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P Motivation for using a fluid model

Computer simulation of magnetrons has usually been accomplished with PIC
« Has seen good success in quantitatively reproducing experimental features [1]

« Theoretical work has largely been accomplished by analysis of cold fluid equations
* Hull cutoff and Buneman-Hartree threshold [2]

« Nonlinear diffusion of the electron density [2,3]
* Nonlinear diffusion of electrons (nominally magnetically confined) has also been described kinetically [4]
« Linear instabilities of the electron beam e.g. magnetron instability and diocotron instability.

- It therefore seems natural to consider numerical solutions to a fully non-
linear fluid model for studying magnetron operation
« This has not been previously attempted as far as we know

[1] Lemke, R. W., T. C. Genoni, and T. A. Spencer. "Three-dimensional particle-in-cell simulation study of a relativistic
magnetron." Physics of Plasmas 6.2 (1999): 603-613.

[2] Davidson, Ronald C. Physics of nonneutral plasmas. World Scientific Publishing Company, 2001.

[3] Kaup, D. J. "Theoretical modeling of an A6 relativistic magnetron." Physics of Plasmas 11.6 (2004): 3151-3164.

[4] Desjarlais, M. P., and R. N. Sudan. "Electron diffusion and leakage currents in magnetically insulated diodes." The
Physics of fluids 30.5 (1987): 1536-1552.




/ Relativistic fluid model

/ Conserved quantities of the relativistic fluid:
D=yp
u(p,v,P) ={ M = ywv/c?
E=y*w—-P

The fluid state evolves according to,
diu=-V-F+Q(uwE, B)

atB=—VXE
B )
aE=vx 2 _J
Hp€p Ep
Dv
F={Mv+PI
Mc?

p is the proper mass density (so D is the density in the lab frame)
y is the Lorentz factor

P is the proper pressure

w is the enthalpy density

j is the electric current

Q is the Lorentz force source term

B is the magnetic field

E is the electric field

For details and the numerical methods used, see Glines’ ICOPS presentation: 20-A-3, "Relativistic Two-Fluid Electrodynamics
Using Implicit-Explicit Discontinuous-Galerkin Methods




/" Fluid SCL Boundary condition to account for cathode electron emission

/ Boundary conditions prescribe the value of the flux F at quadrature points on the domain boundary

“ 4 F must account for the outgoing characteristics (see [5]). We therefore compute F with an approximate solution to a Riemann
problem:

F — FR](llv,ttI)
uy is a “virtual state”
u; is the interior state

The SCL boundary condition prescribes the flux so that the influx of electrons is proportional to the electric field:
Fi=Dv=In
I'= (yoE-n+y,0.E-n)tanh(t/7,qmp )

Where n is the unit vector outward normal to the boundary

To prescribe an appropriate virtual state u, so that the injection flux is exactly F; = I'n,
1. A value for the “injection velocity” vy, ; is prescribed (this is a user-adjustable parameter)

2. A value for the “injection temperature” T, ; is prescribed (this is a user-adjustable parameter)

3. Finally, we solve an inverse problem using Brent's method to determine the value of the virtual state density

«  We also use this strategy for a fluid thermal desorption boundary condition, which requires precise control of the injected
guantity.

[5] Mengaldo, Gianmarco, et al. "A guide to the implementation of boundary conditions in compact high-order
methods for compressible aerodynamics." 7th AIAA Theoretical Fluid Mechanics Conference. 2014.
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2D diode benchmark problem for the fluid SCL boundary condition

A similar 2D diode problem has been used to

benchmark PIC SCL algorithms [6,7]

* Anodeis located at y = 1 mm

» (Cathode islocated aty = 0 mm

*+ SCL emission occurs on the cathode for —% <
x < ,—L:,w =1mm

*  Astrong, uniform magnetic field B, = 05T
keeps the electron beam from spreading

«  Applied voltage, V= 1000V

SCL parameters,

Yo = 10€,

Y1 = €5

Tramp = 10 ps

Vinj = 5.93 X 10° m/s (corresponds to 1 eV)
Tinj = 5000 K

The benchmark solution was computed using the
method of Luginsland et. al [8]. PIC codes typically
see a factor of 3 enhancement in the current

density at the emission edges x = i%, similar to
our result here.
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Plots of the electric field (above) and current
density (right) for the relativistic fluid solution,
the benchmark solution and 1D Child-Langmuir.
Note that, as shown by Rokhlenko [9], the exact
solution to the benchmark solution has
singularities in the current density at x = +w/2.
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[6] Watrous, J. ., J. W. Lugisland, and G. E. Sasser IIl. "An improved space-charge-limited emission algorithm for use in particle-in-cell
codes." Physics of Plasmas 8.1 (2001): 289-296.
[7] Stoltz, Peter H., et al. "A new simple algorithm for space charge limited emission." Physics of Plasmas 27.9 (2020): 093103.

[8] Luginsland, J. W., et al. "Beyond the Child-Langmuir law: A review of recent results on multidimensional space-charge-limited flow."
Physics of Plasmas 9.5 (2002): 2371-2376.

013305.

