ntegrated System ancd
Application Continuous
Performance Monitoring and

08/24/2021

Final L2 Milestone Review

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2021-10918PE

@EnNERcY ANISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Multi-Center, Multi-Department, and Multi-Lab Effort with
24 Participants

3 1 Qutline

L2 Text and Completion Criteria

Overview: Motivation and Architecture

Detail
o Architecture

° Deployment
o Application and System Metrics
o Analysis and Visualization

Feedback & Future Work

Completion Criteria Checklist

Acknowledgements

L2 Overview & Completion Criteria

s | ASC FY21 IP Text

Description: This L2 milestone will demonstrate the use of SNL data collection, analysis, and
visualization framework/tools, deployed on a Sandia production SRN platform, to provide both
system and application relevant run-time and post-run information for a rolling 2-week interval.
We will demonstrate a capability for continuous collection of system data, an application progress
metric(s), and an application throughput metric for an ASC-relevant code. We will provide a
capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run.

We are targeting LDMS for the transport and aggregation of Trilinos-enabled application progress
data and of system data. We are targeting the ATDM Application EMPIRE for deployment and its
Proxy, MiniEM, for capability development. CSSE’s Application Performance Team will be
supporting development and testing.

Completion Criteria:
o Successful deployment of infrastructure on CTS-1 system.
o Demonstration of capability on target application run(s) on CTS-1 system.

o Lessons learned and feedback from stakeholders for future capability augmentation priorities will be
documented.

6 ‘ L2 Milestone Overview

Milestone Description

o Demonstrate the use of SNL data collection, analysis, and visualization framework/tools, to provide both
system and application relevant run-time and post-run information for a rolling two-week interval

° Note: This does not imply a 2-week continuous application run
> Deploy on a Sandia production SRN CTS-1 platform

o Demonstrate a capability for continuous collection of system data, an application progress metric(s), and an
application throughput metric for an ASC-relevant code

o Provide a capability to store this data and a visualization interface that will enable a user to look at
application progress in conjunction with system conditions, both at run time and post-run

I I Em B

Completion Criteria Checklist

N~

o uhkw

Successful deployment of infrastructure on CTS-1 system

Demonstration of capability for continuous collection and storage of system data over a 2-week
rolling window

Identification of an application performance metric(s) for an ASC-relevant code

Identification of an application throughput metric for an ASC-relevant code

Demonstration of capability on target application run(s) on CTS-1 system

Demonstrate a visualization interface that will enable a user to look at post-run application progress
in conjunction with system conditions

Demonstrate a visualization interface that will enable a user to look at run time application progress
in conjunction with system conditions

Document feedback and future work

8 ‘ Completion Criteria Scope Information

Scope Definition
In scope

o

o

o

o

o

o

Developing and deploying an integrated architecture for application and system information

Collecting application and system state metrics from a CTS-1 system at runtime

Providing a useful visual interface for derived application performance and throughput metrics alongside system metrics
Demonstrating this interface on runtime CTS-1 data with the ability to do historical investigation up to two weeks

Providing information on instrumentation overhead and application performance impact

Not in scope (future capability augmentation)

o

o

o

Tuning system parameters to avoid application performance variation
Deriving causality of application performance variation

Correlating system state with application performance

Determining best system or application data to collect
Production-hardened deployment of collection infrastructure / analysis

Overview: Motivation &
Architecture

Motivation for this Work

Urgent problem: Critical science results are being delayed due to inability to diagnose critical
issues

o Currently, large-scale application runs (SNL production, Trinity) can have high performance variability or
suffer failure for reasons often unknown

o Costly HPC resources are being wasted by applications that do not complete or exceed their estimated
runtime

Solution provided by this milestone:
° @ain continuous insight into application performance in system context:
o During run time via several pre-defined, intuitive, and user customizable visualizations
o Post-run via visualization interface and access to complete application and system data storage
° Does not require code change or recompilation on the part of the user to collect this information

The Devil is in the Implementation Details

Tracking application progress/performance at scale is difficult at best but
impossible in most cases using existing performance/profiling tools — significant
disruption of application performance profile and/or application/tool crashes

Utilize low overhead accounting currently being performed in applications and

periodically write timestamped results to system monitoring data store using the
already installed LDMS monitoring framework for transport!

o Need to inject per-rank information into local LDMS daemon for scalability
o What information will convey performance/progress and variation?

