Shift Eigenvalue Time
-1000 -890.381 35
-500 -396.23 35
-400 -396.23 35

-396.23 -396.23 34
-380 -396.23 33
-200 -396.23 34
-100 -396.23 34
-50 -396.23 35
-10 -396.23 35
-1 -396.23 34
1 fail 56
10 fail 53

Shift Eigenvalue Time
-1.0000 -396.232 35
-0.1000 -396.232 35
-0.0100 -396.242 35
-0.0010 -394.775 35
-0.0001 -99.8013 35
-1.0e-5 -12.8036 35
-1.0e-6 -0.9631 35
-1.0e-8 -0.0105 35

Figure 12-18. – Solution Dependence on Shift. A shift larger than the computed eigenvalue
may generate solver issues (the matrix is negative), while shifts near zero have round off issues.
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Recommendations

1. Get the sign of the shift correct. Objects in compression will require a negative shift.

2. If the magnitude of the eigenvalue is greater than the shift, reduce the shift to less
than the eigenvalue.

3. You may want to evaluate a shift that is significantly smaller than the eigenvalue.
Generally, the eigenvalue should not be sensitive to the value of the shift.

4. The shift selected may impact the convergence of the linear solver. Generally a shift
close to the eigenvalue leads to nearly singular linear system and may make the linear
solver fail. A shift further from the solution may be easier on the linear solver, but
may result in a poor convergence of the eigen solver.

12.2. Buckling Case Study

The pressure load at which the structure buckles is the buckling eigenvalue. This case
study shows how to build confidence in a buckling result.

The critical eigenvalue is the mode of smallest magnitude. I prefer to compute 10 modes to
check that I have computed the right mode. For example a model with symmetry has
multiple mode shapes at the critical eigenvalue. Small eigenvalue residual norms boost my
confidence in a result. The residual norms are shown in stdout. Improving the shift or
reducing the linear solver tolerance may reduce the residual.

Suppose that initially pressure=−1, shift=−100 and solver_tol= 1.e−6. The eigenvalue
is 6.1637e4 and it has multiplicity two. The smaller of the two residual norms is 0.046. The
observation 6e4> .046 suggests that the eigenvalue might be correct. Given the eigenvalue
we can improve the shift. The magnitude of shift should be of about the same as the
magnitude as the eigenvalue but not too much larger. Shifting by −1.e4 does not change
the eigenvalue and decreases the residual to 0.0036. This gives me some confidence in the
eigenvalue.

On the other hand if the initial pressure is −1.e−4 with the same initial shift −100 and
solver_tol 1.e−6 then the eigenvalue is −2.84241e8 and the residual= 3300 with product
pressure eigenvalue = 2.84241e4. As this is the initial result nothing yet suggests that it’s
wrong.

The first hint of a problem is that the smallest magnitude eigenvalue appears in the middle
of the table of residual norms in row 6. It would be more encouraging for the smallest
magnitude eigenvalue to be either at the top or the bottom of the table.

Here I will exercise my option to try a new shift instead of reducing the linear solver
tolerance. The eigenvalue suggests the shift −1e8.

With this shift the smallest eigenvalue is at the top of the table. The eigenvalue is
6.16374e8, the residual norm is .0017, and the product pressure eigenvalue=−6.16374e4. I
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have no confidence in the results due to the change in the product. However, the new shift
reduced the residual by a factor of 2e6 lending credence to the new eigenvalue −6e4.
Decreasing the linear solver tolerance to 1.e−8 leads to similar conclusions.

It is a good practice in this case to try a different initial pressure. The predicted eigenvalue
corresponding to pressure −1e4 is −6, suggesting the shift −1. The smallest eigenvalue is
in the first two rows. This is encouraging. It is also encouraging that the smallest residual
is 0.0029. The product pressure eigenvalue =−6.16374e4 has been reproduced.

Every simulation that I tried with shift −1/|pressure| reproduced the product pressure
eigenvalue −6.16374e4. The pressure load that will buckle the structure is the buckling
eigenvalue 6.16374e4.

13. Geometric Rigid Body Modes

This section assumes that the reader is familiar with the parameter num_rigid_mode. In
Sierra/SD, it’s possible to use the geometric rigid body modes. There are three examples
here. The first example just brings in the rigid modes. The second example uses the modes
in solving an eigenvalue problem. The third example uses the modes in a modal transient
simulation to deflate out the rotations. An example input is found in the Appendix,
(A.10). Rigid body modes are requested in the SOLUTION block.

SOLUTION
geometric_rigid_body_modes

END
PARAMETERS

num_rigid_mode 6
END

Rigid body modes can be incorporated into the modes computed in a modal analysis, and
then used for other purposes.

SOLUTION
case out

geometric_rigid_body_modes
case flexible_modes

eigen
nmodes 10
shift -1e6

END
PARAMETERS

num_rigid_mode 6
END
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Rigid body modes are the 6 lowest frequency eigenvectors. In this case 4 more modes are
computed, for a total of 10.

In this example a modal transient simulation uses the geometric rigid body modes to
deflate out the (infinitesimal) rotation, while retaining the translational rigid body modes.
This is equivalent to use of the FilterRbmLoad for direct transient solutions (though
accomplished differently).

SOLUTION
case out

geometric_rigid_body_modes
case vibration

eigen
nmodes 10

case filter
modalfiltercase
modalfilter rotation

case transient
modaltransient
time_step 1.e-5
nsteps 62
load 42

END
PARAMETERS

num_rigid_mode 6
END
modalfilter rotation

add all
remove 4:6

END

14. Modal Transient

Standard Sierra/SD has a fine set of modal based solutions, including a modal transient
integrator. However, Sierra/SD is designed to focus on massively parallel solutions. It is
not uncommon for an analyst to generate a small modal solution, and to use the modal
solution as part of a small transient run. Since in modal space, the solution is diagonal,
this completely uncouples the modes and allows for an independent solution of each modal
amplitude, qi.

Sierra/SD uses these solutions, but it assumes that the full solution on all output degrees
of freedom is required. In other words, the quantity qi(t) is easily computed, but to
transform back to physical space, a fair amount of calculation must be performed, and it is
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performed on the full system model. For transient dynamics, Sierra/SD performs the
following operations.

1. Compute qi(t) for all modes, i, at time t.

2. Expand to physical space. x(t) = φq(t).

This requires participation of all processors that were involved in the calculation of
the modes.

3. Contract to a reduced physical space, if history output is requested.

This requires communication between processors.

In cases where the analyst requires only a subset of the data, this process can be
streamlined by performing the integration outside of Sierra/SD. The calculation is fast,
and can be performed in serial.

14.1. Process for serial integration

14.1.1. Compute modes of the system model

Modes are extracted in the usual way, i.e. perform a standard eigen extraction on the full
system model. Output a reduced order model by extracting a small portion of the
eigenvectors to the history file. Element variables of stress and strain may also be output.

History
nodeset 1
block 12
displacement
stress

END

14.1.2. Extract Modal force, F̃ (t)

The modal force can be written by specifying ’mfile’ in the OUTPUT section of the
Sierra/SD input. The file is named “ModalFv.m”. The file contains a matrix of size Nvect
x Nmodes, where Nmodes is the number of normal modes computed, and Nvect is the number
of spatial load vectors.

Recall that Sierra/SD defines time dependent loads as a sum of products of spatial and
temporal functions. For example, consider this example loads section.

LOADS
nodeset 111

force 1 0 0

58



function 111
sideset 22

pressure 1.0
function 2

END

This example time dependent force could be written as follows.

F (x,t) =N111(x)F111(t) +N22(x)F2(t)

where the N(x) represents a function of space only, and F (t) is a function of time only. In
this example, there are two spatially varying functions, and Nvect = 2.

We assume that the analyst has access to the time varying functions, F (t), since they are
part of the input. Each of the spatial terms is multiplied by the eigenvectors to arrive it
the modal contribution.

ModalFv = (ΦTNj)T

The total generalized force is then,

f̃j(t) =
∑
i

ModalFvjiFi(t)

14.1.3. Perform Time Integration of Modal Space

Time integration can be performed in MATLAB or other suitable integrator. The file,
“modal_int.m” provides an example time integrator using the standard trapezoidal rule.
5

The result is qj(ti), for each mode j in the system, and for each time value ti.

5This is the Newmark-Beta integrator with β = 1/4, and γ = 1/2.
We can think of the integration as the solution of three equations in three unknowns.

k̃qn+1 + c̃q̇n+1 + q̈n+1 = f̃(t)

qn+1 = qn + 1
2(q̇n + q̇n+1)

q̇n+1 = q̇n + 1
2(q̈n + q̈n+1)

The latter two equations are used to eliminate the q̇n+1 and q̈n+1 terms, resulting in the algebraic
equation for qn+1.[

k̃+ 2
∆t c̃+ 4

∆t2

]
qn+1 = f̃ + c̃(q̇n + 2

∆tqn) +
(
q̈n + 4

∆t q̇n + 4
∆t2 qn

)
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14.1.4. Expand to Physical Space

The integrated time values can be represented as a matrix Q, where each row of Q
corresponds to a normal mode coordinate, and each column represents a time value. The
physical space is represented by the product, φ̃Q, where φ̃ is the eigenvector in the reduced
space.

Using exo2mat the eigenvectors are put into six variables. They can be reshaped into φ as
follows.

phi = [ nvar01 nvar02 nvar03 nvar04 nvar05 nvar06];
phi = reshape(something)

The transformation to physical space is,

XXX = phi * Q;
XX = reshape(XXX,n,6);
x = X(:,1);
y = X(:,2);
z = X(:,3);

Determining the element variables is not much different. A set of element results
“eigenvectors” is obtained using evarXX in place of nvarXX. The result is the product
ψQ.

14.2. How to Use Results

The results from this calculation cannot be easily visualized as an animated structure
because there is typically insufficient data to reconstruct the model. However, time
histories of nodal and element data can be examined and plotted.

Related Calculations

Similar calculations are possible with other modal based solutions. For example, a modal
frequency response calculation is performed in the same way except that the modal
amplitude is given by the following.

qi(ω) = f̃i(ω)
ω2−ω2

i + 2γiωωi

where f̃i(ω) = φF (ω) is given by Modalfv as before. The modal amplitude in this problem
is complex of course.
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14.3. Limitations

The entire modal must fit in memory. Since this is a linear superposition model, only linear
results can be used. Further, while natural stresses can be computed, von Mises and other
principle stresses cannot be directly computed, as they are not linear functions of
displacement.

The modal superposition method has significant limitations, independent of the particular
solution methodology. In particular, the method may be slow to converge spatially if the
loading is not well represented by a low frequency mode. Other methods such as the
Craig-Bampton reduction can be much better in these cases, though they suffer from
having a coupled system of equations.

14.4. Verification

The simplest verification is to run a portion of the time history through the standard
Sierra/SD modal transient, and compare the results with the results from the reduced
order model.

15. Modal Random Vibration

Random vibration is a complex phenomenon. A random input with defined spectral
characteristics is applied and the resulting power spectral response is computed. It may be
complicated by having multiple inputs with statistically defined cross correlations. The
modalranvib module in Sierra/SD performs this analysis using a linear superposition of
normal modes. 6

15.1. Input Required

The specification of the input for random vibration is complicated. The easiest way to
perform this analysis is to copy an existing input specification and correct it for your
specific model. The following sections will need attention.

15.1.1. Exodus Requirements

The Exodus geometry specification is similar to other solutions.

Random load are often specified as an acceleration PSD, however an enforced acceleration
cannot be used in the solution method for Sierra/SD. Instead of an enforced acceleration,
a large concentrated mass may be inserted at the load point, and a Force applied to the

6See Section 22 for a discussion of the loading for a random pressure loading applied on an extended surface.
The modalranvib approach is more applicable to a loading on a handful of locations.
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Figure 15-19. – Example Random Vibration Geometry.

mass. The load is then distributed to the structure through rigid elements (Rbars) or other
means.

A nodeset must be identified on the load point, and node or side sets should be identified
on any output points of interest. Be careful of nodal distribution factors other than 1!

As an example, we use the geometry shown in Figure 15-19. The load is applied to the
mass on the left of the long tube. We clamp all dofs except the Y at the load point.

15.1.2. Solution

The solution section is fairly straightforward, but note the following.

• While modalranvib can be performed in a single case solution, it is strongly suggested
that a multicase solution approach be used. Most of the computational effort for a
large model is typically consumed in computation of the normal modes. These
calculations can be saved using the “restart” option. The calculations of the random
vibration results from the modes cannot be restarted.

Using multicase simplifies keeping track of the output files.

• There are two methods for computing these modes.

SVD. The default method is the more complete. It computes a vector representing
the moment of the solution, and is recommended if detailed statistics on the
statistical moments of von Mises stress are required.
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noSVD. The noSVD version is faster. If many (hundreds) of modes are involved, then
the noSVD version is significantly faster. The stress moments, M2 and M4, are
also computed.

Mj =
∫ ∞
−∞

ωjσ2(ω)dω

• Two parameters control culling of unwanted modes. The lfcutoff is used to control
low frequency modes. It is important to set this to a large negative value if you wish
to keep rigid body modes that may be important in the calculation of the
autospectral response (see 15.3 below). On the other hand, these zero energy modes
have no impact on stress, and are by default eliminated from the calculation.

The keepmodes parameter can help reduce the number of modes used in the
calculation. It truncates modes based on their activity for the given loads.

15.1.3. RanLoads

This section is the most complicated structure in Sierra/SD input files. A random input
function, SF (x,ω) is Hermitian matrix valued. and depends on position, x, and frequency.
The matrix order nf is the number of independent inputs. If nf = 1, then SF is real
valued, as illustrated in the full example of Figure 15-21 (on page 67). The random loads
section of a multiple input case is detailed in input 15.1.

Most loads in Sierra/SD are described as a sum of spatial and temporal functions. For
Random loads this is required, but in addition, the random loads are limited to having the
same spatial variation for each row of the matrix. Thus, SF has order 3, only three spatial
functions are required. The spatial functions from the example of input 15.1 are defined in
nearly the same format as is used in a loads section. The balance of the definition is in the
Matrix-Function section.

RANLOADS
matrix=33 // defines a 3 by 3 matrix
load=1 // associates next spatial distribution with row 1

nodeset 11 // spatial distribution
force= 0 1 0

load=2 // associates next spatial distribution with row 2
nodeset 22 // spatial distribution

force= 1 1 0
load=3

sideset 3
force=0 0 1

END
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Input 15.1. RanLoads example for multiple input. In this case, loads are
applied at three spatial locations as defined by the sideset and nodesets. The
matrix-function determines the correlation of these loads. (See Figure 15-20).

