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Why Do We Need Cyber Experimentation? .!

To study complex cyber systems (e.g., resilience)

« answer “what if questions” with high-confidence
Emulytics

« assess confidence in our results under uncertainty
Uncertainty Quantification

* make robust decisions under uncertainty in an adversarial environment

. Adversarial Optimization
with rigor

« Challenge: Can we frust this approach for high consequence systemse

Inspiration: Sandia’s know-how and capabilities from our nuclear stockpile stewardship

Rigorous cyber experimentation should be a pillar of science of cyber security,
just as computational Science and Engineering (CSE) is a pillar of science.




An Overview of the Process ‘.!
Exemplar problem: Is our power grid resilient against an attack as in

Ukraine?¢
 Ukraine attack was based on Crash Override Malware

« The attacker gains remote access to power grid components to turn
them on and off.

* Previous presentations organized around basic research elements
o Integration was not clear

« Today's presentations organized around integration tasks
- Each effort utilizes all research elements

Inspired by the
EAB feedback




Exemplar goal and approach (.l

Pivot to
engineering
Initial infection workstation Run CRASH
o @ o @ @ @
Command and ID vulnerable RTUs Achieve loss
control of load

Conftrol center and Power
SCADA networks e]fle

Enterprise network

- Goal: characterize loss of load resulting from malware infection in
enterprise network
o Account for uncertainties in threat, network conditions

« Approach

o Piecewise studies to inform Markov transition probabilities and
uncertainties

o End-to-end SCEPTRE demonstration



Exemplar studies (.!I

Infegrated Study 1 Integrated Study 2.
Defend against C2 Defend against

reconnaissance

Pivot to
engineering
Initial infection workstation Run CRASH
o ® o @ @ @
Comm&nd and D vuInerc!bIe RTUs IAchieve loss
c0|1’rrol | I of load

Control center and Power

Enterprise network SCADA networks arid

Integrated Study 4. Overarching Themes
V&YV, extreme events, scalable algorithms
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Connecting experiments to end-to-end threat analysis ‘.

+  240/2000 node MF

+  Optimal
segmentation

+  Optimal
segmentation/MF

« Verification

«  Optimal IDS
*  Malware C2/

+ SCEPTRE/
PowerWorld
*  N-kstudy

detection
«  Optimal IDS/C2
Verification

Run CRASH

Comman d and ID vulnerable RTUs Achieve loss

Markov Model

e Assess CRASH on RTUs
«  Attacker strategies

5: Get IP of
EW

Last year: we used

MITRE ATT&CK to 7: Pivot 4: Install File
populate transition

probabilities

NOW: we 8: Scanning

incorporate results
from our emulation
experiments to 9: Ready to
populate steps 6 Atfack

and 8 in green




Co i

nnecting experiments to end-to-end threat analysis (.

———————————————————

« Experimental data processed to represent:

« Success (attacker goes to next step)
« Failure (have to start anew)

« Stay in place

* |In addition to the various combinations of state 6 and state 8 transition
probabilities shown below, we analyzed various attack/defender strategies

 We are performing uncertainty analysis on the Markov model itself

State 6 (C2):

>= 10 detections for alert State 8‘ ‘
* Exp 1: Snort stressed/drops (Scanning/Detection):
packets * Fast scan: ts=30s
* Exp 2: No packet drop + Slow scan: ts=61s
time pSuccess pFailure pStay time pSuccess pFailure pStay tacticAttribute
16.0 0.628 0.372 0.0 30 0.31 0.69 0  FastLoudw /
16.0 0.435 0.565 0.0 61 0.3 0.7 0 LowSlowW



"Resulis— Accounfing for afiacker/defender @@

esults — Accounting for attacker/defender

uncertainties ‘.,a

IAverage

Time Higher consequences
1 or more RTU
Harder attacks

150
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[}
n
oy
Vi -
50+
Lower consequences oy .

Easier attacks

1 RTU exactly P vy vy

Ready

0.00 0.01 0.02 0.03 0.04 0.05 0.Uo Fraction

Defender goal: push attacker toward top-

left of the plot (e.g. through better IDS)

Each dot on the chart above represents @
combination of C2 data, scanning/detection
data, and attacker/defender strategy

Plotting attack success metrics from
Markov analysis: mean time to
attack success vs. fraction of time in
the “READY" state.

Extended our analysis framework to
support UQ in transition
probabilities, and variations in each
step’s inherent timestep.

o Default timestep = 1 hour/state, but
states 6 and 8 use different values

Experiments provide range of
transition probabilities (depending
on scenario, attacker strategy, etc.)

Markov analysis allows:
 Estimates of how secure

the system is under attack
« Ranking of attacker/
defender strategies




So What? (.g
« What changed?

o We produced an objective process that can quantify security.
- All assumptions are listed; all processes are repeatable;
- All experiments are verified; all models are validated;

o We have a scientific processes that can, and will be improved.
No more disagreeing with expert opinions.
Instead challenge assumptions; propose better algorithms/metrics.

- What can we do now?¢ Quantifiable Security
o Quantify return on investment for cyber security
o Rigorously compare two proposed remediations

o ldentify critical components both for improving security and model
fidelity

o Quantify attack consequences and enable mission-driven cyber security
- /oom in on extreme events




SECURE's Legacy (.!I

« Rigorous cyber experimentation is essential and achievable.
o Long way in front of us, but long way behind us.

o The path forward is more clear. No more admiring the problem, we can
line out specific tasks.

 We are building a community around us that will continue to work
with us.

Lasting Impact:

« Cyber experimentation can be a pillar of science of security,
when complemented with rigorous mathematical techniques.

