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Why Do We Need Cyber Experimentation? 
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To study complex cyber systems (e.g., resilience)

• answer “what if questions” with high-confidence
Emulytics

• assess confidence in our results under uncertainty
Uncertainty Quantification 

• make robust decisions under uncertainty in an adversarial environment

• Adversarial Optimization
with rigor

• Challenge: Can we  trust this approach for high consequence systems? 

• Inspiration: Sandia’s know-how and capabilities from  our nuclear stockpile stewardship

Rigorous cyber experimentation should be a pillar of science of cyber security,
just as computational Science and Engineering (CSE) is a pillar of science.  



An Overview of the Process

• Previous presentations organized around basic research elements
o Integration was  not clear

• Today’s presentations organized around integration tasks
o Each effort utilizes all research elements
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Exemplar problem: Is our power grid resilient against an attack as in 
Ukraine?

• Ukraine attack was  based on Crash Override Malware

• The attacker  gains remote access to power grid components to turn 
them on and off. 

Inspired by the  
EAB feedback 



Exemplar goal and approach

• Goal: characterize loss of load resulting from malware infection in 
enterprise network
o Account for uncertainties in threat, network conditions

• Approach
o Piecewise studies to inform Markov transition probabilities and 

uncertainties
o End-to-end SCEPTRE demonstration
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Exemplar studies
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Connecting experiments to end-to-end threat analysis
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Connecting experiments to end-to-end threat analysis
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• Experimental data processed to represent:
• Success (attacker goes to next step)
• Failure (have to start anew)
• Stay in place

• In addition to the various combinations of state 6 and state 8 transition 
probabilities shown below, we analyzed various attack/defender strategies 

• We are performing uncertainty analysis on the Markov model itself

State 6 (C2):
• >= 10 detections for alert
• Exp 1: Snort stressed/drops 

packets
• Exp 2: No packet drop

State 8 
(Scanning/Detection):

• Fast scan: ts=30s
• Slow scan: ts=61s



Results – Accounting for attacker/defender 
uncertainties

• Plotting attack success metrics from 
Markov analysis:  mean time to 
attack success vs. fraction of time in 
the “READY” state.  

• Extended our analysis framework to 
support UQ in transition 
probabilities, and variations in each 
step’s inherent timestep.
o Default timestep = 1 hour/state, but 

states 6 and 8 use different values

• Experiments provide range of 
transition probabilities (depending 
on scenario, attacker strategy, etc.)
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Defender goal: push attacker toward top-
left of the plot (e.g. through better IDS)

*1*1*1
*1*1*1

*1*1*1
*1*1*1

*2*2*2
*2*2*2

*2*2*2*2*2*2

����������������������������������

������
��������������������

��������

�����������������
�����������������

������
�������������

�����
����������

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Ready
Fraction

0

50

100

150

Average
Time Higher consequences

1 or more RTU
Harder attacks

Lower consequences
1 RTU exactly
Easier attacks

Each dot on the chart above represents a 
combination of C2 data, scanning/detection 
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Markov analysis allows:   
• Estimates of how secure 
the system is under attack
•Ranking of attacker/

defender strategies



So What? 
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• What changed? 
o We produced an objective process that can quantify security. 
• All assumptions are listed; all processes are repeatable;
• All experiments are verified; all models are validated;

o We have a scientific processes that can, and will be improved.   
• No more disagreeing with expert opinions. 
• Instead challenge assumptions; propose better algorithms/metrics. 

• What can we do now? Quantifiable Security  
o Quantify return on investment for cyber security 
o Rigorously compare two proposed remediations
o Identify critical components both for improving security and model 

fidelity
o Quantify attack consequences and enable mission-driven cyber security
• Zoom in on extreme events 



SECURE’s Legacy

• Rigorous cyber experimentation is essential and achievable.
o Long way in front of us, but long way behind us. 
o The path forward is more clear. No more admiring the problem, we can 

line out specific tasks.

• We are building a community around us that will continue to work 
with us. 

Lasting Impact:  

• Cyber experimentation can be a pillar of science of security,  
when complemented with rigorous mathematical techniques.

