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2 1 Overview

Origins of the shock response spectrum
What is the shock response spectrum

How the SRS is calculated

Common features of shock response spectra
Common characteristics of classical shocks
Common characteristics of oscillatory shocks
Features of complex shocks

Uniqueness & non-uniqueness of the SRS

How to judge severity from a shock response spectrum
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a1 Shock Response Spectra History

Concept was originally developed in the 1930

o |dea is generally credited to Maurice Biot from hi
1933 Ph.D. Thesis

- No SRS plots are actually provided in his thesis

By 1940 shock spectra were being computed
analog computers

> Eight hours to produce one spectrum plot
> And it only cost $40

By the early 1940’s, SRS plots were showing
lots of places

Biot, M. A., “A Mechanical Analyzer for the Prediction of Earthquake
Stresses,” Bulletin of the Seismological Society of America, Vol. 31, No.
2, April 1941
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s 1 Shock Response Spectra History

SRS converts a transient excitation into a frequency domain
representation of the response of a series of single degree-of-freedom
oscillators (SDOF)

> Plot of an extremal response quantity of interest
> Acceleration, velocity, displacement, energy, or almost anything else

Significantly reduces the data complexity and number of data points

> You get to choose the frequencies of integgst
Parameterized in frequency j //———__
Originally assumed no damping 1 :
=

Natural Frequency

flu ; fZJ \; f3: '; fd: :, fEi :—: fEJ '-;
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Base

Base Acceleration

Time Input
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Shock Response Spectra History

SRS concept was derived from the Fourier series

> Any periodic function can be expressed by a series summation of

sine and cosine terms
oo

f(t) = ?ﬂ Z a, cos(nwyt) + Z b, sin(nw,t)
n=1

n=1

Each term in the Fourier series corresponds to a single frequency

The equation of motion for an undamped SDOF oscillator is
¥(t) + wpy(t) =0
And the free vibration response is given by
y(t) = A; cos(wyt) + By sin(w,t)

Thus, the free vibration response of the SDOF oscillator is essentially one
term in the Fourier series
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71 Shock Response Spectra History

Fourier first published his theory in an essay to the French Academy of
Science in 1812 entitled Mathematical Theory of Heat

- He won the academy prize but was criticized by the panel (Joseph Lagrange,
Pierre Laplace, and Adrien Legendre) for a certain looseness with his reasoning

> Work was later published more formally in 1822 as the Analytical Theory of Heat
> Convergence of the series was not proven until 1829 by Dirichlet

The Fourier series is a “complete” transform because no data is lost and
the transform is reversible.

The SRS is an incomplete transform and is not reversible

If the Fourier series was considered “loose” then the SRS may be
considered “looser” still
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SRS Background

Equation of motion for SDOF system subject to base excitation

mi(t) + c(x(t) — 2(t)) + k(x(t) —z(t)) =0

For relative motion between the mass and the base, substitute y(t) = x(t) — z(t)

my(t) + cy(t) + ky(t) = —mZ(t)

For shock analysis we typically assume the system starts at rest and the equation
becomes

J() + 2{w,y(t) + wiy(t) = —i(t)

z(t)
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91 SRS Background ﬁ’xm

m

Since the SDOF equation of motion is mass normalized, the
response only depends on the natural frequency and dampin c
ratio of the SDOF oscillator plus the base input motion S

§(6) + 20w,y () + w2y(t) = —#(t) y() = x() — 2(t) |

Solution of the second-order differential equation is straightforward
> Can be accomplished with any common ODE solver

- MATLAB ODE45, Newmark-beta, or any other personal favorite |
o l

SDOF Oscillator y(),y(t),y(t) |

Z(t) ‘
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What does the SDOF Solution Look Like?

four different natural frequencies is given as:

/]
/|
For a 1,000g 5msec classical haversine shock the solution aft-\/\/\
/ m
/]

