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Overview

« Zirconium Carbide (ZrC) is a refractory material currently investigated for high temperature
reactor applications

 Fission product barrier in advanced TRISO
« Corrosion barrier in space nuclear thermal propulsion (SNTP)

« ZrC studied as base of (U,Zr)C solid solution and UC, composite fuels for NERVA-type cores
during Rover program

« Testing of material performed at Nuclear Furnace 1 (NF-1) located at Los Alamos

* Thermal Scattering Law (TSL) evaluations generated with FLASSH as new contribution to
ENDF/B-VIII.1

- Standard incoherent approximation
* New mixed elastic scattering format
» Disordered alloy theory introduced to coherent elastic scattering to capture natural isotopic abundances




TSL Evaluation Methods
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Zirconium Carbide Phonon Model Validation

« Crystal structure lattice parameter in
agreement with experiment. @ Crystal

* 0.471 nmvs. 0.470 nm
« Phonon dispersions relations in good
agreement with experiment

« Differential validation of phonon
spectra
« Debye-Waller coefficient in
reasonable agreement with -
experiment from 0 K — 1600 K Qi
- Integral validation of phonon spectrum  ,, (© Debye-Waller (d) Phonon Spectra
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Thermal Neutron Scattering Formalism

« TSL contains distinct (interference) and self (non-interference) components
« Momentum transfer (a) and energy transfer (8) represented with unitless parameters
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* Phonon expansion used in incoherent approximation for inelastic scattering (p > 0)

Ss(@f) = ) St p)
p

» C(ZrC) and Zr(zrC) both include: coherent elastic, incoherent elastic, and inelastic
« 91Zr and 13C have small incoherent nuclear potential
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- Disordered alloy theory invoked to treat coherent elastic
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ZrC TSL Evaluation Parameters

C and Zr potential scattering cross sections extracted from ENDF/B-VIII.0 nuclide evaluations
at incident neutron energy of 0.0253 eV

* Incoherent cross section from V. F. Sears, Neutron News, 29, (1992) 26-37

* |sotopic average cross section for incoherent elastic and inelastic scattering

* Isotopic average scattering length for coherent elastic scattering

C(ZrC) and Zr(ZrC) evaluated at 13 temperature:

« 77K, 293.6 K, 400 K, 500 K, 600 K, 700 K, 800 K, 1000 K, 1200 K, 1400 K, 1600 K, 1800 K, 2000 K
Phonon expansion order of 300 used for convergence of S(a, 3)

» Eliminate the need for short collision-time-approximation in FLASSH

(a,B) grid valid to 5 eV incident neutron energy

» Default automatic grid in FLASSH

- a-grid of 200 points [0'41;’322 , 790;’139]

* B-grid of 283 points [0,197.63]




ZrC TSL Evaluation

» Zr(ZrC) TSLs characteristic of heavy elements in crystalline compounds

-+ Structure up to 1-phonon energy transfer and relatively featureless beyond
* Approximating free-gas (FG) for high momentum transfer

* C(ZrC) has strong quantum oscillator effect to multiple phonon orders
» Oscillations in TSL correspond to phonon order

- Energy transfer involves quantized exchange of higher energy phonons with substantial downscattering and
upscattering

« Differs from H(ZrH,) where upscattering is unlikely at room temperature
- Shallow oscillations persist as FG behavior present for large momentum and energy
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C(ZrC) Secondary Neutron Distributions

« C(ZrC) is compared to reactor-grade )
graphite (RxGr) @) (b)
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» Up-scattering is dominant
+ Spectral hardening is expected

* Increase probability of quantized . , 107 . L . .
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< ZrC + HEU

Critical Mass Calculations

« MC21 critical mass calculations performed for bare sphere configurations with homogeneous mixtures:

«  ZrC + RxGr + HEU (approximation of NF-1)

« RxGr + HEU

« Neutron multiplication sensitive to ZrC for 23U loading below 0.2 g/cm? (Zr/23°U > 10)
« Criticality in thermal drive systems (Zr/23°U > 100) substantially differs between TSL and FG

« ZrC introduces spectral shift to thermal spectrum (e.g., 23°U loading = 0.02 g/cm?3)
« Zr absorption has a base impact
* Quantum oscillator effect hardens spectrum compared to FG treatment
* For ZrC as secondary moderator, primary moderator (e.g., RxGr) may soften spectrum
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Conclusions

 New TSL evaluations for ZrC have been generated for contribution to
ENDF/B-VIII.1

« Support criticality safety analyses for high temperature reactor systems

* New evaluations extend physics of elastic scattering used in ENDF
evaluations
+ Use of mixed elastic scattering
* Introduction of disordered alloy theory to improve coherent elastic treatment

e C(ZrC) exhibits guantum oscillator behavior that is atypical of non-
hydrogenous compounds

* May be important for evaluation of systems with significant ZrC content
* TRISO coatings
« SNTP applications

* Initial critical mass calculations demonstrate a C(ZrC) impact compared to FG
» Further effects testing is in progress