o Need to collect a subset of total information to minimize application overhead

o Need simple well defined information format for packing on application side and
parsing on far end

o Need to defer parsing information to storage cluster

Kokkos Provides LDMS Streams Provides

Required Needed Transport
Instrumentation Ca ability

Developers have already S Streams is a

included instrumentation publlsh/subscribe push-based

Jiff ‘ service provided as part of LDMS
TWO ! erent. types o o Support for both “string” and
instrumentation are exposed: “ISON” data streams

> Kokkos native instrumentation
(e.g., track kernel executions and
timings)

o

o> Teuchos timers

This telemetry can already be
provided to the user in files as
periodic dumps or Post-Run

Inject data as it is produced into the already deployed LDMS
framework for continuous access by users and operations staff

I I Em B

., | Coupling Kokkos Instrumentation Capabilities With LDMS
Scalable Transport and Storage

We chose to leverage existing Kokkos instrumentation capabilities and existing scalable LDMS
publish/subscribe capability to enable:

o Collecting performance event stream at system scale with low overhead

o Performing event data collection for long runs

o Publishing information to a scalable database to support analytics (run time and post processing)
o User interface for visualizing application data in a system context over long runs

Just need to publish application data to the LDMS Streams API, add store functionality in order to
store application performance metrics to the same database as the system data, convert raw
data to a progress/performance metric, and present to users...

14 | Integrated System and Application Continuous Performance
Monitoring and Analysis Capability

Data Flow Diagram

HPC System Analysis Cluster ,’

/
time

/
> Dashboard #/
Applications N

chnamically and - Ap2

; . \ B
irregularly inject Kokkos 7 Kokkos Analysis on dynamically

data into the LDMS populated database ' '
NVMe-based +#
distributed
database

\

transport

LDMS continuously
and regularly
collects and
transports full
system data

Detalls

16 | Logical Subgroup Descriptions

Application-Streams Architecture

° |ldentify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON
format, to the LDMS Streams API

° Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds
minimal and acceptable overhead to the running application

17 I Enabling Application Data Injection via LDMS

LDMS - low-overhead (<1% application) data collection,
transport, and storage capability designed for continuous
monitoring supporting run time analytics and feedback.

o System data collection is typically synchronous at regular (e.g.,
second or less) intervals

o Structured data format (i.e., metric set) designed to minimize data
movement

o Transport is typically pull based to minimize CPU interference

° Transport to multiple arbitrary consumers over both RDMA and
socket

LDMS Streams — on demand publication of loosely formatted
information to subscribers

° Transport is push based and supports asynchronous event data
(e.g. scheduler and log data)

o Unstructured data

ldmsd L1 aggregator pulls
from memory regions

/ Xf LO samplers

<— Sampler plugins

ldmsd
Daemon publish API called from externally or by a plugin

pushes to l[dmsd which pushes to all subscribing plugins
and aggregators

I I Em B

18 I Kokkos to LDMS publish

Application Code

Kokkos::parallel_for(...,
KOKKOS_LAMBDA(int i) {
<loop body>

3);

Kokkos Sampler controls the sampling rate. When v
triggered, it signals for the Kokkos Connector to

publish data to LDMS.

The new sampler introduces the option to sample

data using a time-based, count-based, or
constant push.

call kokkosp_begin_parallel_for(..)

<execute loop body>
Kokkos

call kokkosp_end_parallel_for(..) “Sampler”

-Keeps statistics and
timing to determine
LDMS_stream_publish

Kokkos Runtime Code |
i

Kokkos-LDMS Connector

-Publishes to LDMS Streams API

#timestamp,job_id,rank,name,type,current_kernel_count,total_kernel_cou I
nt,level,current_kernel_time,total_kernel_time
1627835612.086679,10195735,1,Kokkos::View::initialization [diagnostic:Solver
Field:B_Field:temp],0,1218,57972687,0,0.000005,182.693422
1627835613.709526,10195735,1, TimeAverage::Continuous,0,24758,57972788,
0,0.000006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count,1,3540,57972889,0,0.
000001,182.693430

1627835620.448333,10195735,1,SolverInterface::Apply Trivial
BC,0,7512,57972990,0,0.000002,182.693432

v I Logical Subgroup Descriptions

Application-Streams Architecture

o |dentify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON
format, to the LDMS Streams API

o Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds
minimal and acceptable overhead to the running application

Deployment
o Continuous deployment of LDMS on Eclipse (CTS-1)

° Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS
aggregators, storage of system and application data, and analysis and visualization of stored data

20 I LDMS Eclipse Deployment Architecture

Eclipse Eclipse

Compute Nodes Admin Nodes Analysis Cluster

™

LDMS collects application and system data from Eclipse nodes and
aggregates to our analysis cluster distributed database

Kokkos / LDMS Streams message sending was tested by sending a
message every 10ms per rank across 2000 ranks without data loss

2 I LDMS Eclipse Deployment Data

System data collected at 1 second intervals (~5,000 metrics per node or 650 billion data points
per day)

o SLURM job, load average

o CPU & memory usage

o NFS & Lustre operations

o Ethernet & Omnipath traffic

o Lustre networking

°c Motherboard temperatures & power
o Aggregator daemon performance

o Collector daemon memory use

Kokkos event stream data from each application MPI process
o Sampling ~1% of kernel executions (~20 events per rank per second or ~1 billion records per day)

2 | Logical Subgroup Descriptions

Application-Streams Architecture
o |dentify and implement mechanisms for per-rank publishing of Kokkos performance data, in JSON
format, to the LDMS Streams API

o Ensure the LDMS Streams implementation, including aggregation and storage, is scalable and adds
minimal and acceptable overhead to the running application

Deployment
o Continuous deployment of LDMS on Eclipse (CTS-1)

° Provisioning and stand-up of a monitoring and analytics cluster for continuous deployment of LDMS
aggregators, storage of system and application data, and analysis and visualization of stored data

Application and System Metrics

o Determine metrics of interest for run-time and post run understanding of application progress and
performance. These metrics need to be viewable in a system monitoring data context

23 | Application and System Metrics of Interest

Progress metric: ParticleMove::Move - a kernel that represents science progress
o Number of kernel calls per second over a defined time window (15 sec. default)
o This kernel gets called approximately once per second on each rank (statistical approximation)
o Time spent in the kernel from sample to sample provides insight into performance variation
> Note that since we are sampling, the data provides statistical estimates for both of these

o Note that this choice of kernel metric is the users choice and is not hard coded either for Kokkos or
EMPIRE

Throughput metric: Number of kernel executions, across all application ranks, per minute over
defined window (i.e., 60 seconds)

o This is approximately 5 million executions per minute for our 290 node runs

System metric: Active Memory is used as the system metric in these visualizations

> Note that our visualization engine provides the capability to choose any system metric over the full
range of the ~5000 currently being collected

1 _ogical Subgroup Descriptions

Analysis and Visualization

* Identify and implement analyses required to produce appropriate application and system metrics across
the parallel store of system and application information

 Implement a Grafana-based dashboard to enable user access to application progress and performance
metrics along with system monitoring metrics for both run time and post-run visualization

s | DSOS: Enabling Scalable Ingest and Queries for Analysis
and Viz

Distributed Scalable Object Store (DSOS) is a scalable database
with a variety of features which enable simultaneous large-scale Analysis Cluster
data ingest and queries

o Designed specifically for large-scale HPC monitoring data ingest and
qguery with flexibility to change and adapt as needs arise

o

Coordinates databases across multiple devices and nodes to present a
“single, unified” database to the end user

Populated a DSOS database with ~¥1 month of system data and two week-long 290-node runs of EMPIRE for
analysis and visualization

o Resulted in 50TB of system data and 900GB of application data
o EMPIRE got approval for 6 week-long 290-node runs (~20% of Eclipse)

(¢]

26 I Analysis and Visualization Pipeline

User queries from Grafana dashboards are sent through a backend python application which can
call python analyses to derive metrics from raw data

o |In-query analyses save significant computation time/resources for creating analysis results

o Only data of interest is analyzed and new analyses can be created without recreation of analysis results across the
database

Python modules can query the database and return pandas DataFrames for analysis
o Significant work was done to optimize database queries and python analyses for fast Grafana query times

The backend application then takes DataFrames and formats them as JSON objects which Grafana
can interpret

Grafana P

Django Module Call Python ython Query
oo PR . PEEERM 0505

DataFrame DataFrame

Web
Browser

2z I Analysis and Visualization Presentation Overview

Video of live feed of job’s data
(5 second update intervals)