30 Hz
""""""""" ~.
\‘u
\-
\\
\‘\
\s
\N
\Q
\.._‘..
0.005 0.01 0.015 0.02 0.025 0.03
Time (Seconds)
500 Hz
SN SN TN PI
ARV AR = < = ol
0.005 0.01 0.015 0.02 0.025 0.03

Time (Seconds)

Sisemore, SRS Primer, 915t Shock & Vibration Symposium,

Acceleration (g)

Acceleration (g)

1500

1000

500

-500 -

-1000

\ / N
\ 7 N/ *w
N S et 1 0 0 H Z

-1500

0.01 0.015 0.02 0.025
Time (Seconds)

0.03

1500

(=]

[=]

o
T

500

o

-500

1 kHz

0

0.005

0.01 0.015 0.02 0.025
Time (Seconds)

19 — 23 Sept 2021

0.03
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How Do We Convert This Time History Data to an SRS?
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Generating the SRS is that simple

But there is a lot more to understanding it

)
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12 1 What does the SDOF Solution Look Like?
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131 Converting El Centro Data to SRS
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141 How Do We Pick SDOF Frequencies for Evaluation?

In theory any random set of SDOF frequencies can be used to calculate
an SRS

The Fourier series is an infinite summation so any frequency is
acceptable

In practice we want a reasonable set of frequencies
- What are the frequency ranges of interest?
> Assume that the SRS will be relatively smooth so we want a well-distributed

Logari'th'Mié ‘s'p‘é\cing for ldg?lbg blot | Linear épééihg for log-l‘og ‘p‘l'o‘t‘
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15 1 How Do We Pick SDOF Frequencies for Evaluation?

Want to evaluate SRS at the important frequencies

1000 |

5msec haversine — 200Hz excitation e

> SRS frequency band should cover frequencies above
and below 200Hz

> May want to analyze down to low frequencies to obta | | | |
an estimate of velocity change 0 2 4 6 8 10
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Earthquake event 0.4
> 25 second duration — may need to analyze below 0.(; ., |
> Most energy here is in the 0.5 — 10Hz range

o

Acceleration (g

o
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16 | How Do We Pick SDOF Damping for Evaluation

Biot’s original work assumed an undamped SDOF oscillator

o Reason was that earthquakes are a short-time excitation and damping may not
have time to play a significant impact in the response

o Calculation was also more conservative with zero damping

At the current time, nearly all SRS calculations assume some level of
damping in the SDOF oscillator—no matter how short the shock duration

Generally assume some small

damping value for most calculatiofis

o Similar to expected structural

damping level 10°F

S
o Assumes your system can be §
. 4L
approximated by the SDOF 5 10
oscillator é
> 2 — 5% of critical damping < 107 ¢
=
> Value may be set by program = e
requirements or standards 10°F 3% Damping
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10% Darspigg
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18 1 SRS Calculations

Analog computers are cool but not very practical for
the type of shock analysis that we do today

Originally accomplished with numerical integration of
the equation of motion for various frequencies

> Runge-Kutta, Newmark-Beta, ODE45, or similar
> Works very well but it is slow

Most commonly calculated using ramp invariant filters
codified in ISO 18431-4

o Filter coefficients were developed by D. Smallwood

> Smallwood, D., An Improved Recursive Formula for
Calculating Shock Response Spectra, 515t Shock and
Vibration Symposium, October 1980

> Smallwood, D., Derivation of the Ramp Invariant Filter for
Shock Response Spectrum Calculations, 76" Shock and
Vibration Symposium, October 2005

INTERNATIONAL ISO
STANDARD 18431-4

First edition
2007-02-01

Mechanical vibration and shock — Signal
processing —

Part 4:
Shock-response spectrum analysis

Vibrations et chocs mécaniques — Traitement du signal —
Partie 4: Analyse du spectre de réponse aux chocs

Reference number
IS0 18431-4:2007(E)

i
ligiasl
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19 1 SRS Calculation Using Digital Filters ﬁ’xm

m

7
Treating the SDOF system as a filter through which the input f
is passed is the most computationally efficient method of 7/ ¢
calculating the output quantity of interest S

y(£) = x(t) — 2(t)

