
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Integrated System and
Application Continuous
Performance Monitoring and
Analysis Capability

Final L2 Mi lestone Review
 08 / 2 4 / 2 0 2 1

SAND2021-10918PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Multi-Center, Multi-Department, and Multi-Lab Effort with
24 Participants

• Omar Aaziz

• Ben Allan

• Jim Brandt

• Jeanine Cook

• Karen Devine

• James Elliott

• Ann Gentile

• Si Hammond

 Brian Kelley

 Lena Lopatina (LANL)

 Stan Moore

 Stephen Olivier

 Kevin Pedretti

 David Poliakoff

 Roger Pawlowski

 Phil Regier

 Mark Schmitz

 Ben Schwaller

 Vanessa Surjadidjaja

 Scot Swan

 Nick Tucker (OGC)

 Tom Tucker (OGC)

 Courtenay Vaughan

 Sara Walton

Outline

 L2 Text and Completion Criteria

 Overview: Motivation and Architecture

 Detail
◦ Architecture
◦ Deployment
◦ Application and System Metrics
◦ Analysis and Visualization

 Feedback & Future Work

 Completion Criteria Checklist

 Acknowledgements

3

L2 Overview & Completion Criteria

4

ASC FY21 IP Text

 Description: This L2 milestone will demonstrate the use of SNL data collection, analysis, and
visualization framework/tools, deployed on a Sandia production SRN platform, to provide both
system and application relevant run-time and post-run information for a rolling 2-week interval.
We will demonstrate a capability for continuous collection of system data, an application progress
metric(s), and an application throughput metric for an ASC-relevant code. We will provide a
capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run.

 We are targeting LDMS for the transport and aggregation of Trilinos-enabled application progress
data and of system data. We are targeting the ATDM Application EMPIRE for deployment and its
Proxy, MiniEM, for capability development. CSSE’s Application Performance Team will be
supporting development and testing.

 Completion Criteria:
◦ Successful deployment of infrastructure on CTS-1 system.
◦ Demonstration of capability on target application run(s) on CTS-1 system.
◦ Lessons learned and feedback from stakeholders for future capability augmentation priorities will be

documented.

5

L2 Milestone Overview

 Milestone Description
◦ Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both

system and application relevant run-time and post-run information for a rolling two-week interval
◦ Note: This does not imply a 2-week continuous application run

◦ Deploy on a Sandia production SRN CTS-1 platform
◦ Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an

application throughput metric for an ASC-relevant code
◦ Provide a capability to store this data and a visualization interface that will enable a user to look at

application progress in conjunction with system conditions, both at run time and post-run

6

Completion Criteria Checklist

1. Successful deployment of infrastructure on CTS-1 system
2. Demonstration of capability for continuous collection and storage of system data over a 2-week

rolling window
3. Identification of an application performance metric(s) for an ASC-relevant code
4. Identification of an application throughput metric for an ASC-relevant code
5. Demonstration of capability on target application run(s) on CTS-1 system
6. Demonstrate a visualization interface that will enable a user to look at post-run application progress

in conjunction with system conditions
7. Demonstrate a visualization interface that will enable a user to look at run time application progress

in conjunction with system conditions
8. Document feedback and future work

Completion Criteria Scope Information
 Scope Definition

◦ In scope
◦ Developing and deploying an integrated architecture for application and system information
◦ Collecting application and system state metrics from a CTS-1 system at runtime
◦ Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics
◦ Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks
◦ Providing information on instrumentation overhead and application performance impact

◦ Not in scope (future capability augmentation)
◦ Tuning system parameters to avoid application performance variation
◦ Deriving causality of application performance variation
◦ Correlating system state with application performance
◦ Determining best system or application data to collect
◦ Production-hardened deployment of collection infrastructure / analysis

8

Overview: Motivation &
Architecture

Motivation for this Work

 Urgent problem: Critical science results are being delayed due to inability to diagnose critical
issues

◦ Currently, large-scale application runs (SNL production, Trinity) can have high performance variability or
suffer failure for reasons often unknown

◦ Costly HPC resources are being wasted by applications that do not complete or exceed their estimated
runtime

