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s | Motivation

- What is the problem?

- What are the applications?
- What is the state of the art?
- Why Yb?

- Timeline and milestones?
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Problem: Low SWaP and high stability fieldable clock
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Problem: Low SWaP and high stability fieldable clock
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Motivation: state of the art

lon species comparison

lon |1y (GHz) | NLZ (He/G%) | 4 (m) | Cycling? | Vapor Pressure | Toxic |

199Hg 1/2 40 ~ 97 v 194 X No % High v Yes X
171Yb 172 13 X 311 X 369 v Yes V low X No
" Hg+(1996)|
107 - - Hg+(2008)
Yb+(1995)
Yb+(2020)
107 Cd+(2015)
o —soriA_ |
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17 I Motivation: state of the art

lon species comparison

m_ v (GHz) [ NLZ (Hz/G?) A (nm) | Cycling? Vapor Pressure I

199Hg 1/2 40 97 % | High v Yes X
171Yb 172 13 X 311 V| low X No

; - Hg;-(1996) |

107 - - - Hg+(2008)

. _ e TN Yb+(1995)

 Fieldable laser at 197 nm not (yet?) feasible. s 0 e A N1 A Cinio0r
: e e e T S

Use discharge lamp instead (very robust). LA 17 e SO e
+ High scattering rate of Yb and possibility of fieldable laser * 7|1 T
L 10-16 —T ||;;|;| TTTTTTT T TTT T T T 17T T TTTIT

At 369 nm very promising! 10° 10 CENRE 10° 10°
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i
Office of Naval Research: POP 2020-2022

Goal: Demonstrate high stability Yo+ microwave clock with new DFB laser diode

Clock Development 369 nm laser Development

Distributed feedback (DFB) single
frequency at 369.5 nm

iee ., OV —
*Long term stability: — < 5x107*° . Continuous wave operation
(10° < 7 < 109

 Short term stability: i—v < 5x10713¢71/2

«  Output power > 100 uW

+ Sufficient stability to demonstrate ion
clock interrogation over >100 hr.
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Office of Naval Research: POP 2020-2022

Goal: Demonstrate high stability Yo+ microwave clock with new DFB laser diode

Clock Development 369 nm laser Development

- Short term stability: O - £ 10-137-1/2 - Distributed feedback (DFB) single
v frequency at 369.5 nm

1ie. . OV -15 . .
« Long term stability: — < 5x1071 - Continuous wave operation

(10° < 7 < 109)

«  Output power > 100 uW

+ Sufficient stability to demonstrate ion
clock interrogation over >100 hr.




12 | Physics

- How does the clock operate?
- What determines the clock’s performance?



Physics: operation

171yb + Energy level diagram
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16 | Physics: operation
Clock Operation
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Clock Timing Diagram P1/z F=1
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Clock Operation
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Clock Operation
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Clock Operation
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Clock Operation
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1 | Physics: performance
Short term stability

1/2
Tr= microwave interrogation time _ 1 P
vy = Ground state hyperfine splitting (12.6 GHz) 7= 2 Tpvo \ T
T. = Cycle time (T, + laser interrogation time)
T = integration time o 1N T A T
SNR = Signal-to-noise ratio . NS
- 107 N
Long term stability o N
10‘ _ _______________ \ __________________________________________________________________________
 Tstorder doppler: none (ion cloud small compared to v,) T 3 3 E ; ; E 3
00 1 N~ T
« 27 order doppler: % = — jf; (~N due to space charge 3 » % 1 ; ‘ : e s
effect 1070 [Yor (SNR=100
« First order Zeeman: none 107° | — Ti=10's
. — Ti=1
« Non-linear Zeeman Effect: Av = 311 ?f By 107 5 —
« Buffer gas pressure: empirical More micromotion | | | |
l \‘ 10% 10" 10" 10
\

Psuedopotential



2 | Setup

- What measurements are made and how?