However ...
Loading is only sampled at discrete intervals, sampling rate
Input between samples is unknown

A hold must be used to fill in the missing information with an assumption

—— HOD Equatlf:m Outp'ut

. R of Motion Equation

Z(t) z(t) Jf(t)}
(t)

x(t)
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20 I SRS Calculation Using Digital Filters

f((k+1)T) _f((k+2)T)
f(t)

Several different types of holds are possible HKT) -

Zero-order hold, First-order causal hold,
First-order non-causal hold, Impulse hold

The first-order non-causal t
hold is the basis for the -
ramp invariant filter iller)T) -

f(KT)
f((k+N)T)

f((k+1)T)  f((k+2)T)

f(kT) f(t)

Sisemore, SRS Primer, 915t Shock & Vibration Symposium, 19 — 23 Sept 2021




21 I SRS Calculation Using Digital Filters

Can create an input-output model by combining the equation of motion and the
output equation into a single transfer function

Transfer function relates the input to the output in the Laplace domain
Y(s)

H(S) = 7y + 70+ %

Typically we assume zy = Z5 = 0

|
I | Transfer I 1
_|_I HOLD .
50) | :'E'(t) Function : x(t)

Discrete Time
Transfer Function
H(z)
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2 I SRS Calculations Using Digital Filters

The transfer functions with zero initial conditions is

Y(s)
H(s) =
()= % )
The denominator polynomial is the characteristic equation, Laplace
transform of the equation of motion, and is independent of input or output

F(s) = 5%+ 2{w,s + w?

The numerator equation is entirely dependent on the input and output
For the absolute acceleration case, the Laplace transform of the output
equation is :

A Y(s) = (—wf — 2{wys)Z(s)

And the transfer function from the base acceleration to the absolute
acceleration of the SDOEOSCMatGFm'j{aSSZiéwns

C$24 2(w,s + w?
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23

SRS Calculations Using Digital Filters

Since the data is discretized, we apply the z-transform to the continuous time
transfer function

The discrete time transfer function of the SDOF oscillator is then:

Bo+ Bzt + Prz7°
1+az71+ ayz2

H(z) =

This can be written as a difference equation in terms of the delay operator

VYn = BoXn + P1Xn_1 + PoXn_2 — A1 Yn_1 — A2Vn_2

The coefficients a4, a2, Bo, f1, and B are provided in the ISO standard

Other filter coefficients could be derived but the algebra is tedious and not very fun
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24 1 Absolute Acceleration Filter Coefficients

The absolute acceleration filter coefficients from ISO standard are

0=1
a, = —2e $@nht cog (mndw 1— {2)
a, = e-z&'{;]n_ﬂt

sin(waAty1— (7
wplty1— 72

sin wngtm
Ejnﬁtm ) — coS (funﬂt\/l_—@)

Sin(wnﬁtm)
wpAt /1 — 72

Coefficients are given in terms of {, w,, and At

ﬁ[) =1— E—fwnﬂt

ﬁl = Qe —{wnAt

ﬁz — E—Z(mnﬁt _ E—{mn.&r
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5 | Other Filter Coefficients

ISO Standard provides By, f1, and B coefficients for
> Absolute acceleration response
> Relative velocity response
> Relative displacement response

> Pseudo-velocity response
a4 and @, coefficients are the same for all SRS calculations

Can use MATLAB filter function or something similar with @, 8, and the input time
history to get the SDOF response

Again, other coefficients could be derived if you are inclined to do so
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SRS Types




27 1 Types of Shock Response Spectra

Spectra based on the output quantity of interest
> Acceleration
> Velocity
> Displacement
> Pseudo-velocity
> Energy
> Practically anything else of interest

Spectra based on when the output quantity is collected
> Primary response

> Residual response

> Positive response

> Negative response

> Maxi-Max
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28 I Acceleration, Velocity, or Displacement