• Rigorous cyber experimentation can provide to integrated cyber 
systems what CSE has provided to nuclear weapon’s programs.  
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SCIRE Institute to carry on SECURE’s Legacy

• SCIRE Institute: Sandia’s Cyber security Innovation and Rigorous 
Experimentation Institute

• SCIRE Goals: 
o Promote interdisciplinary research to support rigorous cyber 

experimentation
o Serve as a bridge between basic and applied research 
o Raise awareness in the national security community
o Keep the SECURE team together
• and reach out for broader partnerships 

• First workshop is scheduled for Nov 9-10, 2021
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Inspired by the  
EAB feedback 



What was good? 

• EAB Feedback

• Outstanding team culture
o Essential to keep the team together
o Young teams members

• Strong support and convergence on the SECURE’s goals

• Many strong stand-alone technical results

• Verification and Validation results  will be landmarks

• Connections with academia and exporting complicated challenges 
as well-defined problems 
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What could have been better?   

• Pandemic was not part of the risk management plan.
o Affected individual performances as well as lessening the advantage of 

being a well-functioning team 
o Affected out-reach activities 

• Staff turnover slowed down progress
o Recovered each time
o Can be more bigger issue as we make more progress

• Some tasks were much harder than anticipated 
o e.g., Verification of computer experiments 

• Scalability remains a challenge. 

• External visibility needs to be improved.  
o Both a Lab-level problem and a project-level problem 
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SECURE Products 

• First version of the manual  (both theory and user) 
is ready as an online document

• Software:
o Python Adversarial Optimization (PAO) is released
o Scenario Orchestration (ScOrch) will be released
o Many others transferred to applied projects

• 29 Publications (accepted, submitted and in preparation)  

• 15 technical presentations 
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Inspired by the  
EAB feedback 
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Command and Control (C2): Integrated 
Cyber Experimentation Exemplar

Jared Gearhart

August 26th, 2021



Since last EAB, formed cross-cutting C2 team
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Jared Gearhart,
C2 Integration Lead

Casey Glatter,
C2 Emulation

Jamie Thorpe,
Verification

Eric Vugrin,
Math Modeling

Bert Debusschere,
UQ, PCE

Gianluca Geraci,
UQ, MFUQ

Former Team Members: Jerry Cruz (Emulation), Trevor Rollins (Statistical Tests)

Seth Hanson,
C2 Emulation



C2 Exemplar Goal: Answer both specific C2 
and general cyber experimentation questions 

• C2 specific goals:
o How long does it take to detect a C2 channel? 
o Which factors have the largest impact on the IDS system?

• General research goals:
o What emulation capabilities are required?
o Can we develop a math model to approximate emulation? 
o Can the emulation and math model be used in conjunction?
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C2 Scenario: Detect malicious (Emotet) traffic 
between infected host(s) and a C2 server

• Three main drivers:
o IDS configuration
o Volume of malicious traffic
o Volume of benign traffic
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Summary of Previous C2 Work 
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Created a High-fidelity Emulation 
Model – “Expensive”

Created a Low-fidelity 
Math Model – “Cheap”

Developed Methods to 
Validate the Math Model 

Eric D. Vugrin, Seth Hanson, Jerry 
Cruz, Casey Glatter, Thomas Tarman, 
and Ali Pinar, “Detection of 
command and control traffic: model 
development and experimental 
validation,” submitted to 43rd IEEE 
Symposium on Security and Privacy.



Focus Since Last EAB
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Verification: How do we assess the 
trustworthiness of emulation experiments?

• Focus on over-subscription of emulation resources

• Verification strategy:
o Establish baseline: Run experiments in series with sufficient resources
o Intentionally over-subscribe: Iteratively increase parallel experiments
o Monitor metrics to identify deviations/indicators:
• C2 metrics: Number of alerts over time
• Telemetry: CPU usage, stolen cycles, etc.

