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Abstract

Modern day processes depend heavily on data-
driven techniques that use large datasets clustered into
relevant groups help them achieve higher efficiency,
better utilization of the operation, and improved
decision making. However, building these datasets and
clustering by similar products is challenging in research
environments that produce many novel and highly
complex low-volume technologies. In this work, the
author develops an algorithm that calculates the
similarity between multiple low-volume products from a
research environment using a real-world data set. The
algorithm is applied to pulse power operations data,
which routinely performs novel experiments for inertial
confinement fusion, radiation effects, and nuclear
stockpile stewardship. The author shows that the
algorithm is successful in calculating similarity between
experiments of varying complexity such that
comparable shots can be used for further analysis.
Furthermore, it has been able to identify experiments
not traditionally seen as identical.

1. Introduction

Forecasting schedule, resource, and quality of work
are crucial in operational settings. Modern day
processes depend heavily on data-driven techniques to
help them achieve higher efficiency, better utilization of
the operation, and improved decision making regarding
sequence of production and supporting processes (e.g.
procurement, maintenance, etc.) [1]. These techniques
often require large datasets clustered into relevant
groups to confidently drive decision; in manufacturing
environments, datasets are gathered over many cycles
and grouped by similar products to model expected
performance [2]. However, building these datasets is
challenging in environments where complex, low-
volume technologies produce less or even erroneous
data (e.g. research operations) [3]. Furthermore, both
small and imperfect groupings can impact the efficacy
[4] and accuracy [5] of advanced analytical methods,
like machine learning, inhibiting the use of state-of-the-
art approaches to analyze these environments.

Research operations are an example of an
environment that produces fewer overall data. There is
a need for new approaches to improve operations and
achieve higher efficiency to meet research mission
needs. Employing analytic techniques inspired by both
image processing and systems engineering techniques is
one such approach that will be described in this paper as
a practice-based contribution that can be considered in
similarly data-constrained settings. This study shows
how using analytics in research environments can
improve understanding of complex, data-constrained
operations. A feature vector for a pulsed power facility
was developed and found similarities in scientifically
novel fusion experiments.

2. Background

The contextual setting for this study is a nuclear
fusion research facility. The U.S. Department of
Energy’s National Nuclear Security Administration has
a relevant application of a data-constrained operation
that often struggles to gather more or comprehensive
datasets. The Z Facility (hereafter “Z”) is the world’s
largest pulsed power facility that routinely supports
research in inertial confinement fusion, radiation
effects, and nuclear stockpile stewardship through the
execution of experimental pulse power operations [6]. Z
undergoes 140-160 operational cycles (hereby “shots”)
per year [7] with some shots containing multiple
experiments and requiring multiple days to execute.
Thus, compiling data from shots across one year only
results in a relatively small dataset.

2.1 Anatomy of a Z Shot

Although each shot is unique and nuanced, most
depend on 4 key components: (1) the Z facility itself, (2)
an experiment target, (3) subsystems, and (4)
diagnostics. The facility contains various components
and systems that ensure electrical energy (pulsed power)
is delivered to the target and protect the facility. The
target is an assembly comprised of materials,
geometries, and systems used for scientific inquiry.
After the facility delivers power, the target will either
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produce x-rays or neutrons. Subsystems can be fielded
to modify targets (e.g. heating or cooling) before and
during execution such that different behaviors are
exhibited for study. Diagnostic systems measure the
environments created and their effects, but various
factors (e.g. radiation type, diagnostic survivability,
etc.) limit which systems are fielded and what data can
be captured. This has led to the proliferation of many
heterogenous diagnostic systems with varying degrees
of operational complexity, often fielded in different
permutations and combinations [8]. To put this in
perspective, a single Z shot routinely fields over 20
diagnostic and subsystems.

2.2 Data Collection Challenges at Z

Gathering data at Z is imperfect and challenging.
Each data point (e.g. shot) is novel, sometimes requiring
specialized planning, design work, hardware
fabrication, and preparation of data collection
equipment (diagnostics). Shots are also destructive in
nature, with parts of the shot either vaporized or
scattered throughout the test chamber. Coupled with the
radiological and airborne hazardous, gathering
postmortem data can be difficult. Such highly variable,
limited, and imperfect datasets affect whether
operational organizations can properly group similar
shots and learn from previous shots. Failure to
understand historical performance and potential
correlation with future shots has led to operational errors
being repeated. These errors affect quality of execution
and associated delays cause a lower rate of shots. Z
operational organizations have historically relied on
non-analytic strategies to analyze and group similar
shots; sources typically include tribal knowledge from
subject matter experts, amongst others. The subjectively
determined metric of similarity has resulted in grouping
shots by 8 scientific programs [9] [10].

While this approach has been somewhat successful
in grouping shots that require minimal coordination or
resources, it fails to account for more complex, nuanced
shots [11]. In the last 6 years, 503 out of 883 (57%) shots
were classified as “complex” for Z operations.
Moreover, the percentage of complex shots is expected
to increase year over year [12]. Thus, there is pressure
to develop an analytical approach in finding similar
shots, including an analytically based definition for
degree of similarity.

The author proposes the use of Shot boundary
detection (SBD) [13] to find similar shots over a variety
of complexities in data-constrained environments like Z
operations. This technique, borrowed from image
processing and systems engineering [14], would enable
stakeholders to acquire larger and more appropriate

datasets for analysis and find similarity in areas not
previous under consideration.

