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Overview

• Zirconium Carbide (ZrC) is a refractory material currently investigated for high temperature 

reactor applications

• Fission product barrier in advanced TRISO

• Corrosion barrier in space nuclear thermal propulsion (SNTP)

• ZrC studied as base of (U,Zr)C solid solution and UC2 composite fuels for NERVA-type cores 

during Rover program

• Testing of material performed at Nuclear Furnace 1 (NF-1) located at Los Alamos

• Thermal Scattering Law (TSL) evaluations generated with FLASSH as new contribution to 

ENDF/B-VIII.1

• Standard incoherent approximation

• New mixed elastic scattering format

• Disordered alloy theory introduced to coherent elastic scattering to capture natural isotopic abundances
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TSL Evaluation Methods
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Zirconium Carbide Phonon Model Validation

• Crystal structure lattice parameter in 
agreement with experiment.

• 0.471 nm vs. 0.470 nm

• Phonon dispersions relations in good 
agreement with experiment

• Differential validation of phonon 
spectra

• Debye-Waller coefficient in 
reasonable agreement with 
experiment from 0 K – 1600 K

• Integral validation of phonon spectrum

• W is a measure of mean square 
displacement used directly in TSL

• C(ZrC) spectra localized around 
higher energy modes separated 
from lower energy modes
• Similar behavior in metal-hydrides 

introduce regular structure 𝑆 𝛼, 𝛽
(quantum oscillations) that strongly 
influence thermalization
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Thermal Neutron Scattering Formalism

• TSL contains distinct (interference) and self (non-interference) components

• Momentum transfer (𝛼) and energy transfer (𝛽) represented with unitless parameters

• Phonon expansion used in incoherent approximation for inelastic scattering (𝑝 > 0)

• C(ZrC) and Zr(ZrC) both include: coherent elastic, incoherent elastic, and inelastic

• 91Zr and 13C have small incoherent nuclear potential

• Disordered alloy theory invoked to treat coherent elastic
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ZrC TSL Evaluation Parameters

• C and Zr potential scattering cross sections extracted from ENDF/B-VIII.0 nuclide evaluations 

at incident neutron energy of 0.0253 eV

• Incoherent cross section from V. F. Sears, Neutron News, 29, (1992) 26-37

• Isotopic average cross section for incoherent elastic and inelastic scattering

• Isotopic average scattering length for coherent elastic scattering

• C(ZrC) and Zr(ZrC) evaluated at 13 temperature: 

• 77 K, 293.6 K, 400 K, 500 K, 600 K, 700 K, 800 K, 1000 K, 1200 K, 1400 K, 1600 K, 1800 K, 2000 K

• Phonon expansion order of 300 used for convergence of 𝑆 𝛼, 𝛽 

• Eliminate the need for short collision-time-approximation in FLASSH 

• (α,β) grid valid to 5 eV incident neutron energy

• Default automatic grid in FLASSH

• α-grid of 200 points 
0.415322

𝐴
,
790.5139

𝐴

• β-grid of 283 points 0,197.63
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ZrC TSL Evaluation
• Zr(ZrC) TSLs characteristic of heavy elements in crystalline compounds

• Structure up to 1-phonon energy transfer and relatively featureless beyond

• Approximating free-gas (FG) for high momentum transfer

• C(ZrC) has strong quantum oscillator effect to multiple phonon orders
• Oscillations in TSL correspond to phonon order

• Energy transfer involves quantized exchange of higher energy phonons with substantial downscattering and 
upscattering
• Differs from H(ZrHx) where upscattering is unlikely at room temperature

• Shallow oscillations persist as FG behavior present for large momentum and energy
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C(ZrC) Secondary Neutron Distributions
• C(ZrC) is compared to reactor-grade 

graphite (RxGr)
• RxGr represents conventional TSL for 

chemical binding of C

• Epithermal range: ZrC down-scattering 
is quantized and greater than RxGr
• Behaviors more similar at higher 

temperature but some quantization 
remains

• Neutrons in the phonon energy range 
have unusually probable high energy 
losses
• Near complete energy loss

• Atypical of non-hydrogenous solids

• Improbable for FG or typical carbon 
compounds

• Thermal range: Quantized energy loss 
is forbidden in thermal energy range 
and below
• Up-scattering is dominant

• Spectral hardening is expected

• Increase probability of quantized 
upscattering with temperature
• Consistent with metal hydrides
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*(a)-(c) secondary spectra at labeled energy; (d) integrated cross section at labeled temperatures



Critical Mass Calculations
• MC21 critical mass calculations performed for bare sphere configurations with homogeneous mixtures:

• ZrC + HEU

• ZrC + RxGr + HEU (approximation of NF-1)

• RxGr + HEU

• Neutron multiplication sensitive to ZrC for 235U loading below 0.2 g/cm3 (Zr/235U > 10)
• Criticality in thermal drive systems (Zr/235U > 100) substantially differs between TSL and FG

• ZrC introduces spectral shift to thermal spectrum (e.g., 235U loading = 0.02 g/cm3)
• Zr absorption has a base impact

• Quantum oscillator effect hardens spectrum compared to FG treatment

• For ZrC as secondary moderator, primary moderator (e.g., RxGr) may soften spectrum
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Conclusions

• New TSL evaluations for ZrC have been generated for contribution to 

ENDF/B-VIII.1
• Support criticality safety analyses for high temperature reactor systems

• New evaluations extend physics of elastic scattering used in ENDF 

evaluations

• Use of mixed elastic scattering

• Introduction of disordered alloy theory to improve coherent elastic treatment

• C(ZrC) exhibits quantum oscillator behavior that is atypical of non-

hydrogenous compounds
• May be important for evaluation of systems with significant ZrC content

• TRISO coatings

• SNTP applications

• Initial critical mass calculations demonstrate a C(ZrC) impact compared to FG

• Further effects testing is in progress
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