• Key findings:
o C2 results have been less conclusive than the scanning study
• Not currently able to over-subscribe the C2 emulation
• Using remaining time on LDRD to understand issue (potentially related to I/O)

o However, only identified this because we were doing verification

21



Focus Since Last EAB
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Analysis Goal: Efficiently identify key parameters

• 12 uncertain parameters
o 4 discrete
o 8 continuous
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Parameters Units Value Distribution
Number of 
infected 
workstations

No units 0-10 Discrete with equal 
probability

Malware traffic 
per infected host

Packets 
per sec

4-10 Continuous uniform

Fraction of 
malware packets 
with emotet
signatures

No units 0.1-0.2 Continuous uniform

Detection rate of 
signatures for 
malware traffic

No Units 0.9-0.99 Continuous uniform

Parameters Units Value Distribution
Benign traffic per 
host

Packets 
per sec

5-100 Continuous log-uniform

Fraction of 
benign packets 
with Emotet 
signatures

No Units 1e-5-1e-3 Continuous log-uniform

Detection rate for 
signatures in 
benign traffic

No units 0.9-0.99 Continuous uniform

Parameters Units Value Distribution
Total number of 
workstations

No units 10 Fixed

Average packet 
size

Bytes 150-250 Continuous uniform

Snort capacity Bytes per 
second

1e5, 2e5, 5e5, 
or 1e6

Discrete with equal 
probability

Number of CPUs No units 8 Fixed

Number of CPUs 
to maximize snort

No units 1-8 Discrete with equal 
probability

Other CPU 
Processes

No units 0-7 Discrete with equal 
probability

Drop rate 
multiplier

No units 0.9-1.1 Symmetric continuous 
triangular distribution

IDS and Environment Parameters

Benign Traffic Parameters

Malware Traffic Parameters



Polynomial Chaos Expansion (PCE): Screen 
parameters using the low-fidelity model 

• PCE surrogates represent the Quantity of Interest (QoI) as a linear 
combination of orthogonal polynomials in the input variables
o Efficient
o Offers Global Sensitivity Analysis (GSA) information for free

• Screening study:
o Random sampling of parameters over joint discrete-continuous space
• PyApprox (https://sandialabs.github.io/pyapprox/index.html) 

o Analyze low-fidelity model results from 3,000 samples 
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Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura Swiler, 
“Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security Emulytics
Experiments”, SIAM CSE 2021 (virtual), March 1, 2021 (Talk presented by Bert Debusschere)

https://sandialabs.github.io/pyapprox/index.html


PCE: Identify the main effects for key metrics

Key Findings

• Total alerts primarily 
affected by volume of 
emotet traffic

• False positives primarily 
affected by volume of 
benign “Emotet” traffic
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Parameters Total Alerts,
t = 5 sec.

False Positives,
t = 5 sec.

Number of infected 
workstations 0.87 0.00
Fraction of benign packets 
with Emotet signatures 0.00 0.51
Benign traffic per host 0.01 0.20
Malware traffic per infected 
host 0.05 0.00
Fraction of malware packets 
with emotet signatures 0.03 0.00
Snort capacity 0.01 0.01

Other CPU Processes 0.01 0.00
Number of CPUs to 
maximize snort 0.00 0.00

Average packet size 0.00 0.00
Detection rate for 
signatures in benign traffic 0.00 0.00
Detection rate of signatures 
for malware traffic 0.00 0.00

Drop rate multiplier 0.00 0.00

Main Effects for Select Results

Utilize this information 
to focus subsequent 
multi-fidelity analysis
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Multi-fidelity Uncertainty Quantification (MFUQ): 
Exploiting both models for efficient UQ
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High-Fidelity Term Low-Fidelity Term
Monte Carlo Estimator

“Expensive” 
(~18 hours for 40x10 runs)

Unbiased 
Reduces Variance 

“Cheap” (0.4 secs/run)

Geraci, G., Crussell, J., Swiler, L.P. and Debusschere, B. J. “Exploration of Multifidelity UQ 
Sampling Strategies for Computer Network Applications.” International Journal of Uncertainty 
Quantification, 2021. Pp. 93-118. DOI: 10.1615/Int.J.UncertaintyQuantification.2021033774



MFUQ estimates mean number of alerts with less 
variability than Monte Carlo
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• MC: 40 settings (10 iterations each)
• MF: Equal to 40.53 MC runs