MATRIX-FUNCTION 33
symmetry=symmetric
dimension=3x3
data 1,1

real function 1
data 2,2

real function 1
data 3,3

real function 3
END

MATRIX-FUNCTION 33
symmetry=Hermitian
dimension=3x3
data 1,1

real function 1
data 1,2

real function 120
imaginary function 121

data 1,3
imaginary function 131

data 2,2
real function 1

data 2,3
real function 220
imaginary function 221

data 3,3
real function 3

END

Figure 15-20. – Example Matrix-Function. The example is referenced from the RanLoads
example of input 15.1. Both the left and right columns describe the spectral input to a three
input system. On the left, the inputs are completely uncorrelated (as there are no cross terms).
The right example provides correlation between the inputs.

15.1.4. Matrix-Function

This section defines the dimension of the input and the frequency functions that define the
temporal loading. For random vibration analysis, it must be of type Hermitian. Matrix
functions may be symmetric if there is no cross correlation, as in a single input system.
The matrix function will refer to one or more function definitions for the frequency
content of each function.

As an aid in model verification, you may want to add nominalt to echo the value of the
matrix at a single frequency.

15.1.5. Function

The function definition is standard. Note that the “loglog” type function was provided to
help in the cases where the function is uses straight line interpolation in the log(frequency)
and log(amplitude) domain (which is very common for power input). The units of the
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output of these functions is typically 1/Hz. It represents the frequency variation of the
spectral density input.

15.1.6. Frequency

The frequency section is important for these reasons.

1. It provides the frequency band and step size over which the functions will be
integrated. This affects the accuracy of the RMS calculations. Note however, that
there is little penalty for increasing this quantity since the frequency integral is
performed only once.

2. It is used to specify the output of frequency dependent transfer functions. For
example, the acceleration PSD is defined as,

A(ω) =H†(ω)Sf (ω)H(ω).

where H is the acceleration transfer function, and H† is the complex conjugate
transpose.

H(ω) =
∑
i

−ω2

ω2−ω2
i −2jγiωωi

Thus, the output specification of the frequency block determines which of these
output quantities will be written. Note that there is little point in outputting both
displacement and acceleration as they only differ by a factor of ω4.

A special consideration should be given to the low frequency end of the frequency
block. Rigid body modes are usually undamped, so a singularity may be introduced
if zero is included in the frequency band.

15.1.7. Damping

Damping is important to this type analysis. Don’t forget it or leave it zero! All types of
modal damping specifications are appropriate.

15.1.8. Output

Specification of Vrms is the only output specification that is honored for modal random
vibration analysis. It triggers output of RMS values of stress, displacement and
acceleration.

There are three values of RMS displacement – no results are output for rotational terms.
The same is true for acceleration. Note that these quantities are not vectors. The RMS
values indicate the most likely measurement of the square of the parameter, and includes
the unique components of a Hermitian 3 by 3 matrix. It cannot be combined or
transformed as vector.
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15.1.9. Echo

The RMS values are typically written to the output Exodus file. They could also be
written to the log file (or .rslt file) using the Vrms option. Some data is only available in
the log file. If input is selected, then the log file will contain a list of those modes that
were retained in the modal truncation together with the Γqq value for that mode. Modes
for which the Γqq term are much smaller than other terms cannot contribute significantly
to the total response.

15.2. Example Input

An example input for a single input random load is shown in Figure 15-21. Full detail is
found in the Appendix, A.7.
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SOLUTION
case eig

eigen nmodes=9
shift=-1e5

case rms
modalranvib
keepmodes=3 // force modal truncation

END

RANLOADS
matrix=1
load=1

nodeset 12
force=0 1 0
scale 1.00e3 // convert force to accel in g

END

MATRIX-FUNCTION 1
symmetry=symmetric
dimension=1x1
data 1,1

real function 1
END

FUNCTION 1
Name=’Power_Spectral_Density’
type=’loglog’
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

END

Frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=1:2000

END

DAMPING
gamma=0.01

END

PARAMETERS
wtmass=0.00259

END

Boundary
nodeset 12
rotx=0 roty=0 rotz=0 x=0 z=0

end

OUTPUTS
vrms

END

ECHO
input

END

BLOCK 101
material 101

quadt
thickness= 0.200000003E+00

END

BLOCK 102 // load mass
ConMass

Mass=1.00e3
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0

END

Block 1000
RBar // RBE type elements. # links 16

END

MATERIAL 101
density=0.1
Isotropic
E=1e+07
nu=0.35

END

Figure 15-21. – Single Input, Random Vib Example.
Most of the input sections for the single input random vibration block corresponding to Figure
15-19 is included here.

• The solution block specifies that 9 modes will be computed, but only the 3 most important
will be retained in the calculation of RMS quantities.

• The ranloads block specifies that the load will be applied only to nodeset 12 (the concen-
trated mass), and that the force applied will be scaled by 1000 (the load mass). It also points
to the matrix function block for further input. The matrix-function section defines the
load as a single input, and points to the PSD contained in function 1.
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15.3. Verification of the Model

The obvious things come to mind in verifying the model for use in a random vibration
analysis. First, ensure that the model is appropriate for eigen analysis. Mass properties
and fundamental modes of vibration can be evaluated. Any rigid body modes should be
near zero and not generate significant stress.

Second, the input PSD should be verified. Since the input cannot be provided as an
enforced acceleration, it is typically specified as a load on a large mass. Examining the
output acceleration at that degree of freedom should reproduce the input power spectrum.
There are important issues that must be considered in evaluating the input PSD.

1. The rigid body modes of the system are critical to reproducing the input PSD.
Typically, only one degree of freedom is left free on the load point, and that structure
is loaded in that free direction. This corresponds to the action of a single axis shaker.

2. Rigid body modes are typically eliminated from the RMS stress calculation. This is
done because these modes do not contribute to stress, and they may dominate the
numerical solution, making it difficult to identify effects of other resonances. Further,
one is often not interested in the rigid body mode contribution to the acceleration or
displacement, except for the special case where the output PSD attempts to replicate
the input. 7

Two factors can cause the rigid body modes to be removed from the calculation.

• Rigid body modes are typically removed using a low frequency cutoff. This is
easily managed using the lfcutoff parameter in the solution block. 8

• Any mode will be automatically eliminated if it is not a large contributor to the
Γqq matrix. This is more difficult to manage, but is rare for rigid body modes.

3. As noted below, scaling can be a thorny issue.

A word about scale factors and the Wtmass parameter is in order. In order to obtain the
correct acceleration, the applied force must be multiplied by a scale factor. Note that the
spatial term will be squared for terms on the diagonal of SF , so the units are still units of
force (not those of force squared). For models with Wtmass=1, the input force is typically
scaled by the product of the mass of the large mass times a factor of g to provide in input
PSD in g2/Hz. For English units, where the Wtmass parameter is used to scale the mass
from lbm to lbf , that scale factor is already entered, and the force should be scaled only by
the weight of the large mass. Some examples are provided in Figures 15-22, 15-23 and
15-24.

7Sometimes we want to retain the rigid body modes for validation with experiment. This depends on the
boundary conditions applied during the test.

8The lfcutoff parameter must be used to retain the rigid body modes if you wish to replicate the input
acceleration PSD. However, for numerical reasons, you should not normally retain rigid body modes when
computing the RMS values of stress or displacement.
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Scaling SI units: Consider a case using SI units and WTMASS=1.
The acceleration of gravity is 9.8m/s. Our nominal structure has a
mass of 17 kg. To enforce acceleration, we add a 5000 kg mass and
apply forces to it. We need to apply 1.5 g2/Hz over the band.
We establish the following.

• A PSD function that applies 1.5 at all frequencies.

• We determine that the force applied must be,

F = MloadA
= 5000(9.8)

Therefore, we set the scale factor to 49,000.

Figure 15-22. – Scale factors for SI units.

When the force is applied directly to the system, without a large test mass, verification is
similar, but care must be exercised on two counts.

1. It is usually best to eliminate all but the rigid body modes from the input verification
because system resonances can have a large (and confusing) impact on the results.
This can be done by setting the number of modes in the eigen solution to match the
number of anticipated rigid body modes.

2. When there is a single input, the product of the output acceleration spectra and the
square of the mass should equal the input power spectrum, (a2m2 = S) provided that
the force causes only a rigid body translation of the system. Rotations of the system
confuse the verification. In other words, apply the load along the center of mass of
the system or constrain out rotations in some manner.

Remember that the modal frequency response function can provide direct insight into the
transfer functions.

A third verification is important for multiple inputs, where it can be easy to confuse the
input to the SF matrix. It can help to use the nominalt option in the solution block to
provide an output of the matrix at some nominal frequency.
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Scaling inches/pounds: In this case our model is built in inches, and
mass is specified in pounds. To correct the mass to proper units, we
must use a WTMASS=0.002588. Our nominal structure weighs 0.1
pounds, and to enforce acceleration, we add a 100 pound concentrated
mass and apply forces to it. We have a complicated loading, with a
maximum of 200g2/Hz at 1 KHz. Parameters used are the following.

• Our PSD function matches our complex loading. It has a maxi-
mum of 200 at frequency 1000.

• We determine the force to be applied.

F = MloadA

= (100 ·0.002588)(386.4)

Thus, our scale factor is set to 100.

Figure 15-23. – Example scale factors for inches and pounds.

Scaling English units: Our model is built in inches, and mass is spec-
ified in consistent units. We do not need to correct the mass units, so
we have WTMASS=1. Our nominal structure has a mass of 258.8e-6
units, and to enforce acceleration, we add a 0.250 unit concentrated
mass and apply forces to it. We have a complicated loading, with a
maximum of 200g2/Hz at 1 KHz. Parameters used are the following.

• Our PSD function matches our complex loading. It has a maxi-
mum of 200 at frequency 1000.

• We determine the force to be applied.

F = MloadA

= (0.250)(386.4)

Thus, our scale factor is set to 96.6.

Figure 15-24. – Example scale factors for English units.
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15.4. What to do with the Results

The RMS values of displacement and acceleration can be very useful in determining what
portions of the model may be experiencing large deformations or accelerations due to a
random load. Unfortunately, RMS quantities are not vector quantities. They are difficult
to display on a graphical representation of the data. One suggestion is that RMS
displacement values be converted to an RMS radius, and spheres of that radius be plotted
on the nodes of the structure.

Typically, RMS accelerations are not plotted on the structure. Such information may be
useful for testing subcomponents. The full power spectra of acceleration is available at
points specified as acceleration output in the frequency block, and may be used for test
specification of subcomponents.

Root mean squared values of stress are more readily used, and may be displayed on the
model any standard post-processor. Regions of high RMS stress indicate areas prone to
failure either through instantaneously exceeding the yield stress, or through fatigue.

15.5. Limitations, Suggestions and Cautions

Must apply the loading directly to the model, you may not use enforced accelerations.

16. Fatigue

Sierra/SD supports two forms of high cycle fatigue analysis. We will use both in this
example.

1. Modal Random Vibration, which we will refer to as the "Frequency Domain" solution.

2. Modal or Direct Transient, which we will refer to as the "Time Domain" solution.

Frequency domain fatigue requires three solution cases in the input deck, and the Fatigue
keyword in the OUTPUTS section:

SOLUTION
case eig

eigen
nmodes 36
shift -1e6

case rand
modalRanVib

case fat
fatigue

END
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OUTPUTS
fatigue

END

Time domain fatigue only requires a transient solution and the Fatigue keyword in either
OUTPUTS or HISTORY:

SOLUTION
case trans

transient
nsteps 3.5e5
time_step 1.25e-4

END

OUTPUTS
fatigue

END

Time domain and frequency domain fatigue estimates are not expected to match for
several reasons:

• Time domain estimates the total accumulated damage, while frequency domain
estimates the damage per second.

• Time domain can represent endurance limits and mean stresses, while frequency
domain cannot.

• Frequency domain estimates the expected damage due to a random process, while
time domain estimates the observed damage. Generating long enough time series for
a statistically significant estimate can be costly.

From here on out, we will look at a specific example in detail.

16.1. Example Fatigue Model

16.1.1. Geometry

For this example we will be using a mock printed circuit board model (Figure 16-25) with
all dimensions arbitrarily chosen for visual appeal. We will be driving the model with a
random force on the underside of the structure while constraining all other translations and
rotations to be zero at the drive point. Components are attached to each other using
all-to-all contact. We will be focusing on the green electrical pins shown in Figure 16-26.
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Figure 16-25. – Generic Circuit Board geometry.

Figure 16-26. – Generic Circuit Board components.
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16.1.2. Materials

The material properties of the electrical pins are given in Sierra/SD syntax as:

MATERIAL al_with_fatigue
E = 1e7
NU= 0.3
Density = 0.1
Fatigue_A1 = 20.68
Fatigue_A2 = -9.84
Fatigue_A3 = 0.63
Fatigue_A4 = 0.0
Fatigue_Stress_Scale = 0.001

END

The elastic properties are a rough approximation aluminum, while the fatigue properties
are specific to an un-notched 6061-T6 aluminum alloy. The 5 fatigue parameters are:

1. Fatigue_A1, complicated units, strictly positive

2. Fatigue_A2, dimensionless, strictly negative

3. Fatigue_A3, dimensionless, defines the damage contribution from mean stress,
strictly positive, 3 is large, 100 is not physical

4. Fatigue_A4, units of stress, defines an endurance limit below which no damage
occurs, strictly positive

5. Fatigue_Stress_Scale, optional, conversion rate between model stress units and
damage function stress units, e.g. convert psi to ksi

It is not necessary to define a Fatigue_Stress_Scale, but the option exists to prevent
accidental translation errors. The conversion rate of Fatigue_A1 is given by:

A1new = A1old+A2∗ log10(1/C), A4new = A4old ∗C,

where C is the conversion rate from old units to new units. Note that Sierra/SD does not
attempt these conversions directly. Instead, model stresses are converted to material units
before being applied to the damage function.

All together, these parameters define the number of cycles to failure N given a stress cycle
with peak Smax and valley Smin:

log10(N) = A1 +A2 log10(Smax(1−R)A3−A4),

where R = Smin/Smax.

In the frequency domain, we are only able to evaluate damage functions which can be
represented as:

N ∗Smmax = A,
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where m and A are material constants derived from A1 to A4. To reduce 4 material
constants down to 2, we set A4 = 0, and assume R =−1 when doing frequency domain
analyses. This limits the types of problems which can be represented accurately in the
frequency domain. There will be more discussion of trade-offs later.

Since the geometry is arbitrary anyway, we don’t pay much attention to the other
components. The base structure and electrical components are modeled as aluminum. The
circuit board material is slightly less dense, and significantly stiffer than the aluminum, but
still arbitrary.

16.1.3. Loads

The loading for this model is a single-point random force between 10 Hz and 2000 Hz with
the autocorrelation function shown in Figure 16-27, evaluated at 0.025 Hz intervals
between 10 Hz and 4000 Hz.