Response of 0.5Hz SDOF Oscillator

0.2 H

0.1F H

The SRS is an extremal response
but the response quantity is left to
the discretion of the engineer or
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29

Pseudo-Velocity

Pseudo-velocity is the SDOF oscillator relative displacement scaled by
the circular natural frequency

PV(t) = wyy(t) = 21 fry(t)
Pseudo-velocity has the units of velocity but is not actually velocity

Proportional to the relative displacement and out-of-phase with the
relative velocity

—

0 :\) \J \/\/V\NV\,\[\/\l\r\/\/\/\/\/\/\/\/v

2t Relative Velocity | _|
Pseudo-Velocity

Velocity (ft/s)

3 | L L I
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1 Types of Shock Response Spectra — Sample Drop Shock
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Types of Shock Response Spectra — Sample Earthquake
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Primary & Residual Responses
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Acceleration (g)
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For the one-sided haversine pulse
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14 1 Primary & Residual SRS — Sample Earthquake Shock

Earthquake shock is fundamentally a two-sided

shock

o All of the significant SDOF oscillator responses

occur during the shock pulse

- Residual responses are significantly less and largely

not concerning here
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Positive & Negative Responses

1000
Positive refers to the portion

of the response greater than
Zero

500

Negative obviously refers to
the portion of the response
less than zero
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3 | Positive & Negative SRS

Sometimes there is little difference
between positive and negative responses

Other times there can be more significant
differences

Two common uses

> To ensure that a component is excited in
both directions during a test

o If primary shock loading directionis | LU
known, then design can be adjusted Maximum Negative
' 10% ¢
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)]
2
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& 102 |
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7 1 Velocity SRS on Tripartite paper

SRS are typically presented on log-log paper
> Log-log plots are convenient to the scales and distribution of data considered

> Log-log plots are also easy to make in most software packages

Tripartite paper is a plot with multiple log-log scales superimposed
> Scales for displacement, velocity, and acceleration
> Very nice presentation method

1 T L NSRRGSR W | L LIS WENE NN O SO O Y I LAPNSH NI M, O O A |
- Very hard to geta good plot " f oL 748 T
from most software packages : 2 ¥ i
> Can read velocity, acceleration,
and displacement directly fromz 100 -
one plot 5
>
E
O
>
S
2 10 3
Q
o A 28 Jen
102 N L SRR R AR DR A
102 107" 10° 10 102

Natural Frequency (Hz)
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331 SRS on Tripartite Paper — Drop Shock Example

Another example of a low-level drop
shock

SRS shows:
> Peak velocity ~ 3 ft/s
> Peak acceleration ~ 20 g
> Peak displacement ~ 5/8 inch
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SRS on Tripartite Paper — Theoretical Haversine Example

1000 -
: : : S 800t
What is the displacement for the theoretical 5
haversine? g o
§ 400 |
SRS shows: < Lol
> Peak velocity ~ 80 ft/s | | | |
. 0 2 4 6 8 10
> Peak acceleration ~ 1,000 g Time (msec)
T ment ~ ?
£ 60
g 102 ;
< 40
>
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0
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Time (Seconds)  «1073
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s | Five Classical Shocks

There are five basic classical shocks

> Other variants can be created but are
not appreciably different

Will show that all the classical shocks
are actually quite similar

1000 1000g 5Smsec Initial-Peak Saw-Tooth Pulse ]
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©
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2 1 Five Classical Shocks
10*
All five classical shocks give 3 107 e
essentially the same SRS =
[1'd
Minor differences could be easily g
. . 2 H 2
brought together with adjustments =™ . T eene |
to amplitude and pulse duraton (.2~ e Initial Peak Saw-Tooth
= = = Terminal Peak Saw-Tooth
Trapezoidal i
10" : '
10° 10 102 10° 104
o B8 70'0 T T 70‘7 RREARRERE. 70;3 ] Natural Frequency (Hz)
flog
10 e Sl e - ! All classical shocks have a
€ N E low-frequency slope of 6
3 YN ] dB/octave on the MMAA SRS
= N ‘¥ ]
i 10 ' Haversine : I
= . | ==—=--Half-Sine . 1
§ -------- Initial Peak Saw-Tooth j I
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100 ¢ AR JIRS 0 E
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Why Are SRS Slopes Given in dB/Octave?