• 86,840 low-fidelity runs
• Low-fidelity can be run on a PC

Great news, but only possible 
because:
1) Low- and high-fidelity models 

are correlated
2) Low-fidelity model is efficient



Outcomes

• Integrated multiple capabilities to create a rigorous 
experimentation process for the C2 problem
o Rigorous experimentation is an improvement on existing work
o More detailed write-up will be available on SCIRE website

• Publications on model and specific capabilities
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Lessons Learned and Future Work

• Lessons learned:
o Emulations have large inherent variability; highlights need for UQ
o Starting with the questions before emulating is important
o Scenario orchestration (ScOrch) is a game-changer for experimentation

• What needs to be done:
o Additional applications to answer questions related to generalization
• Do we start to converge on a core set of methods?

o Reducing development time for math modeling
• Math models can be useful, but only if accurate; require expertise to build
• Time and budget required to build math models must be accounted for

o Just scratched the surface on verification
• Which indicators matter?
• How do we say two things are “equal”?
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SCADA network/grid effects studies
T. Tarman, A. Pinar, L. Swiler, T. Rollins, J. Gearhart, M. Sahakian, E. Vugrin, 

S. Hanson, C. Glatter, J. Cruz, J. Thorpe, B. Arguello, E. Johnson, C. 
Phillips, A. Outkin, T. Schulz, collaborators at Texas A&M



Exemplar studies
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Exemplar studies
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Before Segmentation After Segmentation

Optimal network 
segmentation saved 90 
MW of load shed after 
worst-case attack

• Trilevel network segmentation interdiction model 
includes:
• IT administrator – how to segment SCADA system 

against worst-case attack
• Attacker – how to attack the grid after 

segmentation
• Grid operator – Reoptimizes power flow to serve as 

much load as possible after worst-case attack

• Trilevel models are strongly NP-hard
• Only 9-bus and 30-bus systems can be solved using new 

academic bilevel branch-and-bound solvers
• Our academic partners developed a specialized algorithm for 

solving a slightly simplified version of this model
• Obtained results for the 2000-bus synthetic system (small 

SCADA system)

Power system cyber-physical network 
segmentation



Optimal Segmentation - Can mathematical optimization 
help identify what experiments to run in emulation?
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Optimization/Emulation Workflow Example Results 

Takeaway: Designed a workflow that interfaces emulation with 
mathematical optimization to investigate network segmentation

Takeaway: Mathematical optimization 
identifies a segmentation policy that is more 

robust under a CrashOverride attack



Experiment reproducibility and validation: KS 
test provides a good metric for comparison

• KS test uncovers subtle differences, and provides statistical test to 
accept/reject whether CDF differences are statistically significant

• “Agreement” must be considered w.r.t. the question that is being 
answered

• Other metrics are described in the paper
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Slow Fast

Port discovery Detection

T. D. Tarman, T. Rollins, L.P. Swiler, J. Cruz, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, A. Goulart, and K. Davis. Comparing 
reproduced cyber experimentation studies across different emulation testbeds.  USENIX 14th Cyber Security Experimentation 
and Test (CSET) Workshop. Aug. 9, 2021.  SAND2021-5696C.



What did we learn about reproducing emulation 
experiments?
• Even after providing a comprehensive writeup and details of the 

experiment, both teams still required significant coordination to 
reproduce the experiment.

• It can be challenging to determine if small differences are due to 
differences in the hardware/emulation platform OR due to an 
implementation detail that is not correctly reproduced.

• Subject matter expertise is critical

• Statistical tests and ensembles of replicate results can help in this 
comparison as they provide some estimate of the uncertainty 
inherent in the results on one platform.

• Recommendations
o Public repositories for experimental artifacts
o Need consensus in artifacts and how testbed technologies use them
o Understand differences between common cyber experimentation 

platforms
o Appropriate metrics, depending on experiment question/objective

• Distance measures between experimental results
• Metrics to determine effects of platform differences on results

August 9, 2021



Exemplar studies
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Can we apply UQ methods to evaluate the power 
grid impacts of the CrashOverride malware?

38

UQ/Emulation Workflow Example Results 

Takeaway: Traditional UQ tools can be coupled with 
emulation capabilities to enable better characterization 

of uncertainty

Takeaway: Strength of analysis depends on approach. 
Quantile regression does better at finding a linear fit

95th quantile = 440.18+27.10*RTUs



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of 
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Administration under contract DE-NA0003525. 