- What does the apparatus look like?



| Setup: single clock
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4 | Setup: dual clock
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26 | Setup

2 2
74
Magnetic-field
shielded
E E E g ) chamber with
23 - Q 3 8 an ion-trap
o =) o ™~ assembly and a
* * + * gas getter

Computer control
system

Microwave
synthesizer + Cs
beam reference

Microwave horn
or coupled to the
trap rods directly
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lan dansity (m 3)

ACES-AMIC trap assembly 0 10t
Rod spacing = 6.2 mm
End-cap spacing = 48 mm
Trap capacity: 10— 107 ions o5
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28 | Setup: Vacuum system

Residual Gas Analyzer

Valve3

Vacuum gage

Roughing
pump

Valvel Valve 2 Wy eross Valve5

Kimball Physics

UHV miniature vacuum chamber
SphCube-C6-A
Six 2’ view ports

Turbo 1 Turbo 2

Valyedt Remaining ports are

closed via standard
conflat flange blanks
or sapphire windows

He source
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ACES-AMIC trap
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Toptica laser system for 369 nm,
399 nm, 760 nm, & 935 nm

Optical table with two Yb* ion
trapping setups as two
independent ion clocks







31 | Results

- What is the short term performance of each clock?
- What limits short term performance?
- How do the clocks perform relative to one another?

- How does each clock depend on experimental parameters?
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PMT (k-cnts)

> 1 Results: ACES trap

Apr09-1643

60 —
40 —

20 —

-20 —

40 —

Tr= microwave interrogation time = 600 ms
Vo = Ground state hyperfine splitting = 12.6 GHz

Signal = 45 k-cnts

Background = 25 k-cnts

Other settings
Background pressure: 300 pTorr

He buffer gas: 3.6 uTorr (ion gauge)
P369: 1.6 mW (not optimized)
P935: 3.4 mW (not optimized)
P760: 0 mW (blocked)

Laser beam waists: ~ 1 mm (estimate)
Gate time: 25 ms

Field Strength: ~400 mG

RF drive voltage: 950 Vpp

End-cap voltage: +11V

lon lifetime: > 1 week

Voltage divider: 102

Agilent freq: 12.642812743 GHz
Agilent power: -38 dBm

Assuming shot noise (photon counting
statistics) limited then...

S
SNR = = =

N (S+ B)1/?

T, = Cycle time (T + laser interrogationtime) = 700 ms

T = integrationtime
SNR = Signal-to-noise ratio

o=

1 (TE)UZ 1
 2TgrVvo \ T SNR

=170

o

— =3.3x1013 ¢ 1/2



s | Results:Influence of Magnetic Shield (ACES)

Peopleinthelab  without Shield With Shield
200 —
200 —
100 — 100 -

s o- g o —W

T T

\:/ 3

= 100 - g 100
Lt (T
o0 -200 —
300 Apr06—1 634 -300 7 Apr08-1410
| | | | | | | I I I I I I I
0 10 20 30 40 50 60
Time (ks) 0.439 -
0.3628 —
0.438 —
0.3626 —
0.437 —
0.3624 — 5
O 03622 5 4
(0]

E 0.3620 — = 04 |
0.3618 04347 I
0.3616 04337
0.3614 Ud9e = | I I I I I |

I I I I I I I
0 10 20 30 40 50 60 70x10°
0 10 20 30 40 50 60 ,
.
Time (ks) me ) I

The magnetic shield allows me to take “good” data while people are working in the lab I
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Freq (uHz)

150 —

100—‘

I Results: ACES

Sigma

4-7} ffffff tstart,tend (ks)
1 + 0,250

= | — Rakon vs Rakon (4/2021)|
o] |---261(4)e-13"taur-1/2) |

4+ 193,203

T
10° 10 10° 10° 10" 10°
tau (s)

-Long term stability limited by reference oscillator
-t=1/2 trend similar to SNR-limited calculation

50 —
0 —
50 —
-100 —
I I I
0 50 100 150

Time-0 (ks)

200 I



35 ‘ Results: short term performance (IMPACT)

PMT (kcnts)

-20

40 —

60 —

40 —

20 —

| | | |
-4 2 0 2 4
Det (Hz)

-Long term stability limited by
reference oscillator
-t~1/2 trend similar to SNR-limited
calculation
-similar SNR despite much smaller
trap volume (unable to collect
photons with high SNR from
periphery of ACES trap)

Sigma

10

-14

t start,t end (ks)
+ 05,1
+ 84,119

+(D*sqrt(x))*2+(E*x)"2)
A =0%0
B =2.9688e-13 + 9.01e-14
C  =6.0408e-14 + 2.64e-14
D  =3.1011e-15 + 2.05e-15
E

f(x) = Sqrt((A/X)"2+(B/sqrt(x)) 2+(C)"2

=4.8518e-16 £ 1.03e-16

IMPACT (WindFreak)
uwave:600 ms, OP: 100 ms

Gate: 25 ms, P369: 28 uW




s | Results: long term performance (ACES vs IMPACT)