[9] Rokhlenko, A. "Space charge limited flow in a rectangular region: Profile of the current density." Journal of applied physics 100.1 (200‘




// Problem specification: Two-dimensional A6 magnetron with an
output port

Initial Conditions

Electron number density n, = 10'7

« Velocityv =10 ]

. Temperature T, = 100 eV Geometric Parameters
Cathode +  Fill magnetic field B, = 0.5 T « =10
Anode — “
Output Port * Ilb - 20

* 1, =2.11cm
* 1.=1.58cm
* n,=411cm
* lport =23.8cm

______

Fluid Boundary Conditions Electromagnetic Boundary Conditions
* Anode: Farfield boundary * Anode, Cathode: Perfect electrical conductor

+ Electron number density n, = 107 s Ej=0

*+ Velocityv=10 * B, =0

» Temperature T, = 100 eV « Output Port: Impedance boundary
* Output Port: (Same as Anode boundary * B, = e, nXE|

condition)

« Cathode: SCL boundary condition

* ¥ =100¢, Ghost current (to energize AK gap)

. =0

?r,rlmp =0.1ns « 16 kA/(7.2 cm length of cathode)




P Hull cutoff and Buneman-Hartree threshold

Most fundamental magnetron criterion:
The applied voltage must lie,

Below the Hull cutoff v
Above the Buneman-Hartree threshold V},

) c [2eV (1ev °
H cd mc? mc?

V, =350 kV

B,w mc? Ty Wy 2
V,;;,zaanade— . (‘/1_(;?1) _1)

For the 2m mode (n = 6) and the 7 (n = 3) modes




AK Voltage [kv]

Electromotive force along 6 = 5 Spectrogram (6.4 ns window)
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Bunching of the electrons and corresponding excitation of the 2r cavity Electron density (arrows indicate electric current)

mode occurs shortly after the AK voltage exceeds the Buneman-Hartree
threshold.

Electron spokes break the magnetic confinement, allowing current across
the gap. The time averaged AK voltage equilibrates to ~270 kV.
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Average output RF power settles to ~390 MW / (7.2 cm length of cathode) Eze 18
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Spectrograph confirms that most of the energy is in the 2z mode (4.3 GHz). Efﬁé
The band at 8.6 GHz is due to the large amplitude excitation of the 2xn
mode.

/" Magnetron simulation result (grid resolution dx=0.125 mm)

Output RF power
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7 Numerical parameters
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« A non-uniform mesh is used. Grid spacing is,
* dx in the interaction space, r. <r <,
« 2dxinthevanes, rn, <r<r,

. 61—4 of a w = 4.3 GHz free space wavelength in

the output waveguide
« Results shown on the previous slide use, dx =
0.125 mm

« Adaptive time stepping
 Electron fluid CFL = 0.85




P/ Spatial convergence

A relatively high cross-sectional resolution of the mesh
IS reqU|re for accurate results.
A classic two-dimensional PIC calculation for the A6

magnetron required only 3000 mesh cells and 30000
macroparticles [10].

* The present, dx=0.125 mm, grid has 133042 elements.
dx=0.0625 mm has 503456 elements. Note: A periodic

slice is actually used that is 2 elements wide, not a true
2D grid.

The magnetron perveance, K, decreases as grid
resolution is refined.

3

2

K=1/V

[10] Chan, Hei-Wai, Chiping Chen, and Ronald C. Davidson. "Numerical study of
relativistic magnetrons." Journal of applied physics 73.11 (1993): 7053-7060.
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P Summary and Conclusions

« A fully non-linear, relativistic fluid model was used to model a 2D A6 magnetron
*  Most magnetron theory has made use of fluid models

« Results indicate that this approach, or a similar approach, could be a useful

« A much higher spatial resolution is required compared to a PIC simulation to obtain a converged
result

* An SCL emission boundary condition for the fluid model was developed
« Benchmarking results indicate similar behavior compared to PIC SCL boundary conditions

«  The methods used also enable a fluid thermal desorption boundary condition for study of
electrode impurities, to be presented in future works

« Many other applications besides magnetrons should be possible




P 1D diode benchmark problem for the fluid SCL boundary condition

We applied the fluid SCL boundary condition

to the 1D relativistic Child-Langmuir diode. A o —_— 12
development and analysis of this canonical e Child Langmuir (Relativistc) %1 P
P y .
problem can be found in the treatise by ~200 T Computed 10
Davidson [2]. 500
=400 K
: £ p o =
» Gapdistanced = 1 mm 2 -s00 S 00 z
» Constant AK circuit current, I = 1.9852 X 5 w00 g o e
9 2 g 1 / £
10 A/[T] u% —1000 - '_r' -== Gap voltage [ %
200 r,"‘ —— Electric field at cathode
-1200 A !
f.r P =2
» SCL parameters, ~1400 HL
‘ Yo = 7500(0 0.0 0.2 04 0.6 0.8 10 0 2 a 6 8 mo
0 Distance from cathede [mm] Time [ps]
' hT
* Tramp = 1ps On the left, a comparison between the fluid SCL electric field result is plotted against
«  v,; =593 x 105 m/s (corresponds to relativistic and non-relativistic theory. On the right, the transient evolution of the
1“(;"\,) electric field at the cathode and the gap voltage is plotted.

* T, = 5000 K