SECURE Verification and Validation
Laura Swiler
Tom Tarman

Jamie Thorpe
Bert Debusschere

Kasimir Gabert



Verification
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Detecting Over-subscription of Resources in 
Emulation-Based Experiments

• Scanning detection scenario case-study used for verification

• Repeated studies launched using increasing number of 
namespaces

• A namespace is an experiment that is isolated in its own VLAN 
or set of VLANs. 
o Each namespace has its own copy of each machine in the 

scenario and they are networked through a unique set of VLANs.  
o We can run multiple namespaces in parallel while the experiments 

remain isolated in their own namespace.

• Results presented by Jerry and Trevor in November
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Alert Times - All
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• Distribution of alert times 
shift as namespaces are 
added

• Quantified similarity with 
Tukey Multiple 
Comparison Test
o Shows clear drop in 

similarity after 10 
namespaces

• Large p-value indicates 
that the null hypothesis 
can’t be rejected 
o 𝐻!: 𝜇" = 𝜇#
o Larger p-value -> similar 

results

Alert Times 
Distribution

Tukey Multiple 
Comparison



Scanning/Detection vs Command & Control

• Hypothesis:  Verification Process from Scanning/Detection is Generalizable
• Command & Control Results are inconclusive:  we don’t see data we 

should reject as we push the experiment to more namespaces.  Why?
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Alerts Received by Time t=10s

Scanning/Detection, All Replicates Command & Control, All Replicates

Time of First Alert Received



Command & Control Results: Host 1 vs Host 2

• Baseline: 1 Namespace

• Tukey Analysis - Compare 
Quantity of Interest 
Distribution for Increasing 
Parallel Namespaces
o All Replicates Included

• Two Different Physical Hosts, 
Supposedly Identical 
Configuration

• Difference in Tukey for 
Different Hosts, even with 
Apparently Identical 
Resources

44

The statistical results indicate we would not reject any of these runs.

Host 1 Host 2



Command & Control Results:                            
Use of Telemetry to Filter Unreliable Replicates
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Bottom Line: Balance Desired Similarity to Baseline with Number of Replicates being Removed  

All 
Replicates Load<64%

All 
Replicates Load<32%

All 
Replicates

Context 
Switch<78/s

Replicates Remaining:
250/250

Replicates Remaining: 
211/250

Replicates Remaining: 
179/250



Can we use Telemetry to Identify Unreliable 
Experiment Results?

• Repeated the Approach from Scanning/Detection Scenario
o Telemetry: Stolen Cycles, Load, Throughput, Context Switches, User Time
o Identify Threshold for Telemetry that Experiments Should Not Cross

• Command & Control Data Challenges
o Addressing Experimentation Bugs
o Collecting, Processing, and Storing Large Volumes of Data

• 17 Mb PCAP file -> 359 Mb JSON -> 320,000 entries -> several hours to store per replicate 
• Solution reduces to 1 stored entry per replicate, taking ~1 hour to process in total

o Adapting Analysis to New Quantities of Interest, new Thresholds

• Differences in the two experiments
o The Command & Control scenario seemed more complex, yet resources were not 

pushed to oversubscription
o Scanning/Detection scenario involved 27 VMs, the C2 scenario involves 4. 
o Hard to tease out what is the critical factor: the number of VMs vs. packets/sec vs. 

overall traffic
o Scanning/Detection had 27VMs x 25 namespaces = 675 TCP handshakes tracked 

through one host kernel; vs. C2 had 4VMs x 25 namespaces =100 TCP handshakes.
o Additionally, Scanning/Detection used tc (traffic control) to implement packet 

drops;  this is high overhead and a stateful process.
46



Summary and Takeaways

1. We were interested in repeatability of our experiments under different 
platform configurations

2. We instrumented the platform to collect telemetry from the VMs in the 
experiments and from the physical host running the experiments. This 
telemetry can be used to develop metrics (or indicators). 