By sampling this random function at intervals of 1.25e-4 seconds for 40 seconds (3.2e5 time
steps), we are able to generate a very close approximation in the time domain. Figure
16-28 shows a small snapshot of the time domain load, and resulting Auto Spectral Density
(ASD)

Figure 16-29 shows a histogram of the force levels seen in the time domain. Note that 4σ
peaks exist in the data, and some values approach 5σ.

Figure 16-27. – Frequency Domain Loading ASD.
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Figure 16-28. – Time Domain Load Snapshot (left), and ASD (right).

Figure 16-29. – Histogram of time domain loads with vertical bars at 1-sigma intervals.
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16.2. Results

16.2.1. Frequency Domain

Damage estimates in the frequency domain come in two flavors: "Narrow Band" and
"Wirsching". Both are a damage rate, representing the damage per second seen by the
element. "Narrow Band" damage is intended for solutions where the stress response is
occurs at a narrow band of frequencies, while "Wirsching" damage includes a correction
factor for wider frequency bands. Unfortunately, Sierra/SD does not support spectral
density outputs for von Mises stress, and so we have no way of knowing which we should
use in this case. Narrow band damage rates are always larger than Wirsching damage
rates.

Figure 16-30. – Frequency Domain Damage Rate Estimates.

16.2.2. Time Domain

Sierra/SD supports one fatigue damage estimate in the time domain: "Damage". This is
an accumulated damage as a result of the transient environment, not a damage rate. In our
case, the loading duration was 40 seconds, so the largest average damage rate is 3.19e−6.
The average damage rate has been manually calculated in Figure 16-31 for comparison to
frequency domain results.
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Figure 16-31. – Time Domain Damage Estimate.

16.2.3. Comparison

The most obvious difference in these solutions is the cost. The modal transient solution
took just over 3 hours to complete, while a modal random vibration solution took only 1
minute with fatigue outputs. Note: Requesting full acceleration and stress output on the
pins also requires 3 hours, even in the frequency domain.

The solution quality suffers in the modal random vibration solution. In this example, we
chose a material with no endurance limit so that we could make the closest comparison
possible, but the frequency domain cannot account for mean stresses either. Together,
these details significantly increase the predicted damage in the frequency domain. The
peak time domain damage estimate was 4.5x lower than the Wirsching damage rate, and
7.4x lower than Narrow Band. This means the difference between surviving 3.6 days at
these levels, and surviving 19 hours (12 for Narrow Band).

Note: The Wirsching damage estimate was not always conservative. One element in
particular saw roughly 2x more damage in the time domain than the Wirsching estimate,
and was in the 70th percentile of damaged elements. For that element, the Narrow Band
estimate was a decent approximation of the time domain (only 13% error).

17. Coupled Electro-mechanical Physics

The term "piezoelectricity" refers to the production of electrical charges on a surface by the
imposition of mechanical stress. Sierra/SD supports coupled electro-mechanical physics
in order to simulate the electro-mechanical behavior of piezoelectric materials when
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subjected to an electric field or mechanical stress. One common application of
piezoelectrics is in experimental modal testing. Due to the electro-mechanical stiffness
coupling, piezoelectrics provide a convenient means to conduct structural dynamics tests
since structural vibrations can be converted to electric potentials (i.e. voltages) which can
then be stored and processed.

This section demonstrates how to use Sierra/SD to simulate exciting and measuring
structural vibrations using voltages and piezoelectrics. A mechanical wave is generated
from a prescribed voltage time-history using one piezoelectric tile. It passes through the
aluminum barrier and excites the second piezoelectric tile. The deforming piezoelectric tile
induces a time-varying electric charge at its surface that we output in terms of voltage.

The demonstration model is shown in Figure 17-32. Symmetry faces indicated in Figure
17-32 mark the surfaces with symmetry boundary conditions. The voltage input and
response surfaces are indicated. See Section 17 for the full input deck.

Figure 17-32. – The single patch bimorph model.

17.1. Piezoelectric Material Input

The piezoelectric material constitutive properties must include the orthotropic elasticity
tensor (Cij), the permittivity tensor (permittivity_ij), and the piezoelectric coupling
tensor (e_ij). Here is the material block for this input deck:

// scale = 1e9 // voltage unit scale

// ep = 8.85418782e-12 // permittivity of free space
// D11 = ep * 762.5 * scale * scale
// D33 = ep * 663.2 * scale * scale

79



// E11 = -5.20279 * scale
// E33 = 15.0804 * scale
// E15 = 12.7179 * scale

MATERIAL PIEZOELECTRIC
ORTHOTROPIC_PIEZOELECTRIC

Cij = 1.39e11 .78e11 .74e11
1.39e11 .74e11

1.15e11
.25e11
.25e11
.31e11

permittivity_ij D11 0 0
0 D11 0
0 0 D33

e_ij = 0 0 E11
0 0 E11
0 0 E33
0 E15 0
E15 0 0
0 0 0

density = 7500
END

Input 17.1. Piezoelectric Material

There are a few important details to note.

• Careful consideration for the coordinate system should be taken when specifying the
coupling matrix. The material’s poling direction is dependent on the coupling matrix,
which should be specified with respect to the global coordinate system (unless a local
coordinate system for that material block is specified). In this example, the
piezoelectric material is poled in the global z-axis.

• Since the permittivity matrix has units, its entries should be scaled by the
permittivity of free space. In this example, we define a variable ep for the
permittivity of free space.

• We recommend changing the voltage units (volts V ) to nano-volts (nV ) where
1 nV = 10−9 V . This scaling will significantly improve the condition of the system’s
stiffness matrix and hence the convergence of the FE solver. See Section 17.4 for
more details on solver issues related to piezoelectrics.
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17.2. Boundary Conditions

The voltage signal used to excite the mechanical wave is a Gaussian pulse defined by the
superposition of a 10 kHz and 43 kHz sinusoidal wave weighted by a Gaussian pulse
function (Figure 17-33). The Gaussian pulse is applied to the surface labeled Input Surface
Voltage. In this example, we define the voltage time history explicitly with a function.
Grounded voltage conditions are prescribed on the barrier surfaces. The following presents
the boundary input including the symmetry boundary conditions.

BOUNDARY
sideset 5 //symmetry boundary condition

x = 0
sideset 4 // symmetry boundary condition

y = 0
sideset 6 // voltage input

transV = 1
function voltage_input

sideset 7 // grounded voltage
V = 0

END

FUNCTION voltage_input
type linear
#include create_input_deck/voltage_input.inp

END

Input 17.2. Boundary Conditions

In addition to prescribing voltage boundary conditions, we also apply a voltage rigid set to
enforce an equipotential surface at the voltage output surface. The surface of the
piezoelectric device where voltage is measured is often plated with a purely conductive
material such as copper; this physically enforces an equipotential surface. The voltage rigid
set simplifies our model by enforcing the equipotential surface without having to model a
super thin conductive layer. The rigid set is specified in this problem as follows:

RIGIDSET set1
voltage
sideset 8

END

Input 17.3. Voltage Rigid Set
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17.3. Transient Response Results

Figure 17-34 presents the voltage response at an arbitrary node located on the output
surface. Since we used a rigid set, the voltage is equal at every node along that surface.
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Figure 17-33. – Time history of voltage input (Gaussian pulse).
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Figure 17-34. – Time history of voltage response.

17.4. Linear System Solver Issues and Recommendations

Elastic and permittivity material properties can differ by tens of orders of magnitude,
causing ill-conditioning of The coupled piezoelectric global stiffness matrix. In order to
improve the matrix condition, we recommend scaling the voltage units (volts V ) to
nano-volts (nV ) where 1 nV = 10−9 V . In order to scale voltage to nano-volts, the
piezoelectric coupling matrix eij should be multiplied by 109 and the permittivity matrix
by 1018.

Another option to account for ill-conditioning is to use the gdsw solver with diagonal
scaling. These solver parameters can be specified in the input deck as shown below.
Diagonal scaling should be thought of as a band-aid. If the conditioning of the system can
be fixed by scaling the underlying unit system, that is preferable to using diagonal scaling.
The solver_tol option controls the tolerance to which the underlying linear system is
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solved. The default tolerance is 1e−6, a tolerance of 1e−12 will give a more accurate
solution at the cost of increased computation time. One way to check the convergence of
the solver is to see if changing the solver tolerance (1e−6→ 1e−7) significantly changes
the solution. If it does, a tighter solver tolerance is needed. We recommend contacting the
Sierra/SD team (sierra-help@sandia.gov) in choosing an appropriate set of solver
parameters.

SOLUTION
directfrf // solution method selected
solver = gdsw // solver specified

END

GDSW
diag_scaling = diagonal // diagonal scaling turned on
solver_tol = 1e-10 // convergence tolerance

END

Input 17.4. GDSW Solver Specification

18. System Level Matrices of Viscoelastic FEA Model 9

In Sierra/SD, the constitutive model for an isotropic linear viscoelastic material uses a
normalized Prony series to describe the time-dependent decay from the glassy moduli to
the rubbery moduli. Following the theoretical development of the finite element
formulation in the theory manual, the element stiffness matrices may be cast as:

Kν,K = (Kg−K∞)
∫
BTDKBdV (18.1)

Kν,G = (Gg−G∞)
∫
BTDGBdV (18.2)

Ke = K∞

∫
BTDKBdV +G∞

∫
BTDGBdV (18.3)

The matrix B is the strain-displacement matrix that depends on the element shape
function, while the scalar parameters K∞, Kg, K∞ and Gg represent the rubbery
(subscript ∞) and glassy (subscript g) bulk and shear moduli. Both DK and DG are the
constitutive matrices for the bulk and shear terms, respectively. These element stiffness
matrices (along with the element mass matrix) are then assembled using standard finite
element techniques, resulting in the semi-discretized equations of motion for a structure
with linear viscoelastic materials.

Mẍ+
∫ t

0
Kν,KζK(t− τ)ẋ(τ)dτ +

∫ t

0
Kν,GζG(t− τ)ẋ(τ)dτ +Kex= f(t) (18.4)

9This section prepared by Robert Kuether, org. 01556.
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This coupled integro-differential equation contains real, symmetric NxN system-level mass
(M), viscoelastic bulk stiffness (Kν,K), viscoelastic bulk shear (Kν,K), and elastic stiffness
(Ke) matrices. The Nx1 vectors x and f(t) correspond to the physical displacements and
externally applied forces, respectively, and the dot represents the time derivative. The
integral terms have a simple functional form, such that the kernel functions are a constant
matrix multiplied by a series of normalized scalar exponential functions (Prony series).

One can extract the system level matrices (M , Kν,K , Kν,G, and Ke) directly from
Sierra/SD by writing out the matrices of an isotropic linear elastic FEA model. The mass
and stiffness matrices are written to MATLAB “*.m” files when using the “dump”
solution type in the Sierra/SD input deck. The mass matrix extraction is straightforward
since it only depends on the density; however, extracting the individual stiffness matrices is
more complicated. A method for extracting the system-level bulk and shear stiffness
matrices using the dump solution type is given in Table 18-4. Figure 18-35 provides an

Output Matrix in Eq. (18.4) Input Bulk Moduli Input Shear Moduli
Ke K∞ G∞
Kν,K Kg−K∞ 0
Kν,G 0 Gg−G∞

Table 18-4. – Linear elastic material parameters to output system-level stiffness matrices
using the dump solution type.

example of the input required to extract the Kν,K stiffness matrix.
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SOLUTION
case ’dump matrices’
dump

END

FILE
geometry_file ’plate_9by9inch.exo’

END

ECHO
mass

END

BLOCK 1
hex20
material 1

END

//K_g = 9.8039e6
//K_inf = 7.0e6
//G_g = 3.7594e6
//G_inf = 2.5e6

MATERIAL 1
Isotropic
G= 1e-4 // essentially zero
K= 2.8039e6 // = K_g - K_inf
density=0.00024739

END

Figure 18-35. – Sample Input to determine Viscoelastic Matrices.
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19. Superelements

Superelements can greatly reduce the computational cost of large model. But they are
hard to use. Recall from Section 9 that in Sierra/SD we have no automatic superelement
capability. Superelements are usually used as follows. 10

1. A full sized, complete model is generated.

2. Portions of the model are extracted, and a reduced CBR model is created from that
extracted model.

3. The full model is modified by removing the extracted portions and replacing each
with a superelement.

4. The modified model is analyzed.

5. The modified model is post processed.

This section describes each of these steps for a realistic example.

19.1. Superelement Example

The full model is shown in Figure 19-36. The model consists of a the following.

• A lower leg portion consisting of two solid blocks and several beam blocks for
applying loads and tying the model together. This will become superelement 1.

• A central joint section representing the bolted joint. The joint is nonlinear, and is the
primary interest in the study. It is a single, zero length beam that is attached to the
upper and lower leg sections. This will not become a superelement.

• An upper leg section that is similar to the lower leg. This will become superelement 2.

The two superelements are attached in very different ways to illustrate the issues
introduced by the connections. The lower model has only two interface nodes, at the
centers of the networks 81 and 51. This makes a small structure that is easy to interface.
However, because the interface nodes may not be part of an MPC, it also requires that
these two networks be beams rather than the rigid Rbars that the analyst would prefer.

In contrast, the upper superelement uses Rbars, but they must be put in the residual
structure. Thus, blocks 52 and 82 are not part of the superelement. The consequence is
that there are many interface degrees of freedom which greatly complicates interfacing to
the superelement, and significantly increases the computational cost of the model
reduction.

The joint model (block 53) consists of a single Joint2G element. Topographically this is a
2 noded bar element which will be used to control the translations and rotations of the two

10This section was originally written 2005. The example described here is no longer available. Only the
system mesh single_leg4.exo is archived.
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Two Superelement (SE) Model
Id # elements type SE color Description
81 188 bar 1 blue lower load spreading network
11 11072 Hex20 1 red lower support block
12 2158 Hex20 1 pink lower joint support
51 54 bar 1 cyan joint connection network
53 1 bar none red joint
52 124 bar none blue joint connection network
21 15024 Hex20 2 yellow upper joint support
22 2106 Hex20 2 green upper support block
82 184 bar none purple load spreading network
blocks 61, 62, 63, 71, 72, 72 are not shown and connect the Hex blocks

Figure 19-36. – Exploded view (left) of model and (right) zoom view of joint.
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points. Block 53 is connected to the centers of the two network blocks (51 and 52) which
connect to the lower and upper joint supports respectively.

19.2. Submodel Model Extraction and Reduction

The two main ways of extracting a submodel from the original full model are to either 1)
build up the submodel from scratch, or 2) pull the model out of the original model. When
the model interface is complex, I would strongly recommend the second method. This is
because there is a lot of book keeping required to assign the interface nodes to the revised
model when the superelement is reinserted (see section 19.3). If the node number does not
change between these two models, then this book keeping is minimized.