« Rigorous cyber experimentation can provide to integrated cyber
systems what CSE has provided to nuclear weapon's programs.

10



SCIRE Institute to carry on SECURE'’s Legacy (.!I

« SCIRE Institute: Sandia’s Cyber security Innovation and Rigorous
Experimentation Institute

« SCIRE Goals:

o Promote interdisciplinary research to support rigorous cyber
experimentation

o Serve as a bridge between basic and applied research
o Raise awareness in the national security community

- Keep the SECURE team together
- and reach out for broader partnerships Inspired by the

. . EAB feedback
* First workshop is scheduled for Nov 9-10, 2021

11



What was good? (.!I

« EAB Feedback

« Qutstanding team culture
o Essential to keep the team together
o Young teams members

« Strong support and convergence on the SECURE’s goals
« Many strong stand-alone technical results
« Verification and Validation results will be landmarks

« Connections with academia and exporting complicated challenges
as well-defined problems

12



What could have been bettere (.i

« Pandemic was not part of the risk management plan.

o Affected individual performances as well as lessening the advantage of
being a well-functioning team

o Affected out-reach activities

« Staff turnover slowed down progress

o Recovered each time
o Can be more bigger issue as we make more progress

« Some tasks were much harder than anticipated
o e.g., Verification of computer experiments

« Scalability remains a challenge.

« External visibility needs to be improved.
o Both a Lab-level problem and a project-level problem

13



SECURE Products (.!I

First version of the manual (both theory and user)
is ready as an online document

Software:

o Python Adversarial Optimization (PAQO) is released
o Scenario Orchestration (ScOrch) will be released
o Many others transferred to applied projects

Inspired by the
EAB feedback

29 Publications (accepted, submitted and in preparation)

15 technical presentations

14
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Command and Control (C2): Infegrated
Cyber Experimentation Exemplar

Jared Gearhart
August 26™, 2021
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Since last EAB, formed cross-cutting C2 teanicd

712

Jared Gearhart, Casey Clatter, Jamie Thorpe,
C2 Integration Lead C2 Emulation Verification

Seth Hanson, Eric Vugrin, Bert Debusschere,
C2 Emulation Math Modeling UQ, PCE UQ, MFUQ

Former Team Members: Jerry Cruz (Emulation), Trevor Rollins (Statistical Tests)

16




C2 Exemplar Goal: Answer both specific C2 '.’z
and general cyber experimentation questions ‘“

« C2 specific goals:
o How long does it take to detect a C2 channel¢
o Which factors have the largest impact on the IDS system®<

« General research goals:
o What emulation capabilities are required?
o Can we develop a math model to approximate emulation?
- Can the emulation and math model be used in conjunction?
C2 Exemplar Analysis Process

Build a High- Verify the
Fidelity C2 High-Fidelity
Emulation Model
Real-world Create a
C2 Malware Low-Fidelity C2
Challenges Use Both Math Model

Validate the

Efficient] Low-Fidelity
Math Model

Andlyze C2

Models 1o




between infected host(s) and a C2 server

C2 Scenario: Detect malicious (Emotet) traffic '.’6
ﬁ‘

C2 Server

Intrusion
Detection
System

el el

-

Ifectd Host

=

nfecd Host

* Three main drivers:
o IDS configuration
o Volume of malicious traffic
o Volume of benign traffic

18




Summary of Previous C2 Work (.!I

Created a High-fidelity Emulation Created a Low-fidelity
Model - “Expensive” Math Model - “Cheap”

Input: Background and

Detector (Snor) @ " Malicious Traffic Rates

f Background Client
Traffic Server \Mirrored Port g

| Virtual Switch

\ o Input: IDS
™ Malware Client Parameters

IDS

(2 Aler’r True and
False Positives
Developed Methods to No Alert: True
Validate the Math Model and Fale
egatives
I I T/
o0 Nt Pl
= = 95%ClI ,’/’
w 87 -, ,’ .
5 ,/
E P
= ° /,,' ) Eric D. Vugrin, Seth Hanson, Jerry
g )y Cruz, Casey Glatter, Thomas Tarman,
2 s and Ali Pinar, “Detection of
2 command and conftrol traffic: model
2] &7 | development and experimental
| £ | | | | | | . validation,” submitted to 43rd IEEE
% 2 4 6 8 10 12 14 16 Symposium on Security and Privacy.

%



Focus Since Last EAB (.!I

C2 Exemplar Analysis Process

Build a High- Verify the
Fidelity C2 High-Fidelity
Emulation Model
Real-world Create o
C2 Malware Low-Fidelity C2
Challenges Use Both Validate the Math Model

Models to

Efficient] Low-Fidelity
Math Model

Analyze C2

20



Verification: How do we assess the '.’z
trustworthiness of emulation experiments? ‘ﬁ

* Focus on over-subscription of emulation resources

« Verification strategy:
o Establish baseline: Run experiments in series with sufficient resources
o Intentionally over-subscribe: Iteratively increase parallel experiments

o Monitor meftrics to identify deviations/indicators:
- C2 metrics: Number of alerts over time
- Telemetry: CPU usage, stolen cycles, etc.

- Key findings:
o C2results have been less conclusive than the scanning study

- Not currently able to over-subscribe the C2 emulation
- Using remaining time on LDRD to understand issue (potentially related to |/O)

o However, only identified this because we were doing verification

21



Focus Since Last EAB (.!I

C2 Exemplar Analysis Process

Build a High- Verify the
Fidelity C2 High-Fidelity
Emulation Model
Real-world Create o
C2 Malware Low-Fidelity C2
Challenges Use Both Validate the Math Model

Models to

Efficient] Low-Fidelity
Math Model

Analyze C2

22



Analysis Goal: Efficiently identify key parameters ‘%’!.