To confuse the uninitiated

An octave is a frequency interval defined by a doubling of the base
frequency

> 1Hz — 2Hz is an octave, 400Hz — 800Hz is an octave, etc.

Number of octaves between any two qu encllgéms( ?za/l?Lﬁlated by
-

N octaves = log, log10(2)
10

Likewise, the decibel (dB) is a logarithmic unit that defines a ratio
between two quantities

> dB is a relative measure
> Usually expressed as a change from a baseline value

lirms of dB is calculated

by N dB = 201logy,

The difference between two SRS amplitudes;i 'H
(&
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s« 1 Why Are SRS Slopes Given in dB/Octave?

The slope on an SRS plot is then J
NdB  20log;(A,/A;) v

MMAA 3% Response ()
-
]

Slﬂ e = —_ l'D 2 -’;‘ l” 6 4B/Octave
PE= Noctaves log10(f2//1) 810(2) v —[
A slope of 1 on log-log paper requires AZ/Al =10 191;;:", | (10005 smsec Fverine
and f,/f; = 10 e
In terms of dB/octave, that becomes
201lo 10
Slope = 810 )lugw(Z) = 201log,,(2) = 6.02 dB/octave

log,(10)

Which is always rounded down to 6 dB/octave

A slope of 2 on log-log paper (4, /A = 100, f,/f; = 10) is 12 dB/octave
A slope of 3 on log-log paper (4, /A1 = 1000, f,/f; = 10) is 18 dB/octave
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Why the Low-Frequency Slope is 6dB/Octave

- 7 -
<'F
’-‘
,." 12 dBDctave
-;I
!;
,l' ~
-

#
T 6 dBOclave

)

The MMAA low-frequency slope of a classical shock
will always tend to 6 dB/octave, but why?

BMMAA 3% Response

For an undamped system the relative velocity and pseudo- :
velocity are the same in the residual vibration time window, /-

e
1"."' i P | i i M S S S |

> This is true regardless of the classical shock form @

—1000g Smsec Haversine | | I

Malural Freguency (Hz)

The maximum velocity in the free vibration time window is equal to the
velocity change imparted by the shock

AV = j Tf(t) dt

The low-frequency portion of the MMAA SRS is
defined by the residual spectra 10
> Equivalent to the free vibration response to an |mplﬁlse

> Slope can be determined from the impulse respon%

L...7102,

MMAA

1 1
10° 10' 102 10° 10*
Natural Frequency (Hz)
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s I Why the Low-Frequency Slope is 6dB/Octave

_
o
w

The relative displacement from the impulse response
in the free vibration time is:

MMAA 3% Response (g)
3

y(©) = = sin(w,0)

n

10°
10° 10’ 10% 10° 10*

' P Natural Frequency (Hz)
And the maximum is just: ) _ AV
Y(l)max =
Wn
] x(1)
k |

I_IC

77777777777
y(t) = x(t) — z(t) |

(1)
And absolute acceleration is related to relative displacement by

X(t) = —why(t)
So the MMAA SRS is given by:

N3

NOWONNNNNYN

SRSmMman = ?(Wn) = wpAV

Since AV is a constant, the MMAA SRS is linear in w,, which
gives the 6 dB/octave slope
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Estimating Velocity from the SRS

Velocity change can be read directly %
from the velocity SRS if damping is 2
low 8
> Slightly under-estimates the true velocity 2
change &
From an acceleration SRS, need to
take a low-frequency point and convert
to velocity
o Needs to be 4 goint where the slope is at
a nond\aFs gﬁzpctave g
:
In this plot, t rsine SRS shows
15.02g &y H thigZyives:

2 (1)
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2 il L L L
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\ ey
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s I The Effect of Damping on the SRS

There are two kinds of damping to be considered
o Material damping in the part being tested

m

/7SS S

- Damping in the mathematical SDOF oscillator used to calculate the SRS

> We only control one of these

Increasing the SDOF oscillator damping artificially lowers the velocity

change associated with the shock event

o After all, the SRS calculation

Undamped 1000g Smsec Haversine
= = =(=0.1 1000g Smsec Haversine

occurs after the shock is over
o Damping is somewhat arbitrary
for the SRS calculation 5 10°
> Needs to be representative of %
the real system 2
o
2
(ap]
< 107
=
=
(4
(4
v
10’ '
10° 10

102 108 104

Natural Frequency (Hz)
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9 1 Shock Bandwidth

20

—— 1000g 5msec Haversine FFT Magnitude

15 |

The shock energy is not infinite

Acceleration SRS tends to obscure
this fact with the infinite flat-line at the
high-frequency end of the spectrum

Acceleration Magnitude (g)
S

[&)]
T

Parseval’s identity states that

[x(O)]* = [X(w)]? e 1 2 3
10 10 10 10
Or the square of the energy in the Frequency (+z)
time history equals the square of the ‘ :
energy in the frequency response 10 £ | 1000g Smse Haversine i
R i i Shock Half-Power Frequency |
. . . g 3 \:\
In this example, there is essentially 3" .
no energy in the shock beyond < :
400Hz 2 . I
Energy is falling off rapidly, even at :
the SRS peak i
10100 10 102 108

Natural Frequency (Hz)
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so I Shock Bandwidth

20

—— 1000g 5msec Haversine FFT Magnitude

15 |

This is more clearly seen with a
velocity SRS presentation

The roll-off in the shock energy
closely parallels the roll-off in the
velocity SRS

Same information but a difference in
presentation style o 0! 02 o o

Frequency (Hz)

Acceleration Magnitude (g)
S

[&)]
T

10?

-
o
-

-
o
o

Pseudo-Velocity 3% Response (m/s)

— 1000g 5msec Haversine
= = = Shock Energy Cut-off
————— Shock Half-Power Frequency

107 L
10° 10" 102
Natural Frequency (Hz)
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Oscillatory Shocks

3000 T T T T T
2kHz Oscillatory Shock Excitation

2000
An oscillatory shock is essentially_

a two-sided transient event 10007 1

0

It could be a decaying harmonic

Acceleration (

as shown here, or something 1000 U 1
more random such as the 2000 |- | .
earthquake time history shown | | | | |
previously 0 2 e 10 12
Differs from the classical shocks —

in that there is typically no net 104 |
velocity change associated with
the event =

Examples include: 210"

> Pyroshock <

- Earthquake shock 2 |

- Shaker shock =

. . 101 1 l2 I3 ‘4 5

SRS differs in many respects 10 10 10 10 10

Natural Frequency (Hz)
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MMAA 3% Response (g)

Oscillatory Shocks — Primary, Residual, Positive, Negative
SRS

Primary and residual spectra are very different for oscillatory shocks
> Typically shock has decayed to near-zero in the “primary” window
> Results in little or no significant residual response 3000

2000 -

T
— 2kHz Oscillatory Shock Excitation |

1000 -

Positive and negative spectra are usually similar

> Only minor differences in peak positive and peak
negative response

0
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Oscillatory Shocks — Shock Bandwidth

Energy contained in an oscillatory
shock can be significantly narrower
bandwidth

Like the classical shock, there is little
energy beyond the primary frequency

In contrast to the classical shock,
there is also significantly less energy
in the lead-up to the primary
frequency

Clearly seen in the FFT plot and the
pseudo-velocity SRS plot

Sisemore, SRS Primer, 915t Shock & Vibration Symposium,
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Acceleration (g)
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Oscillatory Shocks — Influence of Decay Rate on the SRS
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The longer the shock rings, the higher the SRS

peak

This is an artifact of the SDOF oscillator

resonating

If the test article does not amplify like the
SDOF oscillator then these levels will not be
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s6 | Oscillatory Shocks — What Are Those Inflection Points?