3. We tested the efficacy of the telemetry metrics by removing replicates that 
violated the thresholds and testing whether different numbers of 
namespaces gave statistically different results

• Takeaways: 
o Both the system load and throughput help filter out replicates that generate 

statistically different results for scanning/detection
o These same metrics do not indicate a problem for the C2 scenario. We 

currently think that we are not stressing the C2 scenario as much.
o Currently we are investigating how we can push the C2 scenario further: 
• More namespaces:  issues with Python threading in SCORCH
• More traffic:  PCAP size involves significant postprocessing times (hours to days)

o The instrumentation of these verification experiments and 
statistical analysis of the telemetry metrics to find clear indicators 
of anomalies has been challenging.
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Validation
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Validation

• Validation Metrics
o Ultimate goal is to compare physical testbeds with emulation
o Reproducibility Study:  SNL minimega vs. TAMU CORE testbed (Tom’s talk 

at CSET) 
o Latest study:  SNL minimega vs. TAMU physical testbed.  
• This is what I am presenting today.  Note the TAMU “physical” testbed is only 

partly physical:  has real RTUs for the open ports, but the closed ports are 
emulated and the filtered ports are handled by the switch.  

• Scaling
o How much validation at small scale can we use to build up a validation 

case at large scale?
o Kasimir Gabert’s Ph.D. work at Georgia Tech.
• Graph analysis approach:  instead of topology graph, create communications 

graphs
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Validation with physical test data

• This is closer to a true validation

• The TAMU testbed is still a mix of emulated/virtualized components 
and actual physical components

• For the network scanning/detection, the four Remote Terminal 
Units that have the “open” ports are physical units. 

• We used the same experimental orchestration

• 1000 minimega runs and 823 TAMU physical results

50



Validation test comparison: 1000 SNL minimega
runs vs. 823 Physical tests at TAMU

• We don’t see monotonic improvement in K-S test statistics
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Take random subsets of 500 samples each from 
SNL and TAMU

• LARGE VARIABILITY
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Statistics on the p-values

• Mean and median indicate good agreement.  The low values of 
the 5th percentile between 100-120 seconds help identify times 
which have some realizations with less agreement. 
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Lessons learned: Validation

• Need consensus in artifacts and how testbed technologies use 
them
• Understand differences between common cyber experimentation platforms
• Virtualization technologies (CPUs, network interfaces, switching, etc.)
• Public repositories for experimental artifacts

• It can be challenging to determine if small differences are due to 
differences in the hardware/emulation platform OR due to an 
implementation detail that is not correctly reproduced.

• Subject matter expertise is critical

• Statistical tests and ensembles of replicate results can help in this 
comparison as they provide some estimate of the uncertainty 
inherent in the results on one platform.
• Appropriate metrics, depending on experiment question/objective

• Repeatability + Reproducibility can strengthen Validity
o A result that holds under repetition and various modeling environments is 

more likely to be true on the real system
o Key to bringing rigor to cybersecurity modeling
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Prioritizing Components to Validate

• Hierarchical validation: validate components, sets of components

• How to prioritize components given a finite validation budget?
o Previously, only SME guidance is available

• High-level idea: monitor all communication within the model, find 
what is important to the model output programmatically

• Critical assumptions: (1) components are low-latency (2) key model 
output events occur due to network traffic
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CrashOverride Experiment Results
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Tracking Dense Regions of Changing Graphs

• A Unifying Framework to Identify Dense Subgraphs on Streams: 
Graph Nuclei to Hypergraph Cores, WSDM (18.6% acceptance)
o Problem: nuclei are expensive, cannot recompute when graph changes
o Approach: convert to a hypergraph and maintain cores instead

• Shared-Memory Scalable k-Core Maintenance on Dynamic 
Graphs and Hypergraphs, IPDPSW ParSocial
o Problem: prior approaches do not use multiple processors effectively
o Approach: use the connection between h-indices and k-cores

• ElGA: Elastic and Scalable Dynamic Graph Analysis, SC (26.8%)
o Problem: large, changing graphs become too big to fit in memory
o Approach: use consistent hashing to load balance, sketches for state

• Coreness to Cores: Batch Dynamic Algorithm to Efficiently Find k-
Cores, prepared
o Problem: prior work performs decompositions but not core hierarchies
o Approach: use a query-efficient index to maintain full hierarchies
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Closing thoughts
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Summary