 Solution provided by this milestone:
◦ Gain continuous insight into application performance in system context:

◦ During run time via several pre-defined, intuitive, and user customizable visualizations
◦ Post-run via visualization interface and access to complete application and system data storage

◦ Does not require code change or recompilation on the part of the user to collect this information

The Devil is in the Implementation Details

Tracking application progress/performance at scale is difficult at best but
impossible in most cases using existing performance/profiling tools – significant
disruption of application performance profile and/or application/tool crashes

Utilize low overhead accounting currently being performed in applications and
periodically write timestamped results to system monitoring data store using the
already installed LDMS monitoring framework for transport!

◦ Need to inject per-rank information into local LDMS daemon for scalability
◦ What information will convey performance/progress and variation?

◦ Need to collect a subset of total information to minimize application overhead
◦ Need simple well defined information format for packing on application side and

parsing on far end
◦ Need to defer parsing information to storage cluster

Kokkos Provides
Required
Instrumentation

 Developers have already
included instrumentation

 Two different types of
instrumentation are exposed:
◦ Kokkos native instrumentation

(e.g., track kernel executions and
timings)

◦ Teuchos timers

 This telemetry can already be
provided to the user in files as
periodic dumps or Post-Run

Inject data as it is produced into the already deployed LDMS
framework for continuous access by users and operations staff

 LDMS Streams is a
publish/subscribe push-based
service provided as part of LDMS
◦ Support for both “string” and

“JSON” data streams
◦ Originally developed to enable

transport of SLURM job/step
information to be bundled with
traditional LDMS metric sets

LDMS Streams Provides
Needed Transport
Capability

Coupling Kokkos Instrumentation Capabilities With LDMS
Scalable Transport and Storage

 We chose to leverage existing Kokkos instrumentation capabilities and existing scalable LDMS
publish/subscribe capability to enable:

◦ Collecting performance event stream at system scale with low overhead
◦ Performing event data collection for long runs
◦ Publishing information to a scalable database to support analytics (run time and post processing)
◦ User interface for visualizing application data in a system context over long runs

Just need to publish application data to the LDMS Streams API, add store functionality in order to
store application performance metrics to the same database as the system data, convert raw
data to a progress/performance metric, and present to users…

13

Integrated System and Application Continuous Performance
Monitoring and Analysis Capability

14

Data Flow Diagram

Analysis Cluster

NVMe-based
distributed
database

LDMS transport

KokkosKokkos

 Dashboard

HPC System

Analysis on dynamically
populated database

Applications
dynamically and
irregularly inject
data into the LDMS
transport

LDMS continuously
and regularly
collects and
transports full
system data

time

LDMS samplers

App 2App 1

StreamsStreams

Details

Logical Subgroup Descriptions

 Application-Streams Architecture
◦ Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON

format, to the LDMS Streams API
◦ Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds

minimal and acceptable overhead to the running application

16

Enabling Application Data Injection via LDMS17

 LDMS - low-overhead (<1% application) data collection,
transport, and storage capability designed for continuous
monitoring supporting run time analytics and feedback.

◦ System data collection is typically synchronous at regular (e.g.,
second or less) intervals

◦ Structured data format (i.e., metric set) designed to minimize data
movement

◦ Transport is typically pull based to minimize CPU interference
◦ Transport to multiple arbitrary consumers over both RDMA and

socket

 LDMS Streams – on demand publication of loosely formatted
information to subscribers

◦ Transport is push based and supports asynchronous event data
(e.g. scheduler and log data)

◦ Unstructured data

ldmsd L1 aggregator pulls
from memory regions
of L0 samplers

Sampler plugins

Daemon publish API called from externally or by a plugin
pushes to ldmsd which pushes to all subscribing plugins
and aggregators

ldmsd

Kokkos to LDMS publish18

Kokkos-LDMS Connector
-Publishes to LDMS Streams API

…

Kokkos::parallel_for(… ,
KOKKOS_LAMBDA(int i) {
<loop body>
});

…

…

call kokkosp_begin_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)
..