Extracting portions of a system model for CBR reduction may be done using the Grepos
utility which preserves the node ordering.

$ grepos input.exo output.exo
GREPOS> delete block all
GREPOS> undelete block 1
GREPOS> exit

SE1: The lower structure with a small interface

For this model I went into Patran and removed all the elements except those in blocks 11,
12, 51, 61, 62, 63 and 81. 11 In hindsight removing blocks is easier with Grepos than
Patran. To define the interface, I defined nodeset 1111 at the center of the networks in
blocks 51 and 81. I removed all other nodeset and sidesets, and all empty block definitions.
Nodeset 100 was created at random points for an OTM, and the elements were
renumbered. No nodes were removed.

A “check” of this model in explore indicates that there are 77726 nodes that are not
connected to any element. This is as expected, and there are no other errors reported.

The model is split into 10 regions using stk_balance, and model reduction is performed on
our Linux cluster (liberty). Run times are shown below. Each processor required about
450MB of memory.

11Blocks 61, 62 and 63 contain RBar elements tying blocks 11 and 12. For simplicity they are not shown
in the figure. Note that it is acceptable to have rigid elements inside the superelement, but not on the
interface.
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step elapsed time comment
matrix assembly 00:12
CBR restructure 03:58
fixed interface modes 20:44 computed 50 eigenvalues
constraint modes 25:43 computed 12 constraint modes
model reduction 25:43
total (10 processors) 25:43 model size: 186 kB

SE2: The upper structure with a larger interface

Again, this model was developed by removing all elements that were not in the
superelement blocks (21,22,71,72,73). All the nodes are included to enable using RBars to
tie to the superelement. Nodeset 2222 is defined on the end points of all the bars in blocks
82 and 52. No OTM will be used because many nodes are in the interface, so no additional
nodeset is created. As in SE1, empty or irrelevant blocks, nodesets and sidesets are
removed, and the model generated. The node count did not change. The element count is
about 25% higher for this superelement because the mesh of the original model is finer.

The model is split into 10 regions. Run times are shown below. Each processor required
about 750MB of memory during the linear solve portion.
step elapsed time comment
matrix assembly 00:14
CBR restructure 06:16
fixed interface modes 25:30 computed 50 eigenvalues
constraint modes 1:47:39 computed 924 constraint modes
model reduction 1:49:23
total (10 processors) 1:49:23 model size: 15 MB

19.3. Superelement Insertion

Again, the original model is taken and culled back to only the remaining blocks. We keep
only blocks 52, 53 and 82. Sidesets are deleted, as they no longer point to valid elements.
The node sets are left in. Empty blocks are removed and the elements renumbered. There
are only 309 elements remaining in the model.

Superelements must be inserted into the model. For SE 1, this is easy since there are only
two nodes in the superelement. We could use a superelement type, but choose to insert a
truss element for later visualization. The nodes for the connectivity may be found in
nodeset 1111 in the Exodus file.

Superelement 2 is more complicated because the interface is so much larger. It is important
that we maintain the order of the nodes so we have a consistent stiffness matrix. Because
we did not remove any of the nodes from the model in earlier steps the mapping from the
superelement back to the new model is greatly simplified.
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$ mksuper residual.exo
==============================================================
| Sandia Tool: mksuper
| Salinas Release 4.11.0.20090227173358
==============================================================

Input Genesis file: residual.exo
MKSUPER> add nodeset
Enter the nodeset ID.
2222
Adding 308 nodes to superelement.
MKSUPER> write 1leg_se1_and_2.exo
Wrote file ’1leg_se1_and_2.exo’ with 1 superelements.
MKSUPER> quit

Figure 19-37. – Inserting the superelement connectivity in the model.

Because superelement 2 has 308 nodes in the interface, no standard element can be used to
represent it. A nonstandard “super” type element must be added to the Exodus file. This
is done using the mksuper application.

There are several ways of defining the nodes for the superelement using mksuper. Because
this is a large interface, we use the nodeset option. In the residual structure we define
nodeset 2222 to apply to the same interface nodes as in the superelement model. We then
use these nodes as the connectivity for the element using “mksuper”. This step is
illustrated in Figure 19-37. The mesh is completed in the file 1leg_se1_and_2.exo.

The input file is different from the original. We have two blocks associated with the
superelement, two blocks associated with the rigid links, and a single block for the joint. A
sample is shown in input 19.1, with the map for the smaller superelement shown in
input 19.2.

SOLUTION
eigen nmodes=12 shift -1e6

END

FILE
geometry_file ’1leg_se1_and_2.exo’

END

Boundary
nodeset 11 fixed
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end

BLOCK 52
rbar

END

BLOCK 53
joint2g
kx=elastic 1e6
ky=elastic 1e6
kz=elastic 1e6
krx=elastic 1e6
kry=elastic 1e6
krz=elastic 1e6

END

BLOCK 82
rbar

END

BLOCK 1001
superelement
file=cbrse1c.ncf
diagnostic=1
include map_se1.inp

END

BLOCK 1002
SUPERELEMENT
file=cbrse2c.ncf
include map.se2

END

Input 19.1. Superelement model input file

// node cid
map 0 0

0 0
0 0
0 0
0 0
0 0
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0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 2
1 3
1 4
1 5
1 6
2 1
2 2
2 3
2 4
2 5
2 6

Input 19.2. DOF map for superelement 1

19.4. Units and Wtmass

It is critical that the analyst have the proper set of units when inserting a reduced model.
See the discussion in Section 9.2.6.

19.5. Visualization

The output of the analysis in the previous section is an Exodus model. The structure is
limited, but the portions of the model associated with each of the remaining blocks may be
visualized. Figure 19-38 shows the response. More development is required for better
visualization, but the displacements, etc. are available for visualization or for transfer to
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Figure 19-38. – Modal Response of the Superelement.

MATLAB or other plotting packages. 12 Display of the nodes and elements in the output
transfer matrix of the superelement is under development.

20. Infinite Elements

In this section, we describe how to use infinite elements for acoustics. The elements enforce
high-order absorbing boundary conditions. As a post processing step, it is also possible to
evaluate the solution at far-field points outside of the acoustic mesh.

The infinite element specification begins with a sideset on the Exodus file of interest.
Currently, that sideset has to be a spherical surface or part of a spherical surface. Thus, a
full spherical surface, hemispherical surface, or a quarter of a sphere would all be
acceptable. Note that the infinite element accuracy will degrade if the element surfaces on
the spherical boundary do not adequately represent the spherical surface. The finite
element surfaces will be faceted, but enough elements on the boundary are needed to
represent the spherical curvature.

12Unfortunately many of the visualization tools don’t recognize the “superelement” type. For example, in
versions before release 8 of Ensight, the element and its nodes were not displayed.
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Once a sideset is identified for the infinite element surface, the boundary section in the
input deck would be modified as follows.

BOUNDARY
sideset 1
infinite_element
use block 57

END

BLOCK 57
infinite_element
radial_poly = Legendre

order = 5
source = 0 0 0
neglect_mass = yes

END

Where block 57 contains the infinite element parameters. The number 57 is arbitrary; the
user can pick any number that is not assigned to a block in the input mesh Exodus file.
The parameters are summarized in Table 20-5. Currently, only Legendre polynomials are

Parameter Description Options default
radial_poly the type of polynomial for ra-

dial expansion
Legendre Legendre

order the order of the radial basis 0-19 0
source the location of the source point any 3 real numbers 0 0 0
neglect_mass indicates whether to neglect in-

finite element mass
yes or no yes

Table 20-5. – Available parameters for the infinite element section.

available for the radial basis. The order of the polynomial can vary from 0 to 19. Order 0
corresponds to a simple absorbing boundary condition. Higher orders will be more
accurate, but also more computationally expensive. The source point is the location of the
center of the spherical surface from which the infinite elements originate. This would
coincide with the origin of a spherical coordinate system that is anchored to the spherical
surface of the infinite elements. The neglect_mass option indicates whether to neglect the
mass matrix contributions from the infinite elements. Note that for a spherical surface, the
mass matrix contributions from an infinite element are identically zero. However, when
numerically generated, small entries will be present in the mass matrix, and thus an option
is provided to include these terms in the analysis. It is recommended to neglect the mass in
most cases, and thus it would typically be set to yes. By default, neglect_mass is set to
yes.

Note that infinite elements only require a specification of a sideset on the surface of
interest. No elements need be set up explicitly on this interface. Internally, Sierra/SD
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constructs virtual elements and virtual nodes that define the actual infinite elements, but
the analyst need not build a layer of elements on the boundary of the sideset.

Currently, infinite elements are only set up to work in the time domain. We expect to
provide the frequency domain version in an upcoming release.

The infinite element formulation in Sierra/SD uses a Petrov-Galerkin formulation, rather
than a standard Galerkin formulation. As a result, nonsymmetric system matrices are
encountered with infinite elements. This restricts the solver options to the GDSW solver.
In addition, special options have to be selected in GDSW block to invoke the nonsymmetric
solver for the linear solves. If infinite elements are specified, Sierra/SD automatically
selects the GDSW solver and the correct options for the solve. This makes the process
easier for the analyst. However, we list the GDSW options internally selected for
completeness. A full input for infinite elements is found in the Appendix (A.8).

GDSW
matrix_type nonsymmetric
krylov_method 1
solver_tol 1.0e-9
scale_option 1
coarse_solver LDM
I_solver LDM
O_solver LDM

END

Note that the nonsymmetric option lets the solver know that it should be expecting a
nonsymmetric matrix.

20.1. Far-Field Postprocessing

The infinite element formulation allows the analyst to compute the response outside of the
acoustic mesh as a post processing step. The response can be computed at any point
outside the mesh, and for any period of time. The linesample capability may be used to
write out the far-field data. This data may be written in a readable MATLAB format,
which can easily be read in to create plots of the data.

Linesample is placed in the linesample section as follows.

linesample
samples per line 10
endpoint 0 0 0 1 0 0
endpoint 0 0 0 0 1 0
format mfile

end
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This example creates two lines, with 10 samples per line. The first line runs from the origin
for one unit in the X direction. The second line extends from the origin in the Y
direction.

For example, the following section,

linesample
samples per line 2
endpoint 0 0 50 0 0 50.001

end

will instruct Sierra/SD to output the acoustic results at the 2 points (0,0,50) and
(0,0,50.001). Since these 2 points are very close, the output will be almost the same. Thus,
this is an example of using linesample to output the results at a fixed point in space.

The output will be written to a Matlab m-file with the name “linedata.m”. One file is
written per analysis (results are joined analogous to history file output). For example,
reading this file in will create vectors Time and Displacement. In our case Displacement is
just a placeholder for the acoustic pressure.

The infinite element output in the far-field is always given with respect to some time shift.
This is due to the properties of the inverse Fourier transform. Details of this are given in
the theory notes on infinite elements. The time shifts are included in the linesample output
for the analyst to use. These will allow for plotting the time histories against the
appropriate time vectors. For example, to apply the time shift to the first point in the
linesample data, one could use the following MATLAB command.

shifted_time = time + TimeDelay(1);

One TimeDelay value is available for each sample point in the linesample output.

Once the time data is properly shifted, the following command in MATLAB will plot the
pressure for the first sample point.

plot(shifted_time,Displacement(1,:))

21. Acoustic Scattering

Acoustic analysis often includes the concepts of a “scattering” solution. By this, we mean
an analysis where it is relatively easy to specify the incident wave at all points in space,
and we solve for the reflected wave. Such analysis is seldom done for elasticity because the
input medium is not usually homogeneous and an a priori specification of the incident
wave is a challenge. Such scattering solutions are useful in a variety of contexts. A
submarine in the ocean may be struck by an incident “ping” from a neighboring ship. Such
a ping is nearly a plane wave, and calculation of the outbound wave is the item of interest.
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The total acoustic pressure (which is the sum of the incident and scattered components)
may not be important. Because the incident wave is known, we do not need to model the
vast region of space between the incident source and the scattering object. This greatly
reduces the cost of the computation.

The theory manual details the formulation. There are several salient issues.

1. The same PDE is solved for scattering and full pressure solutions.

2. The acoustic scattering loads are applied analytically as a pressure on the wet surface
of the structure.

3. A conjugate load is applied to the wet surface of acoustic medium. Thus, there are
two loads applied: a pressure load, P , on the elastic medium, and a velocity load on
the acoustic medium. For a plane wave, v = P

ρc .

4. Because there are two such loads, we have designed a limited number of specialized
functions for application of these loads. These functions ensure compatibility between
the elastic and acoustic portions of the model.

5. The natural output quantity is the scattered pressure.

6. Typically, absorbing boundary conditions are applied to the exterior of the mesh to
reduce reflection of the scattered wave.

Because scattering solutions use the same PDE as the full pressure calculation, the analyst
could complete an analysis by applying these loads independently. Using the scattering
loads and set up provides a more robust and simpler interface to scattering problems.

21.1. Scattering Sphere

The sample problem is an elastic sphere floating in an infinite acoustic medium. The
meshes for the sphere and fluid do not match at the interface, so tied surface specifications
must be used. The example problem is illustrated in Figure 21-39. A full example is listed
in the Appendix (A.13).
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Figure 21-39. – Elastic Sphere in Fluid Example.

Solution

Within the solution section of the input, we specify the “scattering” keyword. This informs
the solver that consistency must be maintained between loads, and output pressures will be
scattered pressures.

Loads

The loads section should have a load applied to both the elastic and the fluid portions of
the model. In the example input of Figure 21-40, sideset 1 is the surface of the elastic
material, and sideset 2 is the corresponding surface of the fluid. Note that there are no
checks made on this loading. However, if the loads are not applied in pairs, the analysis is
meaningless.

While other structural loads can be applied in a scattering problem, it is incorrect to apply
acoustic loads other than scattering loads. This is because we are redefining the acoustic
variables to apply to incident pressures. We cannot define the variable as “incident” in one
portion of the analysis and “total pressure” in another portion.

Functions

The functions referred to in the loads section must be capable of applying different
functional responses to the elastic and acoustic regions. Specification of the “scattering”
keyword in the solution section permits us to check this for consistency.
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Tied Data

Because the elastic and acoustic regions of the model are not compatibly meshed, the
surfaces must be tied together with a tied surface specification. Sidesets 1 and 2 are again
applied. It is not necessary for the scattering problem to use tied data sections if the
regions have compatible meshes.

Outputs

Specification of “apressure” outputs the scattered pressure.
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Solution
case out

transient
scattering
nsteps=1000
time_step=0.001

end
Loads

sideset 1
pressure=1
function=1

sideset 2
acoustic_vel=1.
function=1

End
Function 1

type=Plane_Wave
material=water
k0=450.
direction -1 0 0

end
Tied Data

name surface1-2
surface 1,2

end
Outputs

apressure
displacement

end
material water

c0 = 5000
density = 1

end

Figure 21-40. – Example Scattering Input.
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22. Random Pressure Loads

In a previous section we discussed random vibration input (see section 15). That section
addresses a loading where the frequency content (or power spectral density) of the loading
is known for a few points on the structure. In contrast, for hypersonic vehicles a random
loading may occur at thousands of points on the surface. Many aspects of the loading are
the same, but the specification is different, and for performance reasons, the solutions are
performed differently.