Benign Traffic Parameters

* 12 uncertain parame ters [Parameters Units Value Distribution
. Benign traffic per | Packets 5-100 Continuous log-uniform
host per sec
© 4 d ISC reTe Fraction of No Units le-5-1e-3 Continuous log-uniform
. benign packets
o 8 continuous with Emotet
| signatures
Detection rate for | No units 0.9-0.99 Continuous uniform
signatures in
benign traffic
IDS and Environment Parameters Malware Traffic Parameters

Parameters Units Value Distribution Parameters Units Value Distribution

Total number of No units 10 Fixed Number of No units 0-10 Discrete with equall

workstations infected probability

Average packet | Bytes 150-250 Continuous uniform workstations

size Malware traffic Packets 4-10 Continuous uniform

Snort capacity Bytes per | 1e5, 2e5, 5e5, | Discrete with equal per infected host | per sec

second orleé probability _ _ i

Number of CPUs | No units 8 Fixed Fraction of No units 0.1-0.2 Continuous uniform
malware packets

Number of CPUs | No units 1-8 Discrete with equal with emotet

to maximize snort probability signatures

Other CPU No units 0-7 Discrete with equal Detection rate of | No Units 0.9-0.99 Continuous uniform

Processes probability signatures for

Drop rate Nounits  [0.9-1.1 Symmetric confinuous malware fraffic

multiplier triangular distribution

23



Polynomial Chaos Expansion (PCE): Screen .

parameters using the low-fidelity model W

- PCE surrogates represent the Quantity of Interest (Qol) as a linear
combination of orthogonal polynomials in the input variables
o Efficient
o Offers Global Sensitivity Analysis (GSA) information for free

« Screening study:
o Random sampling of parameters over joint discrete-continuous space
- PyApprox (https://sandialabs.github.io/pyapprox/index.htmil)
o Analyze low-fidelity model results from 3,000 samples

Bert J. Debusschere, Gianluca Geraci, John D. Jakeman, Cosmin Safta, and Laura Swiler,
“Polynomial Chaos Expansions for Discrete Random Variables in Cyber Security Emulytics
Experiments”, SIAM CSE 2021 (virtual), March 1, 2021 (Talk presented by Bert Debusschere)



https://sandialabs.github.io/pyapprox/index.html

PCE: Identity the main effects for key me’rrics( !I

Main Effects for Select Results

. . Parameters Total Alerts, False Positives,
Key F|nd|ngs t=5sec. t=5sec.
Number of infected
 Total alerts primgr”y - Work.stations . 0.87 0.00
' Fraction of benign packets

affected by.VO|Ume of OO with Emotet signatures 0.00 0.51

emotet traffic "S Benign traffic per host 0.01 0.20
- gl iti . i (§ —Malware traffic per infected

affected by volume of Fraction of malware packets

benign “Emotet” traffic qu =1 |with emotet signatures 0.03 0.00
S )
@ Snort capacity 0.01 0.01
Utilize this information ob —Other CPU Processes 0.01 0.00
§ Number of CPUs to
TO fO.C.US sgbsequerﬁ maximize snort 0.00 0.00
mu ”I_fldemy elgle |YSIS Average packet size 0.00 0.00
Detection rate for
signatures in benign traffic 0.00 0.00
Detection rate of signatures
for malware traffic 0.00 0.00
Drop rate multiplier 0.00 0.00

25




Multi-fidelity Uncertainty Quantification (MFUQ):

Exploiting both models for efficient UQ

| 40 ps | 40 | rx 40
AMF i (2) (7)
Q o ﬁ Z minimega T« ﬁ Z Qmath o r % A0 Z Qmath
i—1 i—1 =1
\ ]\
| |
High-Fidelity Term Low-Fidelity Term
Monte Carlo Estimator Unbiased
“Expensive” Reduces Variance
~ ours for 40x10 runs eap 4 secs/run
(~18 h for 40x10 ) “Ch " (0.4 /run)

Geraci, G., Crussell, J., Swiler, L.P. and Debusschere, B. J. “Exploration of Multifidelity UQ
Sampling Strategies for Computer Network Applications.” International Journal of Uncertainty

Quantification, 2021. Pp. 93-118. DOI: 10.1615/Int.J.UncertaintyQuantification.2021033774




MFUQ estimates mean number of alerts with less "z
variability than Monte Carlo ‘ﬁ

#Alerts Mean and Confidence Interval a5 Correlation Squared

8_
:-(ﬂ\ 7 0.8 -
|
9 6
<
i*, 5 0.6
0 ~
O 4 Q
2 0.4
© 3 -
C
0 2-
= 0.2

1 -

0 T 1 1 1 I 0.0 I I I 1 1

2 4 6 8 10 0 2 4 6 8 10
Time [s] Time [s]

* MC: 40 sefttings (10 iterations each) Great news, but only possible

 MF: Equal to 40.53 MC runs because:
« 86,840 low-fidelity runs 1) Low- and high-fidelity models
» Low-fidelity can be run on a PC are correlated

2) Low-fidelity model is efficient

27



Qutcomes (.!i

* Integrated multiple capabilities to create a rigorous
experimentation process for the C2 problem
o Rigorous experimentation is an improvement on existing work
o More detailed write-up will be available on SCIRE website

« Publications on model and specific capabilities

C2 Exemplar Analysis Process

Build a High- Verify the
Fidelity C2 High-Fidelity
Emulation Model
Real-world Create a
C2 Malware Low-Fidelity C2
Challenges Use Both : Math Model
Validate the