Application Code Kokkos Runtime Code

Kokkos
“Sampler”

-Keeps statistics and
timing to determine

LDMS_stream_publish

Kokkos Sampler controls the sampling rate. When
triggered, it signals for the Kokkos Connector to
publish data to LDMS.

The new sampler introduces the option to sample
data using a time-based, count-based, or
constant push.

LDMS Transport

#timestamp,job_id,rank,name,type,current_kernel_count,total_kernel_cou
nt,level,current_kernel_time,total_kernel_time
1627835612.086679,10195735,1,Kokkos::View::initialization [diagnostic:Solver
Field:B_Field:temp],0,1218,57972687,0,0.000005,182.693422
1627835613.709526,10195735,1,TimeAverage::Continuous,0,24758,57972788,
0,0.000006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count,1,3540,57972889,0,0.
000001,182.693430
1627835620.448333,10195735,1,SolverInterface::Apply Trivial
BC,0,7512,57972990,0,0.000002,182.693432

Logical Subgroup Descriptions

 Application-Streams Architecture
◦ Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON

format, to the LDMS Streams API
◦ Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds

minimal and acceptable overhead to the running application

 Deployment
◦ Continuous deployment of LDMS on Eclipse (CTS-1)
◦ Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS

aggregators, storage of system and application data, and analysis and visualization of stored data

19

LDMS Eclipse Deployment Architecture20

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS

Eclipse
Compute Nodes

Eclipse
Admin Nodes

ldmsdldmsd
ldmsdldmsd

ldmsdldmsd
EMPIRE

ldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd

EMPIRE

ldmsd

…

…

DSOS

…

Analysis Cluster

LDMS collects application and system data from Eclipse nodes and
aggregates to our analysis cluster distributed database
Kokkos / LDMS Streams message sending was tested by sending a
message every 10ms per rank across 2000 ranks without data loss

LDMS Eclipse Deployment Data

 System data collected at 1 second intervals (~5,000 metrics per node or 650 billion data points
per day)

◦ SLURM job, load average
◦ CPU & memory usage
◦ NFS & Lustre operations
◦ Ethernet & Omnipath traffic
◦ Lustre networking
◦ Motherboard temperatures & power
◦ Aggregator daemon performance
◦ Collector daemon memory use

 Kokkos event stream data from each application MPI process
◦ Sampling ~1% of kernel executions (~20 events per rank per second or ~1 billion records per day)

21

Logical Subgroup Descriptions

 Application-Streams Architecture
◦ Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON

format, to the LDMS Streams API
◦ Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds

minimal and acceptable overhead to the running application

 Deployment
◦ Continuous deployment of LDMS on Eclipse (CTS-1)
◦ Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS

aggregators, storage of system and application data, and analysis and visualization of stored data

 Application and System Metrics
◦ Determine metrics of interest for run-time and post run understanding of application progress and

performance. These metrics need to be viewable in a system monitoring data context

22

Application and System Metrics of Interest

 Progress metric: ParticleMove::Move - a kernel that represents science progress
◦ Number of kernel calls per second over a defined time window (15 sec. default)

◦ This kernel gets called approximately once per second on each rank (statistical approximation)
◦ Time spent in the kernel from sample to sample provides insight into performance variation
◦ Note that since we are sampling, the data provides statistical estimates for both of these
◦ Note that this choice of kernel metric is the users choice and is not hard coded either for Kokkos or

EMPIRE

 Throughput metric: Number of kernel executions, across all application ranks, per minute over
defined window (i.e., 60 seconds)

◦ This is approximately 5 million executions per minute for our 290 node runs

 System metric: Active Memory is used as the system metric in these visualizations
◦ Note that our visualization engine provides the capability to choose any system metric over the full

range of the ~5000 currently being collected

23

24

Application-Streams Architecture
• Identify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON format, to

the LDMS Streams API
• Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds minimal

and acceptable overhead to the running application

Deployment
• Continuous deployment of LDMS on Eclipse (CTS-1)
• Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS

aggregators, storage of system and application data, and analysis and visualization of stored data