The starting point for this analysis requires the following.

1. A surface sideset where the loading will be applied.

2. A temporal correlation function to apply on the surface. The temporal correlation
function is the inverse Fourier transform of a power spectral density (PSD).

3. A spatial correlation relation. Currently, that relation may only be specified as a pair
of exponential decay constants.

Details of the problem setup may be found in the User’s Manual. This section provides a
simple example of the setup and an informal discussion of the sources of the data.

22.1. Example Problem Set-up

For our example, we consider a cylinder in a flow field as shown in Figure 22-41. The
structure is a right circular cylinder of diameter 1 unit, and height 2 units. The flow is
directed towards this cylinder in the X direction, and the PSD and corresponding temporal
correlation function are shown in Figure 22-42. Input is found in the Appendix (A.9).

Figure 22-41. – Example Random Pressure Geometry.
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Figure 22-42. – Example Random Pressure PSD and Correlation Functions.

We are interested in this example, in frequencies up to 500Hz, so the cutoff frequency is
500Hz. There is no point in adding energy above the desired cutoff frequency – it only
complicates the procedure. 13 The PSD of the input thus controls much of the solution.

The spatial correlation is often more difficult to obtain. For our example, we require a
decay constant of 2.0 units in the flow direction, and 5.0 perpendicular to the flow. One
can think of corresponding decay distances of 0.5 and 0.2 respectively. Thus, down the
flow, points more than about 1.5 units away will not be well correlated. 14 Perpendicular
to the flow, correlations decay even faster.

One rarely has much experimental data about the spatial correlation. Some information is
sometimes garnered from the temporal correlation. For example, if the correlation function
has a characteristic time, τ , one would expect the spatial correlation length to be of the
order of δ = vτ , where v is the flow velocity. For a structure in a fluid, the dimensions of
the turbulent layer also provide a bound on the spatial correlation.

22.2. Example: Input Specifications

The physical quantities of the previous section can be interpreted and expressed as
Sierra/SD input as follows.

• The temporal correlation function of Figure 22-42 can be digitized as a Sierra/SD
function. In Figure 22-43 we use a triangular pulse for simplicity. The correlation
function should be symmetric about the origin, and it should have the value of 1.0 at
the origin. The correlation_function is used in the load section, as shown in
Figure 22-44.

• In the loads section, we also define the following quantities.

13Although the physics has energy above 500 Hz, cutting off the PSD at 500 Hz. is required because a higher
cutoff frequency narrows the correlation function with no added accuracy.

14correlation=exp(−3) = 0.0498
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cutoff_freq = 500
coordinate = 1 to set flow direction
ntimes = 5 varies from 3 to 20. Too small causes

poor replication of the temporal correla-
tion function. Too large results in ill con-
ditioning and singularity.

Recall that the full correlation matrix is a tensor product of the spatial correlation with
temporal components. The “NTimes” parameter controls the number of samples in the
time domain.

All that remains is setting the spatial correlation decay constants in the loads section. The
full text is shown in Figure 22-44.

correlation_length_z = 0.5
correlation_length_r = 0.2

FUNCTION 1
type linear

data -0.001909859319285 0
data 0 1
data 0.0019098593192856 0

END

Figure 22-43. – Random Pressure Correlation Function. The temporal correlation is digitized
as a “time only” function. For purposes of illustration, we use a simple triangular function here.
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LOADS
sideset 1

randompressure
cutoff_freq = 500
delta_t = 0.001
correlation_function = 1
ntimes = 5
correlation_length_z = 0.5
correlation_length_r = 0.2
coordinate = 1

END

BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin 0 0 0
z point 1 0 0
xz point 1 0 1

END

Figure 22-44. – Random Pressure Load Section. Note that the “flow” direction is the Z
coordinate direction of coordinate frame 1.

22.3. Example: Verifying the Load

This is a fairly complex input, and it is advisable to verify the generated loads to ensure
consistency. We examine four quantities.

1. average force on a node.

2. variance of the force on a node.

3. temporal force correlation on a single node.

4. cross correlation of forces between nodes.

All of these quantities require output of the total input force, which is obtained by
specifying “force” in the “outputs” section of the Sierra/SD input. We will use
MATLAB tools to evaluate many of the results. Data can be read into MATLAB from
the Exodus results using “exo2mat” or using other methods.

22.3.1. Average Nodal Force

The average nodal force may be determined either by evaluating the MATLAB results
directly, or using the “statistics” output from Sierra/SD. The built in statistical output is
easiest. Supply the “statistics” keyword to the “outputs” section, and results will be
written to an additional Exodus file. This has the added benefit that these results may be
easily visualized using Paraview or Ensight. See Figure 22-45.
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For long time integration, the average value of the nodal force should approach zero.
Shorter time samples will have greater variation. The random variables depend on
“cutoff_freq”. The number of random samples can be computed as,

Nsamples = Timeanalysis · cutoff_freq

The fractional mean of the force should be within about 3/
√
Nsamples. Or,

Errormean =
∣∣∣∣FmeanFo

∣∣∣∣< 3√
Nsamples

Here Fo is the force applied for a correlation function of 1. It involves the scale factors of
the function, the sideset distribution factors and the effective area for each node. 15 See
the comments section, 22.4 for, discussion on the effective area.

For the example in Figure 22-45, mean forces are of the order of 1/1000. In this example,
we took 10,000 time steps, with each of 0.1ms for a total time Timeanalysis = 1s. With
Delta_T = 1/cutoff_freq = 1ms, the total number of random samples is
Nsamples = 1000.

For nodes in the center of the loading area, the effective area is about 0.0098 square units.
Because the sideset distribution factors are all one, we have Fo = 0.0098. Then,

Errormean = 0.001
0.0098

= 0.1

which is greater than 3√
1000 = 0.095. A distribution of the mean is shown in Figure 22-46.

Figure 22-45. – Variation of Mean and Standard Deviation of Force Magnitude on the Surface.

15A simple way to estimate Fo is to run a very short transient analysis after having converted the random
pressure load to a constant unit pressure.
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Figure 22-46. – Distribution of Mean Forces on Surface.

22.3.2. Variance of Nodal Force

The standard deviation, which is the square root of the variance, is also available as an
output from the analysis, and may be plotted on the structure using standard visualization
tools. See Figure 22-45.

Again, the standard deviation is a statistical quantity, which is only meaningful for large
numbers of samples. In the limit of large N , the standard deviation should approach Fo, as
defined above, provided that the correlation function is 1 at time 0.

The plots show a value of Fstd ≈ 0.0085 which is under the expected value of 0.0098.
Because the averaging process tends to round out the correlation function, the measured
values of the standard deviation are typically somewhat less than Fo. The autocorrelation
function analysis of the following section should make this more clear.

22.3.3. Temporal Nodal Force Autocorrelation

If we examine the statistics of a the loading on a single node, we should recover the
temporal correlation that we initially input. Figure 22-47 shows the correlation function
extracted from the raw time response data. The correlation function may be computed
as,

fc(n) = 1
F 2
o

∑
i

wiwi−n.

Where wi is the force on a node at time ti. This data can only be obtained using
MATLAB or another external tool, i.e. it is not available as part of the statistical output.
In MATLAB we get this with, C = xcorr(f1,f1), where f1 is the force time history on a
node of the surface. We recover a correlation that is similar to the original triangle
correlation in the input. Because of interpolation and finite sample length, we do not
expect the same curves precisely.

The curves of Figure 22-47 should be considered “good enough” in a statistical sense. A
temporal interpolation from multiples of Delta_T to the integration time step is being
performed, which smooths the values of the correlation.
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Figure 22-47. – Nodal Force Autocorrelation.

22.3.4. Spatial Cross Correlation

The previous section discussed the autocorrelation function, i.e. the temporal correlation of
signals on the same spatial location. We can also examine the cross correlation functions.
We will only evaluate the functions at the peak.

This is more difficult. We use the MATLAB “find” method to get the indices of the nodes
with x=−0.5, and y = 0. We loop through these nodes, and compute the “xcorr” function
between the node at the center and the other nodes. The peak value of this solution is then
plotted versus the distance in Figure 22-48.
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Figure 22-48. – Nodal Force Spatial Cross Correlation.

There are obvious differences between the measured loads and the target. The correlations
for close distances are lower. This is understood to be generated by the temporal
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interpolation function. At large distances, the cross correlations never go to zero because of
the finite length of the sample.

22.4. Random Pressure Comments

Effective Area

Random pressures are computed as force loads using a consistent pressure calculation.
Pressures at the nodes are spread through the element shape functions to result in nodal
forces. For a uniform mesh, this is similar to lumping the pressures from a fixed area onto
the nodes with F = P ·Area. In Figure 22-49 an element based mesh is shown along a
corresponding effective area for the nodes. For a uniform quadrilateral mesh like the
example above, the nodal effective area is the same as the area of an element face.

Nodal Effective Area

Figure 22-49. – Nodal Effective Area.

Temporal Interpolation

To improve performance, the random pressure loading procedure computes random
pressures at multiples of “Delta_T” and then interpolates to integration time steps. A
piecewise linear interpolation introduces unacceptable errors; sinc(x) interpolation is much
better.

Interpolation can be avoided by choosing the integration and sampling times to be equal.
In no case should the integration time be larger than the sampling time.

Singularities

To compute the proper temporal and spatial correlations for the forces, we need to perform
a Cholesky factorization of the correlation matrix. This factor will fail if the matrix is
singular. Remember that the correlation matrix that we factor is a tensor product of
temporal and spatial components, C = Cspatial⊗Ctemporal. If either component is singular,
the matrix C is singular. Several common issues can cause singularity of this matrix.
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1. Taking NTimes too large or too small. For small Delta_T, NTimes must be large
enough to sample the time correlation function. However, studies show that the
condition number of the matrix grows exponentially with NTimes. The target value
is 5. Values above 20 are not recommended; Ctemporal is numerically singular.

2. Spatial degeneracy, leading to Cspatial = 0. We have only one means of entering the
spatial correlation parameters, viz. the correlation_length variables pair. If either
of these quantities are so large that δ/correlation_length is very close to zero (with δ
representing the distance from one node to another on the mesh), then the spatial
portion of the matrix becomes singular. Effectively, these locations are no longer
independent, but must apply the same load vector.

3. Using a Delta_T = 1/cutoff_freq and the default sinc function for a correlation
function may generate a Ctemporal singularity. 16 This is because we are now
evaluating the correlation function at multiples of π, where it is always zero.

Time Step

The integration time step specified in the SOLUTION section must always be less than or
equal to Delta_T.

Sinc Function

The sinc function defined as sin(x)/x is important in at least two places in the code. First,
it is the only function available for the temporal interpolation function. Second, by default,
we use the sinc function as the correlation function. In most cases, this use of the function
should probably be replaced by another function. We use it as the default because it
represents the Fourier transform of a flat PSD, which is the simplest loading.

22.5. Memory, Performance, Parallel and Anything Else of Interest

The matrices generated for these operations are all square and dense. The matrix order is
d= nspatial ·ntemporal. Here nspatial is the number of points in the surface and
ntemporal =NTimes. Because memory requirements grow as the square of these variables, it
is important to manage these carefully. Practically, models up to d= 105 are possible in
parallel, but they take a lot of time.

The operation count for Cholesky factorization of a dense matrix is of order d3. Thus, the
computational cost increases much faster than model size. The parallel solutions of the
Cholesky system are not scalable. In a scalable problem, doubling the size of the
problem, and also doubling the number of processors should not change the solution time.
Although the sparse linear solvers for FE solution are scalable, the Cholesky factorization
required to compute random pressure loads is not scalable.
16In this example, we intentionally use the triangular function both for simplicity, and to avoid this problem.
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The dense Cholesky factorization from the ScaLAPACK library is used. The parallel
decomposition for this solve is completely different from the FEM decomposition, and is
computed internally without user intervention. The user input for the parallel solution is
exactly the same as the serial input. However, at this time, parallel solutions are limited to
platforms built under the Intel compiler with MKL libraries. The solution will fail on other
platforms.

23. Lighthill Tensor Loading

In this section we provide the steps for applying the Lighthill tensor as a load in a
Sierra/SD acoustics simulation. The Lighthill tensor captures the noise generated by
unsteady convection in flow in a fluids simulation. In this work, we use the Sierra/TF
incompressible thermal fluids code Fuego to simulate a small chamber, shown in Figure
23-50, that undergoes a sinusoidal pumping motion in the x-direction. The air moving in
and out of the chamber produces turbulence that is captured by the Lighthill tensor
computed during the Fuego simulation. The divergence of the Lighthill tensor is handed off
to Sierra/SD and is used as an acoustic source term for far-field acoustic noise modeling
in the larger semi-circular domain shown in Figure 23-51.

a)																																						b)																																												c)
x

y 0.1cm

0.03cm

Figure 23-50. – a) Fuego mesh of fluids domain where sideset 2 (green) is absorbing, sideset
4 (blue) undergoes the pumping motion, and all other sides shown in red are fixed. Sideset
2 shown in green will be tied to the larger Sierra/SD domain shown in Figure 23-51. b)
Fuego mesh shown on z-plane. c) Fuego interpolation mesh for output of the divergence of the
Lighthill Tensor. Domain dimensions are also shown in c).

These simulations are part of the Sierra test suite and provide regression testing for both
the Sierra/SD and Fuego parts of Lighthill noise modeling. Lighthill loading has also been
verified in Sierra/SD for a 1-D waveguide with documentation provided in the Sierra/SD
verification manual. The input for this example is provided in Appendix A.14.

Producing the Lighthill load and applying it in Sierra/SD is a 5 step process. The initial
steps produce the divergence of the Lighthill tensor from a Fuego CFD simulation and are
found in the test repository:
fuego_rtest/fuego/mesh_deformation_file/
Questions about these initial steps should be directed to the Sierra Thermal Fluids team.
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a)																																																										b)
Figure 23-51. – a) Sierra/SD domain for acoustic noise propagation. The yellow block is
the Fuego output domain containing divT and the red block is the additional domain for the
Sierra/SD simulation. The pink sideset will interface with infinite elements. b) Sierra/SD
tetrahedron mesh coarsened out from the Fuego mesh.

The final steps involve preparing the Fuego output for use in Sierra/SD and then running
the Sierra/SD simulation and are found in the input deck. Questions about the final
steps should be directed to the Sierra/SD team.