3000 T T T T T
so00 |- H | 2kHz Oscillatory Shock Excitation | |
SRS of a pure decaying sine tone_ o
has inflection points at: =
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o 2 and 5 times the primary 2000 - U |
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. -3000 L 1 I I |
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Acceleration (g)
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Pure Two-Sides Shock Pulse

3000

2000 ¢

Not actually an oscillatory

shock but demonstrates similara 1000}
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Straight 12 dB/octave low- 3000
frequency slope in MMAA SRS 0
o Some rolling over at very low
frequencies 102

Inflection points exist above

the pulse frequency but not CR|
below g
Shock bandwidth is higher than £
for a pure oscillatory shock L 107
Not particularly practical for
laboratory shock work 10"
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oo I Complex Shocks

Complex shocks are shocks that can be described as a linear summation
of two or more basic shocks

o Classical shock and an oscillatory shock
o Two or more classical shocks
> Two or more oscillatory shocks

SRS is generally additive

> An SRS calculated from the sum of two shocks is essentially equal to the sum of
the two underlying SRS curves

> Sometimes the sum will generate its own additional frequency content but
typically relatively minor
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Complex Shocks

How does a double hit alter
the original SRS?

In this example with the low-
level return shock, an extra
hump or two is added to the
low-frequency portion of the
MMAA SRS

Location will move with
separation time between
two shock pulses

How severe is this for the
component?
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Complex Shocks

1000 | ! ! 1 1000
How does an extra cycle 2 500 2 500
influence the SRS? 3 3

o Q@
SRS has the low-frequency g o g o
response of the classical
shock with a higher peak 00 T I
similar to an oscillatory 0 s s a0 0 s o s 2
ShOCk Time (msec) Time (msec)
How severe is this for the O e e = s e e e e e e B
component?
> Depends on the failure mode -

:é’ms I
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é 102 | g
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Complex Shocks

What kind of shock is this?

Looks like a drop shock but
appears to have extra
frequency content

How severe is the high-
frequency content?

Appears that it could be
severe in the SRS
calculation

What does the high-
frequency content
represent?

1
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s« I Complex Shocks

1000 1000 1000 1000
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The previous shock was
made of four curves added
together

-
o
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o
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Shock levels for the last
three curves appear higher
in the combined than
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=

0
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H H 10_20 | | ll”lll1 | | \H‘“IZ | | IHHII3 | A 4
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drop shock test due to Natural Frequency (Hz)
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Acceleration (g)
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Complex Shocks
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distinct shock events o 12
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66 I Complex Shocks

N
o
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o
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T

A set of sample test data

Two accelerometer locations were
relatively close together

Significantly different MMAA SRS

—_

<
N
T
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Location 2

Normalized MMAA 5% Response (g)
=

o Different velocity change

o Different high-frequency content 10 s S
107 1072 107 10° 10"
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- What caused the different frequency '~ | | | | | ' .
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> What caused the different SRS 5 08
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Uniqueness & Non-
Uniqueness of the SRS
Transformation
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Non-Uniqueness of the SRS

The SRS transformation substantially
reduces the quantity of shock data

> Can reduce a million time history data points
to a few spectral points

Since the SRS is an incomplete transform
it is also non-unique

> Multiple shock time histories can yield the
same nominal SRS

A fundamental assumption of the SRS is
that all shocks with the same SRS are
equally damaging

All three of these time histories have
nominally the same SRS but they are
obviously not equal

> Are they equally damaging?
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eration (g)