Application and System Metrics
• Determine metrics of interest for run-time and post run understanding of application progress and

performance. These metrics need to be viewable in a system monitoring data context

Analysis and Visualization
• Identify and implement analyses required to produce appropriate application and system metrics across

the parallel store of system and application information
• Implement a Grafana-based dashboard to enable user access to application progress and performance

metrics along with system monitoring metrics for both run time and post-run visualization

Logical Subgroup Descriptions

DSOS: Enabling Scalable Ingest and Queries for Analysis
and Viz

 Distributed Scalable Object Store (DSOS) is a scalable database
with a variety of features which enable simultaneous large-scale
data ingest and queries

◦ Designed specifically for large-scale HPC monitoring data ingest and
query with flexibility to change and adapt as needs arise

◦ Coordinates databases across multiple devices and nodes to present a
“single, unified” database to the end user

◦ High insert rate for continuous data collection
◦ Indices can be created or removed as needed for optimizing queries

without reloading data
◦ Python, C, and C++ API and command line interface

25

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS
DSOS

…
Analysis Cluster

 Populated a DSOS database with ~1 month of system data and two week-long 290-node runs of EMPIRE for
analysis and visualization

◦ Resulted in 50TB of system data and 900GB of application data
◦ EMPIRE got approval for 6 week-long 290-node runs (~20% of Eclipse)

◦ This provided ample application data while also supporting physics for EMPIRE milestones

Analysis and Visualization Pipeline

 User queries from Grafana dashboards are sent through a backend python application which can
call python analyses to derive metrics from raw data

◦ In-query analyses save significant computation time/resources for creating analysis results
◦ Only data of interest is analyzed and new analyses can be created without recreation of analysis results across the

database

 Python modules can query the database and return pandas DataFrames for analysis
◦ Significant work was done to optimize database queries and python analyses for fast Grafana query times

 The backend application then takes DataFrames and formats them as JSON objects which Grafana
can interpret

26

Grafana
Web

Browser

Apache
Server

Django
App

Python
Module DSOSHTTP HTTP

Module Call Python Query

DataFrame DataFrame

Analysis and Visualization Presentation Overview27

 Created two Grafana
dashboards to visualize an
application’s Kokkos data

◦ Job-level dashboard
◦ Kernel-level dashboard

 Demonstrated analysis and
visualization of both live
and post-run data sets

◦ Video is of a simple 2-node
SPARTA job at runtime
◦ Application kernel throughput
◦ Active Memory

Video of live feed of job’s data
(5 second update intervals)

Analysis and Visualization

 Job-level dashboard shows data from across
the application and has 3 panels

◦ Kernel Summary Table which shows all kernels,
their times called, time spent in kernel, and
average kernel execution time, in the time range
specified
◦ Each kernel has a link to drilldown to the next

dashboard
◦ Application Kernel Throughput which is a time

series graph of how many kernels have executed
per minute in the time range specified

◦ Active Memory across Job which shows the
minimum, mean, and maximum memory usage
of the nodes in the job over time

28

Analysis and Visualization

 Kernel-level dashboard shows data specific to a chosen
kernel across 2 panels (progress metric)

◦ Function Timing Information plot shows
◦ Average time per specific kernel execution across all ranks over time

(Blue)
◦ Number of specific kernel executions per second across all ranks over

time (orange)

◦ The bin size fillable box at the top of the dashboard
enables users to bin the data to better understand the
trends
◦ I.e. for a 1 minute window, 1 second bins might reveal more relevant

information and for a 2 hour window, 1 minute bins might be easier to
understand

◦ The Time/Function Call Per Rank Heatmap shows how the
execution time of functions across the ranks of the
application
◦ Red shows more ranks are in that execution range, blue shows less ranks
◦ Showed that several EMPIRE kernels routinely had outlier ranks