23.1. Mesh Deformation For Fuego

This section describes the process of producing a deformation field used to drive the Fuego
simulation. Questions about Aria should be directed to the Sierra/TF team. The files
referenced in this section are found in the directory:
fuego_rtest/fuego/mesh_deformation_file/

In this example, Aria is used to produce the displacement field using the input file
generate_displ.i. This file produces sinusoidal displacement in the x-direction on sideset
4, shown in blue in Figure 23-50a. The displacement of sideset 4 is given by

x(t) = asin(πωt) (23.1)

where the ω=1000Hz, a=0.02m, and displacement in the y- and z-direction is fixed. The
simulation is terminated at t=6e-3s. The Aria simulation is executed with the command:
aria -i generate_displ.i
which produces the file displacements.e that is used as input for Fuego. The Aria
simulation is small and is run in serial.

23.2. Fuego Simulation

This section describes the process of running Fuego to produce the divergence of the
Lighthill Tensor. Questions about Fuego should be directed to the Sierra/TF team. The
files referenced in this section are found in the directory:
fuego_rtest/fuego/mesh_deformation_file/
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The Fuego input file is fluid.i and is executed with the command:
mpirun -np 8 fuego -i fluid.i
The Fuego simulation is terminated at t=3e-3s. The Fuego simulation is discretized by the
tetrahedron mesh shown in Figure 23-50b. The Fuego simulations writes the divergence of
the Lighthill tensor out to the coarser hexahedron mesh shown in Figure 23-50c as nodal
data. This data is written to acoustic.e.8.[0-7] and provides the loading for the
Sierra/SD simulation.

23.3. Processing Fuego output for Sierra/SD

This section describes the steps required to run a Sierra/SD simulation using the Fuego
output. Questions about this section should be directed to the Sierra/SD team. The
regression test Lighthill_howto.test colocated with the input deck executes all steps in
this and the next sections

The first step is to join the partitioned Fuego files back together using the epu Seacas tool:
epu -auto acoustic.e.8.0
The above Fuego simulation writes the divergence of the Lighthill tensor out as nodal data
with the variable names: divT_x, divT_y, divT_z. The Fuego domain is much smaller
than than the Sierra/SD domain. If these two domains were joined together into a single
Exodus file, nodal data of divT=0 would be created on the larger Sierra/SD domain. To
circumvent this unnecessary storage of divT data on the Sierra/SD mesh, we convert the
Fuego divT data to nodeset data using the ejoin Seacas tool:
ejoin -output acoustic_nodeset.exo -convert_nodal_to_nodesets all acoustic.e
which produces the output file acoustic_nodeset.exo.

23.4. Mesh for Sierra/SD

The Sierra/SD simulation will use the Fuego divT data as a source term to model noise
propagation in a larger domain. For this example we join the smaller Fuego mesh
containing the interpolated divT data to a larger semi-circular domain, see Figure 23-51a.
A cubit journal file for creating the semi-circular mesh contained in half_sphere.jou.
This mesh must contain sidesets (sideset 5 in the cubit journal file) that will be tied to
sideset 2 in the Fuego output mesh, shown in green if Figure 23-50a. This mesh also
contains sideset 6 on the exterior of the semicircular domain which will be used for
applying absorbing boundary conditions via infinite elements. The two separate meshes are
joined together with the ejoin Seacas tool:
ejoin -output acoustic_nodeset_half_sphere_distribution_factors.exo
half_sphere.exo acoustic_nodeset.exo
This produces the full meshed domain shown in Figure 23-51b for the Sierra/SD
simulation. This mesh is then decomposed into four domains using stk_balance:
mpirun -np 4 stk_balance acoustic_distribution_factors.exo temp1
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23.5. Sierra/SD simulation

This Sierra/SD simulation will be described in this section. Lighthill loading causes
Sierra/SD to use the acceleration potential form of the acoustic equation. The
Sierra/SD input file is included in Section 14. The Sierra/SD simulation is terminated
after t=0.06s, which is twice as long as the Fuego simulation. For the final 0.03s of the
simulation there will not be any available Fuego produced divT data to be read in for
Lighthill Loading. For this case, the final divT data read in at t=0.03s will be applied for
the remainder of the simulation, which produces a warning to this effect.

Some Lighthill specific portions of the attached Sierra/SD input file are:

1) The Lighthill loading is applied as a function load the LOADS section with the Function
described in FUNCTION 1. Lighthill loading is described in User’s Manual and the
verification manual.

2) Tied data ties together the Fuego and Sierra-SD domains. Sidesets must be defined on
these surfaces when they are created in Cubit. It is difficult to add a sideset to a mesh
after it contains nodal data, i.e. The sidesets needed to tie the meshes together must be
defined on the mesh used for Fuego output before the Fuego simulation is run.

3) Infinite elements are used on sideset 6 to absorb the pressure waves.

24. Tied Joints

The Tied Joint provides an interface to the whole joint models. Multiple connection
methods are supported, including weighted constraint equations.

Separate shear and normal forces are supported. The separation also reduces requirements
on the constraints. The whole surface is no longer required to have 6 rigid body modes.
The normal tied interface keeps surfaces together. This relaxes the requirements for shear
constraints. The Tied Joint permits constraints that look more like a collection of trusses,
not a collection of beams.

Rotational DOFs are necessary for the structure to move as a rigid body. However, the
adjacent elements may have no rotational stiffness. This introduces singularities. Avoiding
the rotational DOFs is important.

Normal direction constraints are tied surfaces. Shear direction constraints are a truss
network. For curved surfaces, constraints may be inconsistent.
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24.1. Lap joint

A lap joint contains regions of “welded” contact, microslip, and macroslip as shown in
Figure 24-52. An elastic spring approximates normal forces. Tied surfaces approximate
shear behavior of the “welded” region. The macroslip region is free. The region of microslip
depends on the loading. Microslip introduces loss into the structure. This region is well
approximated by an Iwan element.

Welded Region

Microslip Region

Macroslip Region

Figure 24-52. – Lap Joint with Contact Regions. The physics of bolted lap joints is complex.
Tied Joints use a combination of constraints, springs and optionally Iwan elements to generate
a reduced order model of the structure.

Without a Tied Joint, this lap joint can be modeled using a whole joint model. Each of the
contact surfaces is rigidized (using a rigidset). A Joint2G connects the surfaces. The mesh
is represented in Figure 24-53. Figure 24-54 illustrates the conventional means of
connecting this structure. This method reduces all the behavior of the joint to a single
Joint2G element. That element must be included as part of the mesh. Because the surfaces
are allowed to translate and rotate independently, interpenetration can occur. Nevertheless,
the method is effective in representing the energy loss that occurs in this structure.

Joint2G

Figure 24-53. – Lap Joint Finite Element Mesh. The physical lap joint is represented by a
reduced order model which uses disconnected meshes of the top and bottom material. These are
shown separated in the cartoon but may have overlapping nodes. In a conventional connection
the Joint2G which represents the bolt must be explicitly meshed. The Tied Joint approach
generates that element internally.

The input included in Figure 24-55 represents the same physics. The normal definition is
“none” because the normal stiffness is part of the Joint2G structure. The shear side
definition is “rigid” corresponding to a rigid set definition on each of the surfaces. No mesh
of block 3 is required.
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Rigidset
sideset 1

end
Rigidset

sideset 2
end

Block 3
Joint2G

Kz = Elastic 1e6
Kx = Iwan 1
Ky = Iwan 1
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

END

Figure 24-54. – Conventional Input for Whole Lap Model.

Tied Joint
Normal Definition = none

surface 1,2
Shear Definition

side = rigid
connect to Block 3

end

Block 3
Joint2G

Kz = Elastic 1e6
Kx = Iwan 1
Ky = Iwan 1
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

END

Figure 24-55. – Tied Joint Input for Whole Lap Model.
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24.2. Joint with Slip

The whole joint model of section 24.1 can be modified to prevent penetration of the two
surfaces. The models are shown in Figures 24-56 and 24-57 for the conventional and Tied
Joints.

Sliding contact or slip keeps two surfaces in contact with no resistance to transverse
motion. Because the sliding contact constrains the normal behavior, the Joint2G
parameters for that direction are irrelevant. Because the surfaces are flexible, properly
constraining the transverse motion of the connection nodes is challenging. The constraint
method is specified using the side. The Rrod and average methods are available.
Example 24-56 uses the Rrod approach.

Rigidrod
sideset 1

end
Rigidrod

sideset 2
end

Block 3
Joint2G

Kx = Iwan 1
Ky = Iwan 1
Krz = Elastic 1e9

// not needed
Krx = Elastic 1e9
Kry = Elastic 1e9
Kz = Elastic 1e6

END
Tied Data

name = ’block_3_tj’
surface 1,2
transverse slip

end

Figure 24-56. – Conventional Input for Whole Lap Model with Sliding Contact.
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Tied Joint
Normal Definition = slip

surface 1,2
Shear Definition

side = Rrod
connect to Block 3

end

Block 3
Joint2G

Kx = Iwan 1
Ky = Iwan 1
Krz = Elastic 1e9

// not needed
Kz = Elastic 1e6
Krx = Elastic 1e9
Kry = Elastic 1e9

END

Figure 24-57. – Tied Joint Input for Whole Lap Model with Sliding Contact.
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1. EXAMPLE PROBLEM INPUT FILES

1. Input. static.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’static run of a test fixture model’
statics

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’FILEPATH’

END

LOADS
nodeset 2

force 1.0 0.0 0.0
scale 200.0

END

BOUNDARY
nodeset 1

fixed
END

OUTPUTS
displacement
stress

END

ECHO
mass block

END

BLOCK 1
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass

Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
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// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol=1e-8

END
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2. Input. eigen.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’eigen run of a test fixture model’
eigen

nmodes 12
END

PARAMETERS
wtmass=0.00259
eigen_norm=visualization

END

FILE
geometry_file ’FILEPATH’

END

BOUNDARY
nodeset 1

fixed
END

OUTPUTS
displacement

END

ECHO
mass block

END

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass

Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol 1.0e-10

END
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3. Input. transient.inp

Refer to Section 1 for details of the test.

// direct transient run example

SOLUTION
title ’direct transient run of a test fixture model’
transient

time_step 1.0e-4
nsteps 100

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’FILEPATH’

END

LOADS
nodeset 1

force 0.0 1.0 0.0
scale 1.0e7
function 1

END

HISTORY
nodeset 33
nodeset 148
nodeset 270
displacement
acceleration

END

OUTPUTS
END

ECHO
mass block

END

// Block and material input

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass

Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
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E=1.6e+07
nu=0.3

END

// function defining a haversine pulse

FUNCTION 1
name "1500g_03ms.fun"
type LINEAR
data 0.000000e+000 0.0000
data 3.636364e-006 1.5100
data 7.272727e-006 6.0339
data 1.090909e-005 13.5535
data 1.454545e-005 24.0385
data 1.818182e-005 37.4467
data 2.181818e-005 53.7241
data 2.545455e-005 72.8051
data 2.909091e-005 94.6130
data 3.272727e-005 119.0599
data 3.636364e-005 146.0473
data 4.000000e-005 175.4667
data 4.363636e-005 207.1995
data 4.727273e-005 241.1179
data 5.090909e-005 277.0855
data 5.454545e-005 314.9573
data 5.818182e-005 354.5809
data 6.181818e-005 395.7967
data 6.545455e-005 438.4387
data 6.909091e-005 482.3353
data 7.272727e-005 527.3097
data 7.636364e-005 573.1808
data 8.000000e-005 619.7639
data 8.363636e-005 666.8714
data 8.727273e-005 714.3136
data 9.090909e-005 761.8995
data 9.454545e-005 809.4375
data 9.818182e-005 856.7361
data 1.018182e-004 903.6050
data 1.054545e-004 949.8554
data 1.090909e-004 995.3010
data 1.127273e-004 1039.7588
data 1.163636e-004 1083.0500
data 1.200000e-004 1125.0000
data 1.236364e-004 1165.4400
data 1.272727e-004 1204.2073
data 1.309091e-004 1241.1456
data 1.345455e-004 1276.1062
data 1.381818e-004 1308.9483
data 1.418182e-004 1339.5398
data 1.454545e-004 1367.7574
data 1.490909e-004 1393.4876
data 1.527273e-004 1416.6266
data 1.563636e-004 1437.0813
data 1.600000e-004 1454.7695
data 1.636364e-004 1469.6197
data 1.672727e-004 1481.5723
data 1.709091e-004 1490.5792
data 1.745455e-004 1496.6039
data 1.781818e-004 1499.6224
data 1.818182e-004 1499.6224
data 1.854545e-004 1496.6039
data 1.890909e-004 1490.5792
data 1.927273e-004 1481.5723
data 1.963636e-004 1469.6197
data 2.000000e-004 1454.7695
data 2.036364e-004 1437.0813
data 2.072727e-004 1416.6266
data 2.109091e-004 1393.4876
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data 2.145455e-004 1367.7574
data 2.181818e-004 1339.5398
data 2.218182e-004 1308.9483
data 2.254545e-004 1276.1062
data 2.290909e-004 1241.1456
data 2.327273e-004 1204.2073
data 2.363636e-004 1165.4400
data 2.400000e-004 1125.0000
data 2.436364e-004 1083.0500
data 2.472727e-004 1039.7588
data 2.509091e-004 995.3010
data 2.545455e-004 949.8554
data 2.581818e-004 903.6050
data 2.618182e-004 856.7361
data 2.654545e-004 809.4375
data 2.690909e-004 761.8995
data 2.727273e-004 714.3136
data 2.763636e-004 666.8714
data 2.800000e-004 619.7639
data 2.836364e-004 573.1808
data 2.872727e-004 527.3097
data 2.909091e-004 482.3353
data 2.945455e-004 438.4387
data 2.981818e-004 395.7967
data 3.018182e-004 354.5809
data 3.054545e-004 314.9573
data 3.090909e-004 277.0855
data 3.127273e-004 241.1179
data 3.163636e-004 207.1995
data 3.200000e-004 175.4667
data 3.236364e-004 146.0473
data 3.272727e-004 119.0599
data 3.309091e-004 94.6130
data 3.345455e-004 72.8051
data 3.381818e-004 53.7241
data 3.418182e-004 37.4467
data 3.454545e-004 24.0385
data 3.490909e-004 13.5535
data 3.527273e-004 6.0339
data 3.563636e-004 1.5100
data 3.600000e-004 0.0000

END

GDSW
solver_tol 1.0e-8

END

123



4. Input. modaltransient.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal transient run of a test fixture model’
case eigen

eigen
nmodes 20
shift -1e6

case trans
modaltransient

time_step 1.0e-4
nsteps 100
load 1

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’FILEPATH’

END

LOAD 1
nodeset 1

force 0.0 1.0 0.0
scale 1.0e7
function 1

END

HISTORY
nodeset ’33’
nodeset ’148’
nodeset ’270’
disp
velocity
acceleration

END

OUTPUTS
END

ECHO
mass block

END

// Block and material input

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass

Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0
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END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