• Verification
o Focus on oversubscription of resources
o Instrumented minimega, results sent back to ElasticSearch for postprocessing 

analysis
o Scanning/detection showed more variance in runs that were spread over 

many namespaces, use of telemetry metrics such as system load, stolen 
cycles, and throughput

o C2 results inconclusive

• Validation
o Validation metrics: use of K-S test, area metric, comparison of means 
o Scaling:  Physical experiments at TAMU, Kasimir’s research
o Statistical distribution tests showed more variability than expected
o Slow convergence of distribution test statistics

• Uncertainty quantification
o Efficient UQ methods exist (structured designs, multifidelity UQ, PCE)
o In some cases, we may be able to run enough emulations to formalized a 

tail probability relationship (e.g. quantile regression)
o CHALLENGE:  Identify effects of stochasticity AND parameter uncertainty, 

use of both information in tail probability estimation with MF methods 
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Backup
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Alert Times – System Load Cutoff

• Replicates 
with System 
Load 
above a 
threshold 
were 
filtered out

• 244 / 760 
replicates 
removed
o Filtered NS 

33 & 50 
only
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How well was the experiment reproduced?

• We may care about the differences in magnitude and not care about distributional 
differences.  
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Alert detection times
Fast – No Drop – Fixed 
Nmap order

§ KS-test: 0.000
§ Least variable 

experiment

Slow – Drop – Random 
Nmap order

§ KS-test: 0.155
§ Most variable 

experiment

The validation metrics 
depend on the question 
being asked: Are these 
differences significant due 
to  differing hypervisors, time 
synchronization, and 
experiment orchestration?  
Are they acceptable to be 
used in a larger attack 
model?



Metrics Used in this Study

• KS-Test
o Maximum value of 

the distance in the 
CDFs of two samples

o P-value for this 
statistic is used
• 𝐻!: 𝐶𝐷𝐹" = 𝐶𝐷𝐹#
• Large values imply 

similarity
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• Area Metric
o Sum of the 

differences in area 
between the  CDFs 
of two samples [1]

o This is not a p-value, 
small values imply 
similarity

• Relative Hausdorff 
Distance
o Developed as a metric to 

quantify graph similarity
o For every point (p) on 𝐶𝐷𝐹"there is a point  (p’) on 
𝐶𝐷𝐹# such that:
• 𝑝 − 𝑝! ≤ 𝜖𝑝
• 𝐶𝐷𝐹"(𝑝) − 𝐶𝐷𝐹#(𝑝!) ≤ 𝜖𝐶𝐷𝐹"(𝑝)
• The minimum 𝜖 that satisfies this 

is the RH distance [2]
o Allows for “play” in vertical 

and horizontal direction
o This is not a p-value, small 

values imply similarity
KS 

Statistic

Area 
Metric

[1] K.A. Maupin, L.P. Swiler, N.W. Porter, “Validation Metrics for Deterministic and Probabilistic 
Data,” Journal of Verification, Validation and Uncertainty Quantification, Vol. 3, September 2018.

[2] O. Simpson, C. Seshadhri, and A. McGregor, Catching the head, tail, and everything in 
between: A streaming algorithm for the degree distribution, in 2015 IEEE International Conference 
on Data Mining, IEEE, nov 2015.

𝜖 for this 
point



Metrics

• Kolmogorov-Smirnov Test Statistic
o Well known non-parametric statistical test for equality of distributions

o Test statistic converges to Kolmogorov distribution:  there are formulas for 
rejection of the null hypothesis CDF1=CDF2 at various confidence levels.

• Area metric
o Does not just depend on the largest discrepancy between CDFs:  

accounts for the entire difference
o No formal acceptance metric or statistical test

o Units are in same units as the measurement:   Ferson et al. argue it is best 
not to normalize but use some judgement about acceptable tolerances

Scott Ferson, William L. Oberkampf, Lev Ginzburg.  “Model validation and predictive capability for the thermal 
challenge problem,” Computer Methods in Applied Mechanics and Engineering, Volume 197, Issues 29–32, 2008
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Metrics

• Relative Hausdorff
o Originally developed for graph analysis, for quantities like the 

complementary cumulative degree distribution of large graphs
o The distributions F1 and F2 are (e, d) close by the Relative Hausdorff

distance if

o Note that although the degree distributions involve discrete variables, 
the examples used have a much larger support and are smoother than 
our empirical distribution functions for port counts, for example

• Other ideas:  perform data alignment before applying metrics
o Edit distance:  if we know the timing is different for some fundamental 

reason (e.g., a 2 second offset), can we shift the times of the second 
CDF and use the above metrics

o There are also functional analysis tools which attempt to overlay signals 
in x- and y- coordinates (e.g. align peaks of signals as well as phase).  