29

Analysis and Visualization30

Feedback from Stakeholders

31

Stakeholder Feedback

 EMPIRE developer and analyst comments:
◦ “I fully expect enabling LDMS to become the default EMPIRE behavior on supported platforms”
◦ “There was no noticeable impact on performance on small or large simulations when LDMS was

enabled”
◦ “Being able to see the dashboard’s real-time updating of simulation performance is so much better

than manually finding that information in simulation logfiles”
◦ “Quickly plotting simulation metrics helps us quickly assess job health and progress, saving time and

decreasing cognitive load”
◦ “Clear, clean layout without presenting too much information”

 Requested improvements:
◦ #1 request was that they would like to be able to have a subset of kernels always collected

◦ I.e. Main time loop
◦ More info about filesystems and I/O alongside application data
◦ Rename labels of data to improve understanding

◦ Will also be adding a panel with in-depth descriptions about the data and underlying analyses
◦ Add bit-rate to application throughput panel to show how much data is being ingested by the backend

◦ Will be useful for adjusting sampling rate in the future

32

Future Capability Augmentation Priorities
 Architecture:

◦ Explore additional lightweight methods for sampling of Kokkos kernel execution information
◦ Self adjusting data volume production
◦ User-controlled variable sampling rate and always sampling specified kernels

 Metric Selection:
◦ Add PAPI events/metrics to analyses and dashboards
◦ Define metrics for, and implement, performance bottleneck detection

 Visualization and Analysis:
◦ Analyses with both application and system data to automatically identify correlations
◦ Advanced analyses, such as rank clustering or historical variance investigation, of application data

 General:
◦ Publication at a major conference

33

Completion Criteria Checklist

34

Completion Criteria Checklist

1. Successful deployment of infrastructure on CTS-1 system (Eclipse)
 Target version of LDMS (i.e., Streams enabled) has been in continuous deployment on Eclipse since Jan 28, 2021

2. Demonstration of capability for continuous collection and storage of system data over a 2-week rolling
window
 We have demonstrated continuous collection and storage over a 30-day (2 x 2 weeks) window of system data

on the 1500 node Eclipse cluster
◦ A 30-day window produced ~60TB (including indexing overhead) of data stored in NVMe-based Scalable Object Store (SOS)

databases distributed across 14 nodes of the Shirley Monitoring and Analysis cluster. This is < 10% of the NVMe storage
capability of Shirley

◦ Rolling window previously demonstrated on a single SOS database on our Bitzer system

3. Identification of an application throughput metric(s) for an ASC-relevant code (EMPIRE)
 Throughput indicated by the total number of kokkos kernel executions per-minute over a defined time window

while running the Empire application (see video)

4. Identification of an application progress metric for an ASC-relevant code (EMPIRE)
 Number of kernel calls per second over a defined time window (15 sec. default) for a kernel indicative of

science work accomplished (ParticleMove::Move)

Completion Criteria Checklist

5. Demonstration of capability on target application (EMPIRE) run(s) on CTS-1 system (Eclipse)
 Demonstrated 32- to 290-node Empire application runs on Eclipse (1500 node CTS-1 production

system)

6. Demonstrate a visualization interface that will enable a user to look at post-run application
progress in conjunction with system conditions
 Shown in slides 27-30

7. Demonstrate a visualization interface that will enable a user to look at run time application
progress in conjunction with system conditions
 Shown in slides 27-30

8. Document feedback and future work
 Shown in slides 32-33

Acknowledgements

37

DAT Acknowledgements

 As part of the L2 milestone, in Jan 2021 we held a 30-hour DAT on Eclipse for LDMS
(v4) overhead testing and to validate the interoperability of our initial application +
Kokkos Sampler + Streams functionality. This involved substantial work up front in
determining applicable workload and metrics to collect as well as all of the
infrastructure and analysis/visualization configuration.

 Special thanks to:
◦ L2 members Mark Schmitz and Phil Regier for multiple days efforts in configuration and

deployment of LDMS v4 on Eclipse ahead of the LDMS v4 TOSS Release as well as
continuous support throughout the DAT

◦ 9327 for enabling the long-running DAT
◦ Anthony Agelastos, Douglas Pase, Joel Stevenson, and Gary Lawson of 9326 for their

development of an application work package, which they ran over a 24-hour time period,
and their post-run analysis validating low overhead (~<1.0%).

39

Fin