3. Method

As described above, the majority of shots executed
at the facility are complex and expected to increase in
quantity. In order to determine analytical approaches to
similarity, the author considered the anatomy of a given
shot and determined common component categories.
These categories were used to develop a feature vector,
to serve as the basis to calculate a similarity metric, and
to organize into clusters. Due to challenges in obtaining
facility configuration and target data, only diagnostic
and subsystems will serve as part of the feature vector.

The feature vector composed of diagnostics and
subsystems can be used to calculate similarity between
shots. The author developed an algorithm inspired by
Euclidean distance to calculate the similarity index (SI)
from the features. The SI is calculated for all shots to
find the highest SI for further analysis.

The algorithm is divided into three parts that are
repeated across multiple shots. Assume we want to
know the similarity SI between our shot of interest H; to
historical shot Hp;s¢. First, we calculate Ax; by counting
the number of similar features D ; shared between H;and
Hpise. Next, we calculate Ay; by counting the total
number of features in H; minus Ax;. Finally, square Ax;
and Ay; before dividing and finding the square root.
These steps are repeated for all Hp;s¢ and sorted to find
the highest value SI.
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The author notes that acquiring the requisite data to
feed into the algorithm in this setting was a nontrivial



problem, but not discussed within the scope of this
paper.

4. Results and Discussion

Figure 1 depicts a symmetric heatmap of the S
I1o0kup for Z shots created in MATLAB. A heatmap was
used such that the matrix can visually interpreted and
shared with groups within Z Operations. Given that
shots are executed based on facility needs and schedule
rather than similarity, the shots were reordered based on
values from STiookup to improve clustering. The reverse
Cuthill Mckee algorithm was used based on ease and
availability rather than efficacy. Each cell represents a
similarity comparison of two shots, with H; along the x-
axis and Hpis;, a transpose of H;, along the y-axis.
Similarity values are represented by a spectrum from
blue at 0%, green 50%, and yellow 100%. The diagonal
is 100% similar, which is expected in a symmetrical
matrix where the diagonal is a shot compared against
itself. Clusters of yellow and green indicate shots that
have a higher similarity with each other (shot 10 has
little to no similarity with others while shot 43-50 have
very high similarity with each other). The matrix is
23.4% sparse (e.g. no similarity based on represented
feature vector) as indicated by the clusters of blue.
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Figure 1: SIykyp for 50 Z Shots
4.1 Insights from ST,y

The algorithm was able to identify similar shots not
previously considered related. Despite the high number
of combinations, useful and surprising patterns emerged
using a clustering technique in our small dataset.
Multiple (yellow) clusters in Figure 1 indicate that some
shots reuse the same, or similar, sets of features. This is
unexpected given the small number (883) of shots
compared to the million potential combinations. Further
analysis of these findings determined that those shots

were not considered part of the same grouping using the
historical methods described in Section 2.

A more important finding from this analysis is
identifying critical overlap between different shots,
represented by green clusters. These clusters suggest
that many combinations are subsets or mixtures of other
shots, which recharacterizes a complex and unique shot
as a combination of several simple ones. This is
consistent with operational practices of combining
multiple experiments into one shot. The ability to
separate these amalgamations is valuable in a data
constrained environment where grouping similar
products is not readily apparent. For reference, nearly
33.8% of the matrix has a SI between 25%-75%.

Additionally, stakeholders can adjust tolerances for
acceptable similarity values to determine their
sensitivity on statistical or machine learning tools to
influence their goodness of fit. This type of sensitivity
analysis can be used to refine acceptable values of
similarity for different conditions/complexity levels.

4.2 Limitations and future work

Although some degree of sparsity was expected
based on the type of shots executed, it has never been
documented at Z. A sparsity of 23.4% is surprisingly
low given the number of discoveries made at Z. This
could be the result of a limited feature vector using only
diagnostics and subsystems. Although the results show
some similarity between shots, it does not account for
target designs, facility configurations, or other potential
variables that could increase the goodness of clustering.

Additionally, this paper only explores one
clustering algorithm. There are other schemes that could
improve clustering by taking advantage of the sparsity
or additional interesting findings regarding similarity.
Additional work is needed to compare the results across
different clustering algorithms.

Future research can further the contributions of this
study by exploring generalizability and goodness of
small datasets like those collected from Z. Traditionally,
imperfect datasets and outliers are excluded from
analysis. However, the approach presented in this paper
acknowledges that, despite initial impressions of
dissimilarity, some datasets are actually identical to one
another when viewed as combinations of smaller
datasets. Research in selecting acceptable similarity
values as a function of complexity, variability, and risk
could help reduce over and/or underfitting of tools such
as machine learning.

5. Conclusions

This paper presents a novel approach to analyzing
fusion research operations through quantification of



similarity for pulsed power shots. The approach consists
of creating a feature vector of diagnostics and
subsystems, developing a similarity metric, and
clustering for similar shots. The similarity algorithm has
been successful in calculating similarity between shots
of varying complexity such that comparable shots can
be used for further analysis.

Not only can it identify identical shots formerly
seen as dissimilar, but the timescale to perform this
activity can also be compressed from several weeks to
seconds. Furthermore, the outputs of this study were
used to develop other analytical tools that ingest this
information and estimate operational needs and risks for
both future and hypothetical shots. A similar activity
performed at Z that used to take several months of close
coordination can now be executed within minutes. Other
sectors (healthcare, space, and defense) that face similar
financial, operational, political, and/or resource
challenges in acquiring data could benefit from this
approach.
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