// function defining a haversine pulse

FUNCTION 1
name "1500g_03ms.fun"
type LINEAR
data 0.000000e+000 0.0000
data 3.636364e-006 1.5100
data 7.272727e-006 6.0339
data 1.090909e-005 13.5535
data 1.454545e-005 24.0385
data 1.818182e-005 37.4467
data 2.181818e-005 53.7241
data 2.545455e-005 72.8051
data 2.909091e-005 94.6130
data 3.272727e-005 119.0599
data 3.636364e-005 146.0473
data 4.000000e-005 175.4667
data 4.363636e-005 207.1995
data 4.727273e-005 241.1179
data 5.090909e-005 277.0855
data 5.454545e-005 314.9573
data 5.818182e-005 354.5809
data 6.181818e-005 395.7967
data 6.545455e-005 438.4387
data 6.909091e-005 482.3353
data 7.272727e-005 527.3097
data 7.636364e-005 573.1808
data 8.000000e-005 619.7639
data 8.363636e-005 666.8714
data 8.727273e-005 714.3136
data 9.090909e-005 761.8995
data 9.454545e-005 809.4375
data 9.818182e-005 856.7361
data 1.018182e-004 903.6050
data 1.054545e-004 949.8554
data 1.090909e-004 995.3010
data 1.127273e-004 1039.7588
data 1.163636e-004 1083.0500
data 1.200000e-004 1125.0000
data 1.236364e-004 1165.4400
data 1.272727e-004 1204.2073
data 1.309091e-004 1241.1456
data 1.345455e-004 1276.1062
data 1.381818e-004 1308.9483
data 1.418182e-004 1339.5398
data 1.454545e-004 1367.7574
data 1.490909e-004 1393.4876
data 1.527273e-004 1416.6266
data 1.563636e-004 1437.0813
data 1.600000e-004 1454.7695
data 1.636364e-004 1469.6197
data 1.672727e-004 1481.5723
data 1.709091e-004 1490.5792
data 1.745455e-004 1496.6039
data 1.781818e-004 1499.6224
data 1.818182e-004 1499.6224
data 1.854545e-004 1496.6039
data 1.890909e-004 1490.5792
data 1.927273e-004 1481.5723
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data 1.963636e-004 1469.6197
data 2.000000e-004 1454.7695
data 2.036364e-004 1437.0813
data 2.072727e-004 1416.6266
data 2.109091e-004 1393.4876
data 2.145455e-004 1367.7574
data 2.181818e-004 1339.5398
data 2.218182e-004 1308.9483
data 2.254545e-004 1276.1062
data 2.290909e-004 1241.1456
data 2.327273e-004 1204.2073
data 2.363636e-004 1165.4400
data 2.400000e-004 1125.0000
data 2.436364e-004 1083.0500
data 2.472727e-004 1039.7588
data 2.509091e-004 995.3010
data 2.545455e-004 949.8554
data 2.581818e-004 903.6050
data 2.618182e-004 856.7361
data 2.654545e-004 809.4375
data 2.690909e-004 761.8995
data 2.727273e-004 714.3136
data 2.763636e-004 666.8714
data 2.800000e-004 619.7639
data 2.836364e-004 573.1808
data 2.872727e-004 527.3097
data 2.909091e-004 482.3353
data 2.945455e-004 438.4387
data 2.981818e-004 395.7967
data 3.018182e-004 354.5809
data 3.054545e-004 314.9573
data 3.090909e-004 277.0855
data 3.127273e-004 241.1179
data 3.163636e-004 207.1995
data 3.200000e-004 175.4667
data 3.236364e-004 146.0473
data 3.272727e-004 119.0599
data 3.309091e-004 94.6130
data 3.345455e-004 72.8051
data 3.381818e-004 53.7241
data 3.418182e-004 37.4467
data 3.454545e-004 24.0385
data 3.490909e-004 13.5535
data 3.527273e-004 6.0339
data 3.563636e-004 1.5100
data 3.600000e-004 0.0000

END

GDSW
solver_tol=1e-12

END
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5. Input. modalfrf.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal frf run of a test fixture model’
case eigen

eigen
nmodes 20
shift -1e6

restart auto
case frf

restart auto
modalfrf

load 1
END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’FILEPATH’

END

LOAD 1
nodeset 1

force 0.0 1.0 0.0
scale 1.0e7
function 1

END

FUNCTION 1
type linear
data 0.0 1.0
data 1.0e8 1.0

END

FREQUENCY
nodeset 270
acceleration
freq_min 100
freq_max 8000
freq_step 200

END

DAMPING
gamma 0.02

END

HISTORY
nodeset ’33’
nodeset ’148’
nodeset ’270’
acceleration

END

OUTPUTS
END

ECHO
mass block

END

// Block and material input

127



BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass

Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol=1e-10

END
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6. Input. random_vibration.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal random vibration run of a test fixture model’
case eigen

eigen
nmodes 20
shift -1e6

case modalranvib
modalranvib
lfcutoff -10

END

PARAMETERS
wtmass=0.00259008

END

FILE
geometry_file ’FILEPATH’

END

LOADS
END

FREQUENCY
nodeset 1,270
acceleration
freq_min 100
freq_max 8000
freq_step 200

END

DAMPING
gamma 0.02

END

// scale = concentrated mass * wtmass
RANLOADS

matrix 1
load 1

nodeset 1
force 1.0 0.0 0.0
scale 2.59e+4

load 2
nodeset 1
force 0.0 1.0 0.0
scale 2.59e+4

load 3
nodeset 1
force 0.0 0.0 1.0
scale 2.59e+4

END

MATRIX-FUNCTION 1
name ’Power Spectral Density input’
symmetry Hermitian
dimension 3x3
data 1,1

real function 1
data 2,2

real function 1
data 3,3

real function 1
END
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FUNCTION 1
Name = "Power_Spectral_Density"
type = linear
data 100.0 0.
data 300.0 0.001
data 500.0 0.01
data 700.0 0.1
data 7500.0 0.1
data 7700.0 0.01
data 7900.0 0.001
data 8100.0 0.

END

OUTPUTS
displacement
acceleration
vrms

END

ECHO
mass block

END

// Block and material input

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass

Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol=1e-8

END
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7. Random Vibration Input. Vran1.inp

Refer to Section 15 for details of the test.

SOLUTION
case eig
eigen nmodes=9
shift=-1e5

case rms
modalranvib
truncationMethod = displacement
keepmodes=3 // force modal truncation

END

RANLOADS
matrix=1
load=1

nodeset 12
force=0 1 0
scale 1.00e3 // needed to convert to g
// loads input in lbs. The PSD is in g^2/Hz.
// F = accel * mass
// = accel * (scale_factor)
// = accel * ((1000*.00259)*384.6)
END

Frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=all

END

MATRIX-FUNCTION 1
Name=input_Power_Spectral_Density
symmetry=symmetric
dimension=1x1
data 1,1

real function 1
END

FUNCTION 1
Name=’Power_Spectral_Density’
type=loglog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

END

DAMPING
gamma=0.01

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’FILEPATH’

END

BOUNDARY
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nodeset 124
rotx=0 roty=0 rotz=0 x=0 z=0

// fixed
// nodeset 25
// fixed
// nodeset 26
// fixed
END

LOADS
// nodeset 3
// force = 1.0 0. 0.
// scale = 1000.
// function = 2
// note... no sidesets in file.
// sideset 7
// pressure 15.0
// body
// gravity
// 0.0 1.0 0
// scale -32.2
END

OUTPUTS
vrms
END

ECHO
vrms

END

GDSW
solver_tol 1e-9

END

BLOCK 101
material 101

quadt
thickness= 0.200000003E+00
// patran/exo type ’QUAD’/QUAD. Number nodes 4

END

BLOCK 102
// material 0

ConMass
Mass=1000
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0

// patran/exo type ’BEAM’/BEAM. Number nodes 2
END

Block 10001
RBAR // RBE type elements
// # links 16

END
Block 1000

material=1000
beam2
area=1
i1=.1
i2=.1
j=.2
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orientation=1 0 .10
end

MATERIAL 101
// material type ’Iso’
density=0.1
Isotropic
E=1e+07
nu=0.35

END

MATERIAL 1000
// material type ’Iso’
density=0.1e-5
Isotropic
E=1e+09
nu=0.35

END

133



8. Infinite Element Input

Refer to Section 20 for details of the test.

Solution
transient
time_step 1.0e-2
nsteps 500

End

File
geometry_file ’FILEPATH’

End

Linesample
samples per line 2
endpoint 0 0 500 0 0 500.001
format exodus

End

Outputs
apressure

End

Echo
input off

End

Boundary
sideset 1

infinite_element
use block 111

End

Block 1
material "air"

End

Block 111
infinite_element

radial_poly legendre
order 3
neglect_mass yes
ellipsoid_dimensions 200 200 200

End

Material "air"
density 1.293
acoustic
c0 332.0

End

Function 3
type analytic
evaluate expression = "sin(2 * pi * t)"

End
Loads

sideset 2
acoustic_accel -1.0
function 3

End
GDSW

solver_tol 1.0e-9
End
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9. Random Pressure Input

Refer to Section 22 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 20

end

FILE
geometry_file ’cylinder_random.exo’

end

LOADS
sideset 1
randompressure
Delta_T=1e-3
cutoff_freq = 4.999999994286667e+02
correlation_length_z 0.5
correlation_length_r = 0.2
ntimes = 5
correlation_function = 1
coordinate 1

end

Begin rectangular coordinate system 1
origin = 0 0 0
z point = 1 0 0
xz point = 1 0 1

end

BOUNDARY
end

function 1
type linear
data -0.001909859319285 0
data 0 1
data 0.001909859319285 0

end

OUTPUTS
statistics
force
pressure // DON’T DELETE

end

PARAMETERS
RandomNumberGenerator = test

end

ECHO
input = off

end

GDSW
LO_option 0
krylov_method=1
max_iter=2000
solver_tol=1e-4
orthog=4000
prt_summary=1
prt_debug=1
overlap = 20
prt_timing yes
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coarse_option 0
end

BLOCK 1
material 1

end

MATERIAL 1
E 72e9 //(N/m^2)

nu .33
density 2700 //(kg/m^3)

end
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10. Geometric Rigid Body Mode Input

Refer to Section 13 for details of the test.

SOLUTION
case out

geometric_rigid_body_modes
case flexible_modes

eigen
nmodes 10

END

FILE
geometry_file FILEPATH

END

BOUNDARY
END

PARAMETERS
num_rigid_mode 6
RbmTolerance 2.e-6

// Interestingly this is not the tolerance that gdsw uses.
wtmass=0.00259

END

OUTPUTS
disp

END

ECHO
mass block

END

LOADS
sideset 3

traction 1 1 1
scale = 1.0

END

DAMPING
beta 2.0e-6

END

TIED JOINT
normal definition = slip
surface 1,2

search tolerance 1.0e-3
side = free
connect to block 3

END

BLOCK 1
material 1
nonlinear=no

END

BLOCK 2
material 1
nonlinear=no

END

BLOCK 3
coordinate 2
joint2g
kx = Iwan 1
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ky = Iwan 1
krz = elastic 1.0e9

END

MATERIAL 1
density 0.3
E = 3.0e7
nu = 0.3

END

PROPERTY 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

END

Begin rectangular coordinate system 2
origin = 0 -3.83232e-2 -5.96407
z point = 1.0 -3.83232e-2 -5.96407
xz point = 1.0 0.4616768 -6.46407

end

GDSW
max_numterm_C1 500
krylov_method 1
prt_constraint 1

END
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11. Wet Modes Input

Refer to Section 11 for details of the test.

// Sierra/SD input for Wet Modes Calculation of a Submerged Cylinder
// by Nicholas Reynolds, Code 6640, NSWCCD
// 22 FEB 2016

// ----------------------------------------------------------------------------

SOLUTION
title=’ Acoustic analysis’
case rigid

geometric_rigid_body_modes
case flex
eigen

nmodes 20
fluidloading=yes

END

GDSW
solver_tol 1.0e-6
krylov_method 1
overlap 2

END

// ----------------------------------------------------------------------------

FILE
geometry_file FILEPATH

END

// ----------------------------------------------------------------------------
LOADS
END

PARAMETERS
num_rigid_mode 6
END

BOUNDARY
sideset 102 // outer acoustic surface

p=0
// infinite_element
// order = 8
// source_origin = 96 0 0
// ellipsoid_dimensions 136.0 54.0 54.0
// neglect_mass = no

sideset 103 // free surface
slosh = 2.59e-3 /// 1/(32.2*12 in/s/s)

END

TIED DATA
surface 101, 1
search tolerance = 2

END

// ----------------------------------------------------------------------------

OUTPUTS
disp

END

ECHO
mass
input
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END

// ----------------------------------------------------------------------------

MATERIAL steel
e = 3.0e7
density = 7.324e-4
nu = 0.3

END

MATERIAL fluid
acoustic
density 3.46822e-006
c0 22878 // sound speed

END

// ----------------------------------------------------------------------------

BLOCK 1
material = steel
thickness = 1.3644
nquad

END

BLOCK 2
material = steel
thickness = 1.3644
nquad

END

BLOCK 101
material = fluid

//tet4
END

// ----------------------------------------------------------------------------
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12. CBR Input

Refer to Section 9 for details of the test.

SOLUTION
case eig1 // compute the full system. floating.

eigen nmodes=10 shift=-1e6
case cbr // reduce the model

cbr
shift=0.
nmodes 4
title ’CBR example for "How To" document’

END

cbmodel
nodeset=nodelist_3
format=mfile
file=cbr.m
globalsolution

end

history
nodeset 1:2
disp

end

FILE
geometry_file ’cbr.exo’

END

BOUNDARY
// free/free system
END

OUTPUTS
disp

END

ECHO
END

BLOCK 1
material 2

END

MATERIAL 2
E 30e6
nu .3
density 0.288

END
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13. Acoustic Scattering Input

Refer to Section 21 for details of the test.

SOLUTION
case out
transient

time_step 1.66666666667e-06
nsteps 1000
nskip = 1
load 10
scattering

title ’scattering’
END

FILE
geometry_file ’FILEPATH’

END

Parameters
End

History
velocity
nodeset 1
nodeset 2

End

BOUNDARY
sideset 1

infinite_element
use block 111

sideset 4
y=0
rotz=0
rotx=0

sideset 5
x=0
rotz=0
roty=0

END

LOAD 10
sideset 2

acoustic_vel = 100
function = 1

sideset 3
pressure = 1
function = 1
scale 100

END

TIED DATA
Surface 2,3
search tolerance = 5

END

FUNCTION 1
type planar_step_wave
origin = 0 0 -10
direction 0 0 1
k0 = 1.0
material = "water"

END
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OUTPUTS
END

ECHO
END

BLOCK 1
material "water"
END

BLOCK 2
material "steel"

nquad
thickness = 0.1

END

Block 111
infinite_element

order = 10
ellipsoid_dimensions 30 30 30

END

MATERIAL "water"
# from paper 0.96e-4 lb-sec2/in4

density 0.96e-4
acoustic
c0 60000

END

MATERIAL "steel"
E 0.29e8
nu .3
density 0.732e-3
END

GDSW
solver_tol 1e-12
krylov_solver = gmres
prt_summary 3

END
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14. Lighthill Function Loading - Input

Refer to Section 23 for details of the test.