Models 1o

Efficient] Low-Fidelity
Math Model

Andlyze C2




Lessons Learned and Future Work (.gl

* Lessons learned:
o Emulations have large inherent variability; highlights need for UQ
o Starting with the questions before emulating is important
o Scenario orchestration (ScOrch) is a game-changer for experimentation

« What needs to be done:

o Additional applications to answer questions related to generalization
Do we start to converge on a core set of methods?
o Reducing development time for math modeling
- Math models can be useful, but only if accurate; require expertise to build
- Time and budget required to build math models must be accounted for

o Just scratched the surface on verification
- Which indicators matter?
How do we say two things are “equal’e

29
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SCADA network/grid effects studies

I. Tarman, A. Pinar, L. Swiler, T. Rollins, J. Gearhart, M. Sahakian, E. Vugrin,
S. Hanson, C. Glatter, J. Cruz, J. Thorpe, B. Arguello, E. Johnson, C.
Phillips, A. Outkin, T. Schulz, collaborators at Texas A&M

’,@ E’ﬁ'ﬁﬁ&wv &"“-"‘vrh% Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
e e st At Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.




Exemplar studies

Optimal IDS
Malware C2/
detection

Optimal IDS/C2
Verification

Pivot to
engineering
Initial infection workstation
o @ o
Command and
control
)
(1)
(s)
@

240/2000 node MF
Optimal
segmentation
Optimal
segmentation/MF

SCEPTRE/

PowerWorld
*  N-k study
Verification

Run CRASH

Achieve loss
of load

ID vulnerable RTUs

 Assess CRASH on RTUs
« Attacker strategies

Markov model — distributions, alternative graph structures

Threat emulation
Generalization to other APTs

Validation

Threat modeling




Exemplar studies

240/2000 node MF

Optimal

segmentation SCEPTRE/
Optimal PowerWorld
segmentation/MF «  N-kstudy
Verification

Optimal IDS
Malware C2/
detection
Optimal IDS/C2
Verification

Pivot to
engineering

Initial infection workstation Run CRASH
o @ o @ @ @
Command and ID vulnerable RTUs Achieve loss
control of load
)
(1) «  Assess CRASH on RTUs
(s) «  Aftacker strategies
@

Markov model — distributions, alternative graph structures
Threat emulation
Generalization to other APTs Threat modeling

Validation




Power system cyber-physical network

segmentation

Before Segmentation After Segmentation
Balancing Authority 1 Balancing Authority 1
e | e |
Worst Case Total Load Shed: ISR Worst Case Total Load Shed: | EST oalii i
g . 225 MW va
s, a0 . & N\ v~~~ s T T NN G Bise  Buso  Bus3 ¥

Bus 6

/ Optimal network 3 A\ i# £ i
/"~ segmentation saved 90 . W '
MW of load shed after _}é\;
7 worst-case attack N, - P
mmw// \\ (/ﬁ\ﬁ asomw 7
7 %% ) // //
Trilevel network segmentation interdiction model « Trilevel models are strongly NP-hard
includes: *  Only 9-bus and 30-bus systems can be solved using new
* IT administrator — how to segment SCADA system academic bilevel branch-and-bound solvers
against worst-case afttack « Our academic partners developed a specialized algorithm for
« Attacker - how to attack the grid after solving a slightly simplified version of this model
segmentation +  Obtained results for the 2000-bus synthetic system (small
+ Grid operator — Reoptimizes power flow to serve as SCADA system)

much load as possible after worst-case attack




help identify what experiments to run in emulation?

Optimal Segmentation - Can mathematical optimization '.z
ﬁ‘

Optimization/Emulation Workflow

Control Center 1 Control Center2

' T UL
Substation  Substation Substation  Substation  Substation Substation  Substation  Substation  Substation

1 /A 2 1 8 4 5 6 9.
1 e o o 2 e

|
: Balancing“AulhomyI

B e\~

o~ K X Ve Y

Control Center 1 Control Center 2
4

Substation  Substation  Substation  Substation  Substation  Substation  Substation Substation  Substation

1 3 2 7 8 4 5 6 9
T e 5 i e i i

Takeaway: Designed a workflow that interfaces emulation with
mathematical optimization to investigate network segmentation

Example Results

70000
®
60000 °
he] e L
§ 50000 e o %
e_
ua o0 .. o ® [ ] ® °
2 % e e oqd
2 40000 7 eﬁ:
- o, o 370 L/ ‘0.'
g s e g ° ‘Q.. eoe o §
= [ ]
T 30000 Fg—e ."0 o o o, °
2 * L _ [ ] .
E e °° A { °
E 20000 | & % e,
Q e 00
10000 ® Original Segmentation
@ Optimal Segmentation
0
0 20 40 60 80 100

Sample Number

Takeaway: Mathematical optimization
identifies a segmentation policy that is more
robust under a CrashOverride attack




Experiment reproducibility and validation: KS '.’z
test provides a good metric for comparison ‘ﬁ

Slow Fast

Mean Port Count KS-Test Detection Times KDE

1.0 Detecticn Times Density Histogram KS-Test - 0.000
W\_\_I_,T 1400 e —
L 600 —— ENL
08 1200

08

04

0.2 00
- [
0
0
15.02 15.08 15.02 15.04 15.06 15.08 15.10 15.12

0.0
[¥] 25 50 75 100 125 150 175
Timestep

o 25 50 75 100 125 150 175

Port discovery Detection

« KS test uncovers subtle differences, and provides statistical test to
accept/reject whether CDF differences are statistically significant

« “Agreement” must be considered w.r.t. the question that is being
answered

« Other metrics are described in the paper

T. D. Tarman, T. Rollins, L.P. Swiler, J. Cruz, E. Vugrin, H. Huang, A. Sahu, P. Wlazlo, A. Goulart, and K. Davis. Comparing
reproduced cyber experimentation studies across different emulation testbeds. USENIX 14th Cyber Security Experimentation
and Test (CSET) Workshop. Aug. 9, 2021. SAND2021-5696C.
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What did we learn about reproducing emulation
experimentse

« Even after providing a comprehensive writeup and details of the
experiment, both teams still required significant coordination to
reproduce the experiment.

