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RESEARCH OBJECTIVES — A PHYSICS-CONSTRAINED DIGITAL TWIN

MODEL

Main objective is to develop a physics-
constrained digital twin of the system of
interest that is a hybrid data-driven, physics-
based reduced-order model.

Desired properties of the digital twin:

e Data-driven: no need to specify model - Py
parameters or model structure. i : o
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I P-value: Se-T

Model update ®.
based on domairl. .
shift

* Physics-constrained: network architecture
and data flow follows a physics-based
structure provided by Hamiltonian
mechanics.
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Updated response prediction State change localization

e Self-aware: trained model is able to
recognize domain shifts in new inputs
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PHYSICS-CONSTRAINED ML FRAMEWORK

Why ML? Speed, Differentiability, Learn
Unknown Physics, Distill Reusable Modules

The physical constraints chosen are based on
Hamiltonian mechanics. This framework was
chosen to allow flexibility in the model so that
it can handle nonlinearities, and Rayleigh
dissipation models (i.e., proportional to
velocity).

Because the Euler-Lagrange equations of
motion are based on the energy of the
system, which are scalar fields, this approach
is more computationally efficient than having
to construct full state matrices.

A consequence of choosing Hamiltonian
mechanics is that the system has to be solved
in generalized coordinates. In general, order
reduction methods do not resultin a
generalized coordinate set, so an
autoencoder is used to perform coordinate
transformation.

Newtonian form of equations of motion

M + Cx + (K+ KnDx + fy, = fext

Equivalent

Euler-Lagrange equations of motion

d(oL\ oL oI
— . — + = Qk
dt\dqx) 0Jqx 09qx

Other physics-based pROMs can be integrated as

inductive bias kernels to the network.



NEURAL NETWORK ENSEMBLE ARCHITECTURE
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PHYSICS-CONSTRAINED ML FRAMEWORK
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EXAMPLE: 2DOF OSCILLATOR WITH CUBIC NONLINEARITY

x4 iy .

. C
7 g T(x,x) = Tyn(x, %) MLP Architecture:
N * 4 layers
7 ﬁ » 8 neurons
k K k . « Swish activation
F(® I(x,x) = Iyn(x, X) Training:
1 R ~ * Adam optimizer,
T'=-m(xi +x3) > ~5,000 epochs
1 : o\ s
I = Ec(iff' + x2) U(x,x) = Uyy(x,x) /
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RESULTS ON A SIMPLE 2DOF OSCILLATOR

Cubic Color: Analytical | Black: Neural Net
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*Trained with a single realization and tested with different initial conditions and/or loads.



RESULTS ON A SIMPLE 2DOF OSCILLATOR
Color: Analytical | Black: Neural Net
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*Trained with a single realization and tested with different initial conditions and/or loads.



WHAT IS THE NETWORK LEARNING?

A

. Free-form

S, W, X))

Time step

0 — 0 0
C. General form of the energy is prescribed +
U N N linear stiffness parameter is prescribed
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WHAT IS THE NETWORK LEARNING?

C. General form of the energy is prescribed +

Visualization of M and K rotation linear stiffness parameter is prescribed
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WHAT IF SYSTEM IS NOT IN GENERALIZED COORDINATES?

Start with Modal Coordinates, and find transformation to another set of

generalized coordinates.
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Encoded response

AUTOENCODER LEARNS MODAL TRANSFORMATION

Network is robust to different
[ forcing functions I

Color: Analytical | Black: Neural Net

Encoded external force

Ladnnt [Hepincnment
L
-
=

/\/\/\ N |

Latent Velooky

: @

Decoded response

A

Isplacemant, in

Velecity, tnis

mimTed frem decoder

' |
T




LEVERAGING THE NETWORK TO IDENTIFY SYSTEM CHANGES
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LEVERAGING THE NETWORK TO IDENTIFY SYSTEM CHANGES
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LEVERAGING THE NETWORK TO IDENTIFY SYSTEM CHANGES

Wider distribution in
Rayleigh damping
parameters shift.
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ADDING EXPLICIT PARAMETRIC DEPENDENCE TO THE NETWORKS

Color: Analytical | Black: Neural Net
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Perturbations of k

DO THE NETWORKS PROPAGATE PARAMETRIC UNCERTAINTY?
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CONCLUSION AND FUTURE WORK

A framework for data-driven, physics- o
constrained, numerics-informed neural
networks was established based on

Hamiltonian mechanics.
The framework combines physical and

mathematical structure to regularize the AT afa
network and provide a physically meaningful
parameterization.

This work demonstrates that the framework can
be used to recover the general system state . _ _
dynamics from data and feasibjlity of using ML

model weight shifting for domain shift detéction |

Pote: !
Kinetic energy weights shift
Rayleigh damping welghts shift

10.0

This research represents the first step towards - n

a predictive ML digital twin model that can be = i
incorporated in a general structural health -
monitoring system. I T I . E
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