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» | Motivation

“*Photovoltaic systems are one of the fastest growing renewable energy sectors

“»*Similar to other energy systems, PVs are subject to failure with diverse causal
mechanisms

*Numerous components and connections result in multiple locations for potential failures
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3 1 Current Approaches for Characterizing Failure Patterns
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Leverage machine learning to identify
common failure modes and patterns
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Source: Gunda and Homan, 2020 and Gunda et al 2020

Curve fitting for parametric (Weibull) and non-

parametric (Kaplan-Meier estimator)

Understand seasonal temporal patterns in failure
frequency
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4 ‘ Current Approaches for Characterizing Failure Patterns

Fuses O&M tickets with timeseries of

Statistical methods for degradation _
production data

estimation and anomaly detection
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Conduct anomaly detection through cluster analysis O&M tickets do not consistently capture all
and change point detection methods to determine performance deviations

degradations




Study Objectives

“*Unsupervised method is required due to constraints with labels (O&M tickets)

“»Build probabilistic framework to characterize PV failures, with some quantification of failure
states

“*These new fault diagnostic methods...
“*can be leveraged for developing predictive capabilities for failures within PV
“*can be expanded to other (renewable) energy sectors.

O&M overlapping tickets
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6 ‘ Unsupervised Statistical Approach

/® Our Strategy:

1. Estimate the underlying state at each time

/@ //@K using a Gaussian emission density

As A h@ A 2. Utilize a discrete time Gaussian Hidden
n—B) Markov Model (GHMM) which moves
between 2 states that is observed via

gaussian emission density (assumed: failed
and not failed)

Benefits:

Source: Cristaldi et al, 2015 1. Don'’t require predefined thresholds to
determine what resembles a failure

2. Don’t require pre-labeled entries (e.g. O&M
tickets)



| Methodology

. Calculate a performance index by finding the ratio of the measured energy E' and the expected energy,
E
E
Pl = 7 where E = f(Irradiance, System Capacity)

2. Use a Gaussian emission density to conduct univariate clustering on the PI signal

Pl € RN =PI, € [0,1]

» We assume that these signals designate Faulted (Pl 4+ = 1) and Normal (Pl.4; = 0) conditions

»Use a Hidden Markov Model (HMM) to learn state transitions in Pl 4+ depending on trends in PI
P(PI.4 € [0,1]] PI = x)

t=1

P(N|N) Normal (N) P(F|F)

3. Conduct qualitative assessment of estimates using overlapping O&M tickets



s I Sandia’s PV Reliability, Operations, & Maintenance

Database
Temporal sensors 350 thousand hours Discrete (hourly) data
(i.e. energy, across 100 sites
meteorological,
etc.)
Operations & Provides labels for Not comprehensive
Maintenance operations on systems
tickets

» Site level evaluations of performance were done to assess the
capabilities of proposed methods

» The resulting state transition probabilities is summarized for
100 sites

Geographical extent of PVROM data

DC capacity (GW)
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Failure notated in O&M
ticket was captured by
o GHMM

9 I Results:

Performance drop is not
W I UE RSl accompanied by a O&M ticket but
is captured by GHMM
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0 | Results: Site B

Performance drop is not
accompanied by a O&M ticket O&M overlapping tickets
but is captured by GHMM

Sporadic anomalies are also
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11 Results

“»Probability of current state being normal,
given prior state is also normal is 78.9% |y,
(on average)

“+21.1% probability of failure in next state
given current state is normal

P(F| F}'
[

1.0 1
“*Probability of current state being faulted, 0
given prior state is also faulted is 62.7% £ 0.8/
(on average) E e
*+37.3% probability return to normal in next g
state (i.e., mechanic fixed or self-resolved) € 0.4-
given current state is faulted =
s 0.2
|_
“»Qutlier results are found in systems where 001 ¢

the performance index (Pl) did not match PIN|[N) P(F|F) PIN|F)  P(F|N)
gaussian assumptions Transition



2 | Conclusions

*»*Transition probabilities indicate
that the system is more likely to
stay in its current state

“*Preliminary prediction results

7 i . . . 12 -
show a realistic time series profile

*»Limitation: Current validation of Lo

GHMM is limited to qualitative 0 -
assessments
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+s*Future work:
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1. Investigate a non-stationary

Markov model to capture time- 02
varying relationships in failure — Historical Data
state transitions 00 1 ~ Future Predictions
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2. Studying the transition states Hours
between specific failures (or
specific assets) to inform
continuous failure diagnostics
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