« It can be challenging to determine if small differences are due to
differences in the hardware/emulation platform OR due to an
Implementation detail that is not correctly reproduced.

Subject matter expertise is critical

- Statistical tests and ensembles of replicate results can help in this
comparison as they provide some estimate of the uncertainty
inherent in the results on one platform.

« Recommendations
o Public repositories for experimental artifacts
o Need consensus in artifacts and how testbed technologies use them

o Understand differences between common cyber experimentation
platforms

o Appropriate metrics, depending on experiment question/objective
Distance measures between experimental results
Metrics to determine effects of platform differences on results

August 9, 2021



Exemplar studies

240/2000 node MF

Optimal

segmentation SCEPTRE/
Optimal PowerWorld
segmentation/MF «  N-kstudy
Verification

Optimal IDS
Malware C2/
detection
Optimal IDS/C2
Verification

Pivot to
engineering
Initial infection workstation Run CRASH
o @ o @ @ @
Command and ID vulnerable RT
control of load
)
(1) «  Assess CRASH on RTUs
(s) «  Aftacker strategies

Markov model — distributions, alternative grooh structures
Threat emulation

Generalization to other APTs Threat modeling
Validation



Can we apply UQ methods to evaluate the power "z

grid impacts of the CrashOverride malware? @

UQ/Emulation Workflow Example Results

P DAKOTA .

l = | 95t quantile = 440.18+27.10*RTUs

) SCORCH

Normalized Loss of Load

o SCEPTRE

scada-as-a-platform

Number RTUs out

Takeaway: Traditional UQ tools can be coupled with

emulation capabillities to enable better characterization Takeaway: Strength of analysis depends on approach.

Quantile regression does better at finding a linear fit

of uncertainty
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SECURE Verification and Validation

Laura Swiler

Tom Tarman
Jamie Thorpe
Bert Debusschere
Kasimir Gabert

’,@ E’ﬁ'ﬁﬁ&wv &"“-"‘vrh% Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
e e st At Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA0003525.




Verification
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Detfecting Over-subscripfion of Resources in '.u
Emulation-Based Experiments ‘,a

Scanning detection scenario case-study used for verification

Repeated studies launched using increasing number of
namespaces

A namespace is an experiment that is isolated in its own VLAN
or set of VLANSs.

o Each namespace has its own copy of each machine in the
scenario and they are networked through a unique set of VLANSs.

o We can run multiple namespaces in parallel while the experiments
remain isolated in their own namespace.

Results presented by Jerry and Trevor in November
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Alert Times - Al (.?

* Distribution of alert fimes

shift as namespaces are e Alert Times
added ) Distribution
» Quantified similarity with | ™ o
Tukey Multiple .
Comparison Test |
- Shows clear drop in . |
similarity after 10 : ——
namespaces ¢ . ..|||||||...__ _

 Large p-value indicates | . . |!_1.0|I||||||!j|1|... e oy

Th O -I- 1- h e n U | | h y p O -I- h eSiS Tukey Multiple Comparison p-values .
. ﬂﬂﬂﬂﬂﬂﬂls

can't be rejected ‘K

H . — <l 09 09 0.34 0001 0001 0.
R - ﬂﬂﬂ EMMM05
- Larger p-value -> similar - -

results Tukey Multiple RW--M o
Comparison :mm I

Nmep
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Scanning/Detection vs Command & Confrol (.!I

« Hypothesis: Verification Process from Scanning/Detection is Generalizable

« Command & Control Results are inconclusive: we don't see data we
should reject as we push the experiment to more namespaces. Why?

Scanning/Detection, All Replicates Command & Control, All Replicates
20
. o 2 1
- o 1.1 I 1. ;
; I 20
qzoo g£10 I
. | §O_II| 10n _ ..
g 200 g‘_ 20
E ° £
S o 5 o, ®EH EH Illl_
£ o LI 5 20
g 100 %2
0 _II Inn.._ = 810

0 -IIIIII----

IIIIIl
2 4 6

Time of First Alert Received Alerts Received by Time t=10s

N ol ‘Illl....._ ;

8
0 "= = IIII ‘llllllllll-ll-lll-ll-l_ ________ 0
511 512

5.09 510 513 514

°m

10 12
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Command & Confrol Results: Host 1T vs Hosf 2( !I

« Baseline: 1 Namespace

Host 1 Host 2
« Tukey Analysis - Compare
Quantity of Interest ~ ~
Distribution for Increasing
Parallel Namespaces

o All Replicates Included

2
2

Namespaces
5

« Two Different Physical Hosts,
Supposedly Identical

Namespaces
5

Configuration
. . 0.39 0.57
- Difference in Tukey for = 2
Different Hosts, even with 0.2
Apparently Identical n “ n 039
Resources -
1 1 ‘

The statistical results indicate we would not reject any of these runs.
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Command & Control Results: I.