Non-Uniqueness of the SRS of A ‘

Substantially different shock amplitudes

Substantially different number of oscillations for

cceleration (g)
o
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Substantially different shock duration ‘WMWWW“
Nominally the same SRS B I A O Y B
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7o I Non-Uniqueness of the SRS? “ |

0 0.1 0.2 03
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In reality these shocks are not the same
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! ‘ ‘ ‘ [——shock 2
Only the same over a defined frequency range WWMWWWMW\W
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> Frequency range could be expanded to better match

SRS Sl =]
Usually this type of equivalence is done so that a ‘WMWMW

shock test can be performed on a shaker table T R
> Maybe it is alright : | |
> Maybe not
> Where is your part 2k
susceptible to damage? °
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n | Stress is Proportional to Velocity

There is a well-known relationship between stress and velocity
> Well, maybe not well-known exactly but it has been proven numerous times

o Gaberson, H. A. and Chalmers, R. H., “Modal Velocity as a Criterion of Shock
Severity,” Shock and Vibration Bulletin, No. 40, Part 2, SVIC, U.S. Naval
Research Lab, Washington, D.C., December 1969

o Gaberson, H. A., “The Pseudo Velocity Stress Analysis Stress Velocity
Fountation,” Proceedings of the 30" international Modal Analysis Conference,
Jacksonville, Florida, 2012

Derivation is based on the theory of one-dimensional stress waves

T
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1 1 Stress is Proportional to Velocity

Solution to the long rod problem is the one-dimensional wave equation
d°u _E d%u
atz  p dx?
Solution is a complex harmonic solution of the form:
u(t, x) — Aei(mt—}lx} + Bei(mHﬁx}
The full solution is quite exciting and will not be repeated here

However, the summary is that the stress is related to velocity,
displacement, and acceleration by the three equations

Omax = Vi)\@

Omax = Xmax®W+/ Ep

X
Oy = max ;—Ep

w
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72 | Stress is Proportional to Velocity

What does this mean?

Velocity can be compared directly since stress is proportional to velocity

Omax = V[}\/FP

Acceleration can only be compared when the frequencies are the same

If one shock has substantially more acceleration than another, you have
to know the frequency content to decide which is more severe

Xmax
Omax = © *\,"EP

Same for displacement—must have knowledge of displacement and

frequency content
Omax = Xmax@W Ep
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How Do We Judge Shock Severity

There is not always a clear-cut answer to

this question 2500 -

Rather there are some guidelines to
consider when evaluating shock severity

Acceleration (g)

Do we look at acceleration, velocity, or

3000

2000 -

1500 H

1000 R

” — 800g 3msec Haversine
—— 30009 0.3msec Haversine

the time history? o /\
What are the potential failure modes? ot —
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
o Structural failure from overstress Time (Seconds) <107
> Modal failure from a system resonance 10*
o Functional failure
S10%
E 102
$
= 1
= 10
—— 800g 3msec Haversine
3000g 0.3msec Haversine
10°
10° 10’ 10° 103 10*

Natural Frequency (Hz)

Sisemore, SRS Primer, 915t Shock & Vibration Symposium, 19 — 23 Sept 2021




76

How Do We Judge Shock Severity

10"

. 10°
Another set of sample test data 7937
8 107!
Which shock is more severe? g
Obviously not Test 2 g1
=
Is the choice the same if you look = 10°
at MMAA SRS or Pseudo-velocity Test 3
SRS? 10_42 “ l1 ll ‘HIO | | IHHII1 2
10 10 10 10 10
> They are the same data, just in Natural Frequency (Hz)
different formats 1072 : . .

Depends on where your part is
sensitive

—
<
w

Pseudo-Velocity 3% (ft/sec)
3
A

10-5 H S A R | H HE A S H H T A S
1072 107" 10° 10" 102
Natural Frequency (Hz)
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771 How Do We Judge Shock Severity

Which shock has the highest velocity
change?

Which shock will excite the resonant modes
of interest for your part?

Which shock excites the unique failure
modes of your component?

Is your part subject to failure by a change in
momentum?
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