Freq (Hz)

10 x10°

-10

Clock frequency difference (red)

and its average (black)

Sigma

20

30
Time-0 (s)

40

50 x10°

7777 tstart,tend
4+ 0,55
””” 4+ 10,20
— 5e-13*tau™-1/2
1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 I 11
10 100 1000
tau (s)



37 ‘ Results: long term performance

Freq (uHz)

Run A [—feqA smin| |- 0.3860
— Vrf1_smth
20 | Long08252021 — 0.3862
— 0.3864
|
L | %J N L 0.3866
I
¥ N “ — 0.3868
0 | J ol ‘
ny r"llﬂ&w | I—O.3870
10 - ' o - 0.3872
I I | T I
0 10 20 30 40 50
Time (ks)
15
RUNB [ s | o
10 —— fit_Bfield_smth
1- ‘“ — 0.2994
5 N
“ PTW“J 1 L0.2996
0 \ [ IHH |
I HiL A i Wu-w — 0.2998
gl
| | | ' L 0.3000

20

I I
40 60
Time (ks)

80

1984 LA LDV

(9) pleug

Run C

deltaf/f (x107-12)

——deltaf/f
—— sum
Long08232021

I I
0 50 100
Time (ks)

150

200

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84

wns | DYdIAI pezijewlou

&
\
|

Parameters that have appeared correlated with frequency

drift:

- V_RF[run A]

- Ambient B-field [run B]

- lonsignal (“sum”) [run C]



38 ‘ Results: long term performance

26207 |08242021varystuff|
< -2640 —
I
2 -2o00- These dependencies are more than and
g 2680 — order of magnitude greater than those in
E 2700 - —— J17(1) uHz/uTorr the literature.
5 ® ACES
o -2720 — +1.9(1) uHz/uTorr
-2740 —
, | | , , , Possible explanation: High order B-field
4 6 e . 1)0 12 14 gradients. End cap voltage and He pressure
e (ulorr . o .
- change the ion cloud position.
— ® IMPACT (15 kent
=08 —— -30.2(9) LEHZ/\;: i
g ] A1C1E58( SUE =/\?8 kents)
S -2580 — m——— L
e Plan to repeat these measurements at
§  -2600 — various bias field values. I
€
Q
9 -2620 — I
-2640 —
| T I | I
8 9 10 11 12
End Cap (V) I
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Future

- Reduce long term drift
Jse ions to stabilize bias field

Reduce magnetic gradients (no stainless steel!)

- Run clock with developed DFB 369 nm laser

- Zero dead time clock



40 | Future: zero dead time

We can in principle use two ion traps to achieve complementary clock interrogations to
cover the deadtime due to the signal detections.

Vacuum chamber

Optical shutter with miniature ion

A H traps
Laser sources L 1E-8 ——— —8— TCXO performance
‘ Optical shutter ) E Simulated LO data
H Microwave ] Zero dead time servo with SNR = 200
W 1E-9 Servo with T_=T__and SNR =200
1E-10 =
Microwave 3
synthesize |« ]
> L
b 1E-11 =
Computer or 1E-12
Control electronics ]
1 “«\
Using Ramsey spectroscopy for probing clock resonances from two ion clouds Ea ] =
Cetachion & 0.1 1 10 100 1000 10000
lon cloud 1 ITI 2 preparation ﬁl ‘ .
T(S)  Ssimulation by Y. Jau
I_I Detection & Detection &
lon cloud 2 2 |__preparation h_—‘ 2 preparation

Pulses are microwave /2 pulses.

Replace UXO with TCXO and second ion trap == |lower power, smaller size, same long term stability



41 | Conclusion

60 —
40 —
fg 20 -
=3
S 0+
o
-20_
-40 —
T T T T T
4 2 0 2 4
Det (Hz)
|
} Principal investigators:
o
. 10‘13SE
£ 6
ke 1 ; : i
@ 4: tstart,tend I
+ 0,55
211 + 10,20
i — 5e-13*tau”-1/2
10 = R ——
Ili
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