Use of Telemetry 1o Filter Unreliable Replicates W

All All All Context
Replicates Load<é4% | [Replicates Load<32% | | rReplicates Switch<78/s

1.0

— — —
0.8
N . -
g 3 g 06
18] o o
o o o
n n v 1N
w o w
- £ £ - “
(v (v} O 04
= = =
o 057 0.57 o 0.57 0.59 o 057 0.64
— — —
0.2
n 0.39 0.39 n 0.39 w039 0.56
™~ o™ ™~
1 1 1 1 1 0.0
Replicates Remaining: Replicates Remaining: Replicates Remaining:
250/250 211/250 179/250

Bottom Line: Balance Desired Similarity to Baseline with Number of Replicates being Removed
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" Canwe use Telemetry fo [dentify Unrelioble  agga®

an we use Telemetry 1o Idenftify Unreliable .
Experiment Results?2 o

* Repeated the Approach from Scanning/Detection Scenario

(@]

(@]

Telemetry: Stolen Cycles, Load, Throughput, Context Switches, User Time
|dentify Threshold for Telemetry that Experiments Should Not Cross

« Command & Control Data Challenges

(@]

o

(@]

Addressing Experimentation Bugs

Collecting, Processing, and Storing Large Volumes of Data
17 Mb PCAP file -> 359 Mb JSON -> 320,000 entries -> several hours to store per replicate
Solution reduces to 1 stored entry per replicate, taking ~1 hour to process in total

Adapting Analysis fo New Quantities of Interest, new Thresholds

* Differences in the two experiments

o

The Command & Control scenario seemed more complex, yet resources were not
pushed to oversubscription

Scanning/Detection scenario involved 27 VMs, the C2 scenario involves 4.

Hard to tease out what is the critical factor: the number of VMs vs. packets/sec vs.
overall traffic

Scanning/Detection had 27VMs x 25 namespaces = 675 TCP handshakes tracked
through one host kernel; vs. C2 had 4VMs x 25 namespaces =100 TCP handshakes.

Additionally, Scanning/Detection used tc (traffic control) to implement packet

drops; this is high overhead and a stateful process.
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Summary and Takeaways (.!I

1.  We were interested in repeatability of our experiments under different
platform configurations

2. We instrumented the platform to collect telemetry from the VMs in the
experiments and from the physical host running the experiments. This
telemetry can be used to develop metrics (or indicators).

3. We tested the efficacy of the telemetry metrics by removing replicates that
violated the thresholds and testing whether different numbers of
namespaces gave statistically different results

- Takeaways:

o Both the system load and throughput help filter out replicates that generate
statistically different results for scanning/detection

o These same metrics do not indicate a problem for the C2 scenario. We
currently think that we are not stressing the C2 scenario as much.

o Currently we are investigating how we can push the C2 scenario further:
- More namespaces: issues with Python threading in SCORCH
- More traffic: PCAP size involves significant postprocessing times (hours to days)

o The insfrumentation of these verification experiments and
statistical analysis of the telemetry metrics to find clear indicators
of anomalies has been challenging.

47
L A AEEEEEE————————



Validation
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Validation (.!I

 Validation Metrics

- Ultimate goal is to compare physical testbeds with emulation

- Reproducibility Study: SNL minimega vs. TAMU CORE testbed (Tom'’s talk
at CSET)

- Latest study: SNL minimega vs. TAMU physical testbed.

- This is what | am presenting today. Note the TAMU “physical” testbed is only
partly physical: has real RTUs for the open ports, but the closed ports are
emulated and the filtered ports are handled by the switch.

- Scaling

- How much validation at small scale can we use to build up a validation
case at large scale?

o Kasimir Gabert’s Ph.D. work at Georgia Tech.

. Gropr? analysis approach: instead of fopology graph, create communications
graphs
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Validation with physical test data (.!I

* This is closer to a true validation

 The TAMU testbed is still a mix of emulated/virtualized components
and actual physical components

« For the network scanning/detection, the four Remote Terminal
Units that have the Yopen’ ports are physical unifs.

« We used the same experimental orchestration

* 1000 minimega runs and 823 TAMU physical results
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runs vs. 823 Physical tests at TAMU

Validation test comparison: 1000 SNL minimega '.’z
ﬁ‘

« We don’t see monotonic improvement in K-S test staftistics

OPEN PORT COMPARISON: VARYING AMOUNTS OF TAMU DATA vs. 1000 SNL Minimega Runs
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Take random subsets of 500 samples each from '.’6
SNL and TAMU “t

* LARGE VARIABILITY

p-value from K-S test, Open ports
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Statistics on the p-values (.!I

« Mean and median indicate good agreement. The low values of
the 5" percentile between 100-120 seconds help identify fimes
which have some realizations with less agreement.

Summary statistics of repeated subsets of sample size 500 from TAMU and SNL

! L L T 1 r [
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p-value of K-S statistic, open ports
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Time step
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Lessons learned: Validation (.!|

 Need consensus in artifacts and how testbed technologies use

them
Understand differences between common cyber experimentation platforms
Virtualization technologies (CPUs, network interfaces, switching, etc.)
Public repositories for experimental artifacts

« It can be challenging to determine if small differences are due to
differences in the hardware/emulation platform OR due to an
Implementation detail that is not correctly reproduced.

Subject matter expertise is critical

« Stafistical tests and ensembles of replicate results can help in this
comparison as they provide some estimate of the uncertainty
iInherent in the results on one platform.