SOLUTION
transient

time_step 1.0e-4
nsteps 50
nskip 1
rho 0.9
lumped_consistent

END

FILE
geometry_file ’temp1/acoustic_nodeset_half_sphere_distribution_factors.exo’

END

LOADS
nodeset 1
Lighthill = 1.0
function = 1

END

LINESAMPLE
samples per line 100
endpoint 0. 0. 0. -1 0. 0.
format exodus

END

FUNCTION 1
type readnodalset
nodeset 1
name "divT_"
exo_var vector divT_
interp = linear

END

BOUNDARY
sideset 6

infinite_element
use block 111

END

OUTPUTS
END

ECHO
END

BLOCK 1
material 1
END

BLOCK 2
material 1
END

Block 111
infinite_element

ellipsoid_dimensions 1 1 1
order = 8
source_origin = 0.05 0 0
neglect_mass = yes

END
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MATERIAL 1
acoustic
density 1.1
c0 343 // reduced to slow down wave
END

Tied Data
surface 2, 5
End
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15. Linear Buckling - Input

Refer to Section 12 for details of the test.

SOLUTION
buckling
bucklingSolver = {ARPACK_MODE}
nmodes 1
shift=-100

END

FILE
geometry_file ’FILEPATH’

END

BOUNDARY
nodeset 1

y=0
nodeset 2

x=0
nodeset 3

z=0
END

LOADS
sideset 1

pressure = 1.0
END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material 1

END

Material 1
E 10e6
nu 0.0
density 0.098 // not used in statics

END
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16. Sierra SM FRF Comparison

Refer to Section 8 for details of the test.

16.1. Modal FRF

SOLUTION
case eig

eigen
nmodes = 20

case test2
modalfrf

END

FILE
geometry_file = ’beam_frf.e’

END

LOADS
nodeset 500
force = 0.0 0.0 1.0
scale = 1
function = 1

END

FUNCTION 1
type LINEAR
name "white noise"
data 0.0 1.0
data 200. 1.0

END

DAMPING
alpha = 5

END

BLOCK 1
material = 1 // rubber linear

END

BLOCK 90
rbar

END

BLOCK 91
conmass
mass = 1e-3
Ixx = 1e-3
Iyy = 1e-3
Izz = 1e-3

END

MATERIAL 1 // linear
isotropic
density 0.0343
E 218
nu = .499

END

PARAMETERS
wtmass = 0.002588

END

OUTPUTS
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disp
stress

END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

ECHO
mass=block

END

16.2. Direct FRF

SOLUTION
case test2

directfrf
END

FILE
geometry_file = ’beam_frf.e’

END

LOADS
nodeset 500
force = 0.0 0.0 1.0
scale = 1
function = 1

END

FUNCTION 1
type LINEAR
name "noise"
data 0.0 1.0
data 200. 1.0

END

DAMPING
alpha = 5

END

BLOCK 1
material = 1 // rubber linear

END

BLOCK 90
rbar

END

BLOCK 91
conmass
mass = 1e-3
Ixx = 1e-3
Iyy = 1e-3
Izz = 1e-3

END

MATERIAL 1 // linear
isotropic
density 0.0343

148



E 218
nu = .499

END

PARAMETERS
wtmass = 0.002588

END

OUTPUTS
disp
stress

END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

ECHO
mass=block

END

16.3. Adagio Input

begin sierra beam_sm_fft

begin function prescribed_force
type is piecewise analytic
begin expressions

0.0 "1e-4*sin(2*pi*t)"
end expressions

end

begin material rubber
density = {0.0343*0.002588}

begin parameters for model elastic
poissons ratio = 0.499
youngs modulus = 218

end parameters for model elastic
end material rubber

begin material rbar
density = 0
begin parameters for model elastic

poissons ratio = 0
youngs modulus = 1e-7

end parameters for model elastic
end material rbar

begin rigid body rbar
end rigid body rbar

begin beam section rbar_sec
rigid body = rbar
section = bar
width = 1e-7
height = 1e-7
t axis = 0 0 1
end
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begin point mass section conmass
mass = {1e-3*0.002588}
end

begin finite element model fft_run
database name = beam_frf.e
database type = exodusII

# - Block id 1 had name bar
begin parameters for block block_1

material = rubber
model = elastic

end parameters for block block_1

# - Block id 90 had name rbar
begin parameters for block block_90

material =rbar
model = elastic
section = rbar_sec

end parameters for block block_90

# - Block id 91 had name conmass
begin parameters for block block_91

section = conmass
end parameters for block block_91

end finite element model fft_run

begin presto procedure beam_fft

#
# *** Time step control information
begin time control

begin time stepping block p1
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0

step interval = 100
end parameters for presto region

end time stepping block p1

termination time = 100

end time control

begin presto region presto

begin viscous damping
include all blocks
mass damping coefficient = 5

end viscous damping

use finite element model fft_run
### output description ###
begin results output results

start time = 0
database name = beam_frf-out.e
database type = exodusII

At Time 0.0, Increment = 1.0e-1
#At Time 0.0, Increment = 1.0e-5

nodal Variables = displacement as displ
nodal Variables = velocity as vel
nodal Variables = acceleration as accel

end results output results

begin prescribed force
node set = nodelist_500
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component = z
function = prescribed_force
scale factor = 1
end prescribed force

end presto region presto

end presto procedure beam_fft

end sierra beam_sm_fft
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17. Piezoelectric Transient Input

Refer to Section 17 for details of the test.

SOLUTION
solver=gdsw
transient
time_step = 1.000000e-06
nsteps = 1001

END

FILE
geometry_file ’1/single_patch.par’

END

LOADS
END

GDSW
END

BOUNDARY
sideset 5 // symmetry boundary condition

x = 0
sideset 4 // symmetry boundary condition

y = 0
sideset 6 // voltage input

transV = 1
function voltage_input

sideset 7 // grounded voltage
V = 0

END

RIGIDSET set1
voltage
sideset 8

END

FUNCTION voltage_input // voltage input in scaled units (Vin * 1e-9)
type linear
name "voltage_in"
#include create_input_deck/voltage_input.inp

END

ECHO
END

OUTPUTS
disp
voltage

END

BLOCK 1
material Aluminum
hex8u

END

BLOCK 2
material Piezoelectric
hex8u

END

BLOCK 3
material Piezoelectric
hex8u
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END

MATERIAL ALUMINUM
density = 2700
E = {70 * 10^9}
nu = 0.33

END

// {C11 = 1.38999e+11}
// {C12 = .778366e+11}
// {C13 = .742836e+11}
// {C33 = 1.15412e+11}
// {C44 = 2.5641e+10}
// {C66 = 3.0581e+10}

// {scale = 1e9}

// {ep = 8.85418782e-12 * scale * scale}
// {D11 = ep * 762.5}
// {D33 = ep * 663.2}

// {E11 = -5.20279 * scale}
// {E33 = 15.0804 * scale}
// {E15 = 12.7179 * scale}

MATERIAL PIEZOELECTRIC
ORTHOTROPIC_PIEZOELECTRIC

Cij = {C11} {C12} {C13}
{C11} {C13}

{C33}
{C44}
{C44}
{C66}

permittivity_ij {D11} 0 0
0 {D11} 0
0 0 {D33}

e_ij = 0 0 {E11}
0 0 {E11}
0 0 {E33}
0 {E15} 0

{E15} 0 0
0 0 0

density = {7500}
END

153



This page intentionally left blank.

154



BIBLIOGRAPHY

[1] F. Fuentes et al. “Orientation embedded high order shape functions for the exact
sequence elements of all shapes”. In: Computers and Mathematics with Applications
70.1 (2015), pp. 353–458 (cit. on p. 2).

155



This page intentionally left blank.

156



INDEX

Sierra/SM
Adagio, 14

Adagio, 14
Eulerian, 21
none, 21
receive_sierra_data, 14
rotational_type, 21
SST, 21
sstrvel, 21

buckling, 53

CBR
CBModel, 38
eigen, 38
GlobalSolution, 38
Limitations, 46
multicase, 38
output_vector, 38
Wtmass, 39

CBR see Craig-Bampton reduction, 36
CMS see component mode synthesis, 36
component mode synthesis, 36
Coupling

Sierra/SM, 14
boundary section, 16
Encore, 25
load section, 16
solution section, 16

Craig-Bampton reduction, 36

dd_solver_output_file, 46
Direct and Modal FRF, 33

Eigenvalue
accuracy, 46, 49

Encore, 25
Database Name, 28
geometric tolerance, 28

solid_mesh, 26
surface gap tolerance, 28

Exodus
epu, 21
joining files, 21

Farhat, Charbel, 1
fatigue, 71
Felippa, Carlos, 1
FilterRbmLoad, 57

GDSW
accuracy, 46
Infinite Elements, 95

Geometric Rigid Body Modes, 56

Infinite Elements, 93
boundary, 93
Far-Field Postprocessing, 95
linesample, 95
neglect_mass, 94

Joint2G, 86, 114

krylov_solver_output_file, 46

Lighthill tensor, 110
Linear Solvers, 30

Modal Random Vibration, 61
function, 64
input, 66
keepmodes, 62
lfcutoff, 62
Limitations, 71
loads, 62
Matrix-Function, 64
modalranvib, 61
nominalt, 64
Vrms, 65

157



Wtmass, 68
Modal Transient, 57

Ng, Esmond, 2

piezoelectricity, 78
C_ij, 79
e_ij, 79
permittivity_ij, 79

Random Pressure Loads, 101
Comments, 108
correlation_function, 102
Performance, 109
spatial correlation, 102
temporal correlation, 101
Verification, 104

rigid body mode, 56

Scattering, 96
Superelement, 86

mksuper, 89
post processing, 92
visualization, 92

SuperLU, 2

Threading, 4
Tied Joint, 113

average, 116
Rrod, 116
side, 116

Training, 3

Wet Modes, 49

158



DISTRIBUTION

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

1 K. H. Pierson 1542 0845

Email—Internal

Name Org. Sandia Email Address

Technical Library 1911 sanddocs@sandia.gov

159



This Page Intentionally Left Blank

160



This Page Intentionally Left Blank

161



Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.


	Training Problems
	Thread Parallelism
	Debugging Threading Approaches
	Batch Submission / Optimal Parameters for KNL
	Parameters for Running on HPC Clusters

	Nonlinear Sierra/SM Preload Followed by Linear Sierra/SD Transient
	Coupled Sierra/SM- Sierra/SD Modal Analysis with Fiber Shells
	Sierra/SD parameters for file transfer with Sierra/SM
	Sierra/SD parameters for file transfer with custom variables in Sierra/SM

	Sierra/SM output parameters for Sierra/SD modal analysis
	Syntax differences and design tips
	Modifications for modal analysis following SST analysis

	Rigid Rims, Coupling with Concentrated Masses, and Superelements

	Encore Transfers
	Define Solid Mesh
	Encore Transfer Procedure
	Simulation Time
	Encore Transfer Definition
	Input/Output Data

	Linear Solvers
	Frequency response linear solver
	Insufficient virtual memory problems
	Divergence problems

	Comparing Sierra SM Explicit Transient to Direct and Modal FRF
	Frequency Response Functions
	Mesh
	Input File
	Results

	Craig-Bampton Reduction
	Definitions
	Input Required
	Exodus Requirements
	Solution
	CBModel
	Output
	History
	Wtmass and Units

	Example
	Verification of the Model
	Comparison of Reduced and Full Eigenvalues
	Comparison of Reduced and Full Displacements

	What to do with the Results
	solving the system
	Incorporate the reduced model into another system model

	Limitations

	Accuracy in Linear and Eigenvalue Problems
	Linear Solver Accuracy
	Eigen Solver Accuracy

	Wet Modes
	Mesh
	Input File
	Results

	Linear Buckling
	Shifted Eigenvalue
	Buckling Case Study

	Geometric Rigid Body Modes
	Modal Transient
	Process for serial integration
	Compute modes of the system model
	Extract Modal force, (t)
	Perform Time Integration of Modal Space
	Expand to Physical Space

	How to Use Results
	Limitations
	Verification

	Modal Random Vibration
	Input Required
	Exodus Requirements
	Solution
	RanLoads
	Matrix-Function
	Function
	Frequency
	Damping
	Output
	Echo

	Example Input
	Verification of the Model
	What to do with the Results
	Limitations, Suggestions and Cautions

	Fatigue
	Example Fatigue Model
	Geometry
	Materials
	Loads

	Results
	Frequency Domain
	Time Domain
	Comparison


	Coupled Electro-mechanical Physics
	Piezoelectric Material Input
	Boundary Conditions
	Transient Response Results
	Linear System Solver Issues and Recommendations

	System Level Matrices of Viscoelastic FEA
	Superelements
	Superelement Example
	Submodel Model Extraction and Reduction
	Superelement Insertion
	Units and Wtmass
	Visualization

	Infinite Elements
	Far-Field Postprocessing

	Acoustic Scattering
	Scattering Sphere

	Random Pressure Loads
	Example Problem Set-up
	Example: Input Specifications
	Example: Verifying the Load
	Average Nodal Force
	Variance of Nodal Force
	Temporal Nodal Force Autocorrelation
	Spatial Cross Correlation

	Random Pressure Comments
	Memory, Performance, Parallel and Anything Else of Interest

	Lighthill Tensor Loading
	Mesh Deformation For Fuego
	Fuego Simulation
	Processing Fuego output for Sierra/SD
	Mesh for Sierra/SD
	Sierra/SD simulation

	Tied Joints
	Lap joint
	Joint with Slip

	Example Problem Input Files
	Input. static.inp
	Input. eigen.inp
	Input. transient.inp
	Input. modaltransient.inp
	Input. modalfrf.inp
	Input. random_vibration.inp
	Random Vibration Input. Vran1.inp
	Infinite Element Input
	Random Pressure Input
	Geometric Rigid Body Mode Input
	Wet Modes Input
	CBR Input
	Acoustic Scattering Input
	Lighthill Function Loading - Input
	Linear Buckling - Input
	Sierra SM FRF Comparison
	Modal FRF
	Direct FRF
	Adagio Input

	Piezoelectric Transient Input

	Bibliography
	Index