J. Derek Tucker, Wei Wu, Anuj Srivastava, “Generative models for functional data using phase and amplitude 
separation” Computational Statistics & Data Analysis, Volume 61, 2013, Pages 50-66.
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Backup: Experimental Setup

• Analyses run in succession on single Carnac nodes with NUMA 
nodes 2 and 3 disabled in order to limit scheduling capability

• ScOrch tool used for experiment orchestration
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Analysis ID 1 2 3 4 5
# Parallel 
Namespaces

1 2 5 10 25

# Replicates per 
Namespace

50 25 10 5 2

# CPUs on IDS VM 1
Benign Traffic Rate/s 1000
Benign Probability of Emotet Signature 0.001
Malicious Traffic Rate/s 20
Malicious Probability of Emotet Signature 0.125



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of 
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-NA0003525. 

”Life After LDRD”
Derek Hart, PM

25 August 2021



Goals

• Create a sustained internal team
o Members of the current GC and others around the lab

• Ensure sufficient follow-on funding to keep momentum moving

• Build on EAB and other external interactions to build a 
collaborative community

• Motivate internal community to accept a more scientific 
approach to cybersecurity



Opportunities

• Good news: Government is waking up to the seriousness of cyber, 
especially when it comes to defending critical infrastructure

• Bad news: Much of the discussion is around hygiene and doing the 
basics. Less focused on how to measure the degree of 
cybersecurity of a system

• NNSA is launching a cyber survey of the nuclear deterrent 
enterprise

• DHS CISA and DOE are in line to receive large increases in fund to 
confront cyber issues



Challenges

• Slow recognition of cyber as a science within the government
o Engineering enterprise vs. a scientifically-informed enterprise

• Changing hearts and minds is taking time

• Funding for lower TRL, strategic cyber work is difficult to secure 
when the current problems are legion

• Classic research vs. tools/capabilities

• Team lost a little momentum mid-year when 3 staff members left 
the project (one was a key contributor).



Concrete Funding

• COVID!!!
• Submitted 3 SECURE-aligned follow-on LDRDs

o Only 1 was funded
o Call came at inopportune time where we lost 3 team members in short order
o A continuing LDRD is developing SECURE tools to make them more usable

• Re-aligned a currently funded DoD effort to apply SECURE-like 
approaches to a network of interest to the sponsor
o Slightly limited funding and sponsor’s interest in a short term win vs long-term 

capability

• New DoD work focused on creating high fidelity networks and results
o Small initial funding and advocate for the work retired

• DHS funded effort out of S&T for NRMC to continue pursuing SECURE 
work
o Smaller funding than anticipated with reduced scope



Legacy - Internal

• Re-directed internal “Emulytics Community” toward the broader 
“Cyber Experimentation” field, which is a huge win for SECURE
o Ensures internal funds to support planning, roadmapping, and program 

development efforts
o Broadens engagement beyond the typical emulation/simulation staff to 

other disciplines around the lab

• Inspired research thrusts in corporate computing and cyber-
physical mission areas

• Reframed how we talk about cybersecurity within the Lab



Legacy – External

• Workshop
o Hosted in partnership with UC-Davis
o Scheduled for November 2021

• Sandia Cybersecurity Institute on Rigorous Experimentation (SCIRE)
o External-facing Website
• communicate key work performed on SECURE
• Acknowledge partners
• Share links to current research being published by key partners in academia 

and national lab
• Host externally viable versions of the Handbook

• Under Emulytics Community, continue hosting collaborative 
discussions with academic partners: USC-ISI, Purdue CERIAS, UIUC