Appropriate metrics, depending on experiment question/objective

« Repeatability + Reproducibility can strengthen Validity

o Aresult that holds under repetition and various modeling environments is
more likely to be true on the real system

o Key to bringing rigor to cybersecurity modeling
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Prioritizing Components to Validate (.!I
« Hierarchical validation: validate components, sets of components

« How to prioritize components given a finite validation budgete
o Previously, only SME guidance is available

« High-level idea: monitor all communication within the model, find
what is important to the model output programmatically

« Critical assumptions: (1) components are low-latency (2) key model
output events occur due to network traffic

Approach Gl
1. Run the model i I .
2. Build communication graph @ —> "O;’ —> ’@
3. Build co-occurrence X 111007
hypergraph around outputs ]« """ \ '\ T
4. Track cores/nuclei, return L .
. hat Model Communication Co-occurrence  Nuclei
dense regions that occur Graph Hypergraph

with outputs

96




CrashOverride Experiment Results

Communication graph Window Size (A) Effect

\\2‘ Engr. Workstation

Lateral RTU Target RTU Target EISJ)
S 3
Routers g / 8
TN £
v< =
-
Z
Missing Router R > ’ ’ ’
Ve p Window Size (sec)
e, Resulting Ordered Components
Engr. Workstation 10.53.0.18
RTU Target 10.52.2.3

Lateral RTU Target 10.52.11.2

Impacted Routers 10.53.0.17
10.54.0.17
Missing Router 172.30.0.18

Hypergraph cores
with A = 0.01
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Tracking Dense Regions of Changing Graphs (.!I

« A Unitying Framework to Identify Dense Subgraphs on Streams:
Graph Nuclei to Hypergraph Cores, WSDM (18.6% acceptance)
o Problem: nuclei are expensive, cannot recompute when graph changes
o Approach: convert to a hypergraph and maintain cores instead

 Shared-Memory Scalable k-Core Maintenance on Dynamic
Graphs and Hypergraphs, IPDPSW ParSocial

o Problem: prior approaches do not use multiple processors effectively
o Approach: use the connection between h-indices and k-cores

« EIGA: Elastic and Scalable Dynamic Graph Analysis, SC (26.8%)

o Problem: large, changing graphs become too big to fit in memory
o Approach: use consistent hashing to load balance, sketches for state

« Coreness to Cores: Batch Dynamic Algorithm to Efficiently Find k-
Cores, prepared
o Problem: prior work performs decompositions but not core hierarchies
o Approach: use a query-efficient index to maintain full hierarchies
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Closing thoughts
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Summary (.!I

« Verification
o Focus on oversubscription of resources

o Ins’rr?men’red minimega, results sent back to ElasticSearch for postprocessing
analysis

o Scanning/detection showed more variance in runs that were spread over
many namespaces, use of felemetry metrics such as system load, stolen
cycles, and throughput

o C2results inconclusive

« Validation
o Validation metrics: use of K-S test, area metric, comparison of means
o Scaling: Physical experiments at TAMU, Kasimir's research
o Statistical distribution tests showed more variability than expected
o Slow convergence of distribution test statistics

« Uncertainty quantification
o Efficient UQ methods exist (structured designs, multifidelity UQ, PCE)

o In some cases, we may be able to run enough emulations to formalized @
tail probability relationship (e.g. quantile regression)

o CHALLENGE: |dentify effects of stochasticity AND parameter uncertainty,
use of both information in tail probability estimation with MF methods
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Backup
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Alert Times — System Load Cutoftf

Filfered

All Replicates Replicates
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with System |
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How well was the experiment reproduced? (.!I

« We may care about the differences in magnitude and not care about distributional
differences.

Detection Times KDE

Detection Times Density Histogram KS-Test - 0.000
Alert detection times i <
§ g
Fast — No Drop - Fixed E o
Nmap order o o
=  KS-test: 0.000 o = T The validation metrics
- LeOST .\/Oricble u 15.02 15.04 15.06 15.08 ’ 15.02 15.04 15.06 15.08 15.10 15.12 depend on the queSiion
experiment <+ being asked: Are these
N differences significant due
Detection Times Density Histugra:m KS-Test - 0.155 -I-o dlfferlng hypel’ViSOI’S, -I-Ime
Slow — Drop — Random o N L synchronization, and
Nmap order experiment orchestration?
. KS-test 0.155 e Are they acceptable to be
oSt used in alarger attack
= Most variable goo model2
experiment
i l i |

20 40 a0 B0 100 120 =50 1] 50 100 150 200
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Metrics Used in this Study (.!I

. : * Relative Hausdorff
« KS-Test Area Metric Distance
o Maximum value of o Sum of the . Developed as a metric to
the distance in the differences in area quantify graph similarity
CDFs of two samples between the CDFs o tFr?r every pojnI (F)’On CDF,
o P-value for this of two samples [1] CDelgzesltnghpT%QT: p')on
staftistic is used o This is not a p-value, - lp=pl<ep
- H,: CDF; = CDF, small values imply © |CDF(p) = CDF,(p")| < €CDFy(p)
- Large values imply similarity R g laghiatisfies this
similarity o Allows for “play” in vertical
and horizontal direction
. o T e R A

Statistic

=3
=
=3
=2}

-
o

<3
~
I
~

=]
@

Cumulative Probability
Cumulative Probability

02 92 \ g 0.6
L —__I T a
00 — T 00 — T 2 \
0 2 4 6 8 0 2 4 6 8 204 VV\
Ports Ports 3 R
[1] K.A. Maupin, L.P. Swiler, N.W. Porter, “Validation Metrics for Deterministic and Probabilistic 02
Data,” Journal of Verification, Validation and Uncertainty Quantification, Vol. 3, September 2018. l_" € for this
0o point
[2] O. Simpson, C. Seshadhri, and A. McGregor, Catching the head, tail, and everything in 0 2 4 6 8

between: A streaming algorithm for the degree distribution, in 2015 IEEE International Conference rore

on Data Mining, IEEE, nov 2015.
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Metrics (.!I

- Kolmogorov-Smirnov Test Statistic
o Well known non-parametric statistical test for equality of distributions

D, =sup|F,(x)=F,, ()]

X

o Test statistic converges to Kolmogorov distribution: there are formulas for
rejection of the null hypothesis CDF,=CDF, at various confidence levels.

« Area metftric

o Does not just depend on the largest discrepancy between CDFs:
accounts for the entire difference

o No formal acceptance metric or statistical test
A, =D |F,(0)-F,()

o Units are in same units as the measurement:. Ferson et al. argue it is best
not to normalize but use some judgement about acceptable tolerances

Scott Ferson, William L. Oberkampf, Lev Ginzburg. “Model validation and predictive capability for the thermal
challenge problem,” Computer Methods in Applied Mechanics and Engineering, Volume 197, Issues 29-32, 2008
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Metrics (.!I

* Relative Hausdorff

o Originally developed for graph analysis, for quantities like the
complementary cumulative degree distribution of large graphs

o The distributions F; and F, are (g, 8) close by the Relative Hausdorff
distance if
Vx,Ix'e[(l1-¢)x,(A+&)x"] suchthat|F,(x)—F,(x")|< 0F(x)

o Note that although the degree distributions involve discrete variables,
the examples used have a much larger support and are smoother than
our empirical distribution functions for port counts, for example

- Other ideas: perform data alignment before applying metrics

o Edit distance: if we know the timing is different for some fundamental
reason (e.g., a 2 second offset), can we shift the times of the second
CDF and use the above metrics

o There are also functional analysis tools which attempt to overlay signals
in x- and y- coordinates (e.qg. align peaks of signals as well as phase).

J. Derek Tucker, Wei Wu, Anuj Srivastava, “Generative models for functional data using phase and amplitude
separation” Computational Statistics & Data Analysis, Volume 61, 2013, Pages 50-66.
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Backup: Experimental Setup (.i

Analysis ID 1 2 3 4 5
# Parallel | 2 5 10 25
Namespaces

# Replicates per 50 25 10 5 2
Namespace

« Analyses run in succession on single Carnac nodes with NUMA
nodes 2 and 3 disabled in order to limit scheduling capability

« ScOrch tool used for experiment orchestration

# CPUson IDS VM ]

Benign Traffic Rate/s 1000
Benign Probability of Emotet Signature 0.001
Malicious Traffic Rate/s 20

Malicious Probability of Emotet Signature | 0.125
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LDRD

Laboratory Directed Research and Development

"Life After LDRD"

Derek Hart, PM
25 August 2021

E’ﬁ'ﬁﬁ&wv &"“-"‘vrh% Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
e e st At Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.




Goals (.!I

 Create a sustained internal team
o Members of the current GC and others around the lab

« Ensure sufficient follow-on funding to keep momentum moving

 Build on EAB and other external interactions to build a
collaborative community

* Motivate intfernal community to accept a more scientific
approach to cybersecurity



Opportunities (.!I

« Good news:. Government is waking up to the seriousness of cyber,
especially when it comes to defending critical infrastructure

« Bad news: Much of the discussion is around hygiene and doing the
basics. Less focused on how to measure the degree of
cybersecurity of a system

* NNSA is launching a cyber survey of the nuclear deterrent
enterprise

 DHS CISA and DOE are in line to receive large increases in fund to
confront cyber issues



Challenges (.!I

« Slow recognition of cyber as a science within the government
o Engineering enterprise vs. a scientifically-informed enterprise

« Changing hearts and minds is tfaking time

« Funding for lower TRL, strategic cyber work is difficult fo secure
when the current problems are legion

« Classic research vs. tools/capabilities

« Team lost a litfle momentum mid-year when 3 staff members left
the project (one was a key conftributor).



Concrete Funding (.!i

- COvibill

« Submitted 3 SECURE-aligned follow-on LDRDs

o Only 1 was funded
o Call came at inopportune time where we lost 3 team members in short order
o A continuing LDRD is developing SECURE tools o make them more usable

« Re-aligned a currently funded DoD effort to apply SECURE-like
approaches to a network of interest to the sponsor
o Slightly limited funding and sponsor’s interest in a short term win vs long-term
capability

 New DoD work focused on creating high fidelity networks and results
o Small inifial funding and advocate for the work retired

. DHSkfunded effort out of S&T for NRMC to continue pursuing SECURE
wor

o Smaller funding than anticipated with reduced scope



Legacy - Internal (.!I

« Re-directed internal “Emulytics Community” toward the broader
“Cyber Experimentation” field, which is a huge win for SECURE

o Ensures internal funds to support planning, roadmapping, and program
development efforts

o Broadens engagement beyond the typical emulation/simulation staff to
other disciplines around the lab

* Inspired research thrusts in corporate computing and cyber-
physical mission areas

« Reframed how we talk about cybersecurity within the Lab



Legacy - External (.!I

« Workshop

o Hosted in partnership with UC-Davis
o Scheduled for November 2021

- Sandia Cybersecurity Institute on Rigorous Experimentation (SCIRE)

o External-facing Website
- communicate key work performed on SECURE
- Acknowledge partners

- Share links to current research being published by key partners in academia
and national lab

- Host externally viable versions of the Handbook

« Under Emulytics Community, continue hosting collaborative
discussions with academic partners: USC-ISI, Purdue CERIAS, UIUC