Created two Grafana
dashboards to visualize an
application’s Kokkos data

o Job-level dashboard
o Kernel-level dashboard

Demonstrated analysis and
visualization of both live
and post-run data sets

o Video is of a simple 2-node
SPARTA job at runtime

> Application kernel throughput
o Active Memory

28 ‘ Analysis and Visualization

Kernel Summary Table

Job-level dashboard shows data from across
the application and has 3 panels

o Kernel Summary Table which shows all kernels,
their times called, time spent in kernel, and o
average kernel execution time, in the time range |
specified :
o Each kernel has a link to drilldown to the next

dashboard

o Application Kernel Throughput which is a time
series graph of how many kernels have executed
per minute in the time range specified

o Active Memory across Job which shows the
minimum, mean, and maximum memory usage
of the nodes in the job over time

Active Memory across Job

29

Analysis and Visualization

Kernel-level dashboard shows data specific to a chosen
kernel across 2 panels (progress metric)

o Function Timing Information plot shows

° Average time per specific kernel execution across all ranks over time
(Blue)

> Number of specific kernel executions per second across all ranks over
time (orange)

> The Time/Function Call Per Rank Heatmap shows how the
execution time of functions across the ranks of the
application
> Red shows more ranks are in that execution range, blue shows less ranks

o Showed that several EMPIRE kernels routinely had outlier ranks

Analysis and Visualization

88 Breakdown / KokkosBreakdown 1 =2 +
ParticleMove: Move 10195735 5
Function Timing Information Time / Function Call Per Rank Heatmap (Randomly samples ranks if = 100 ranks)
100 e 2000
SR
950 ms
B0 ms
| 1500 800 ms
| |
i | | | | \ | | . | ——
e bGOms | | | | | | \ 1| o
S | | | | | =
i) ! g
] | | 1000 = 800 ms
% | [[| | @
E 0ms | wilEEP . | e { ' 1 = 750 ma
[00 L
20ms
0 ms
| 500 ms
0s 0
15:30 537 1524 1536 1538 1540 15:47 1544 1546 15:48 1550 1552 1554 15,56 1558 600 550 me
tme_psar_func funclion_par_s
10 ms
Active Memory across Job r—
B0 MB
400 ms
55 MB . 350 ms
300 ms
501 MB || |
250 ms
|
45 MB i | | | | | B
fl I Ill |“ | il | 200 ms
40 MB i | |I |III i} A | I' | [N
0 N I | = | | | | | I B | A i Ifll) i | n 50 e
[| [| ';Il 14 Iit [| 1 I'..'l | Y A | LT o I
[Laa 1YY A0V £ {7 YA P) Wl MApA o
ssme & £ f 'I,"-“ A A HV TATES R e R N e T Lo I-|,|'I II|I 1 A 100 ma
I ¥ .I I| |. { 1 |ll |- "|I LA 1 | | I Y 1 | |) ¥ Y
{ VoY 1 i VY Y ¥ \ W 50 me
30 MB
1530 1532 15:34 1536 538 15:40 15:42 1544 1546 5:48 15:50 1552 15:54 1556 1558 16:00 .

min — mean — max

Feedback from Stakeholders

. Stakeholder Feedback

EMPIRE developer and analyst comments:

o

[¢]

o

“I fully expect enabling LDMS to become the default EMPIRE behavior on supported platforms”

“There was no noticeable impact on performance on small or large simulations when LDMS was
enabled”

“Being able to see the dashboard’s real-time updating of simulation performance is so much better
than manually finding that information in simulation logfiles”

“Quickly plotting simulation metrics helps us quickly assess job health and progress, saving time and
decreasing cognitive load”

“Clear, clean layout without presenting too much information”

Requested improvements:

o

#1 request was that they would like to be able to have a subset of kernels always collected
° l.e. Main time loop

More info about filesystems and I/O alongside application data
Rename labels of data to improve understanding

o Will also be adding a panel with in-depth descriptions about the data and underlying analyses

Add bit-rate to application throughput panel to show how much data is being ingested by the backend

o Will be useful for adjusting sampling rate in the future

3 | Future Capability Augmentation Priorities

Architecture:
o Explore additional lightweight methods for sampling of Kokkos kernel execution information
o Self adjusting data volume production
o User-controlled variable sampling rate and always sampling specified kernels

Metric Selection:
o Add PAPI events/metrics to analyses and dashboards

o Define metrics for, and implement, performance bottleneck detection

Visualization and Analysis:
o Analyses with both application and system data to automatically identify correlations

o Advanced analyses, such as rank clustering or historical variance investigation, of application data

General:
° Publication at a major conference

I I Em B

Completion Criteria Checklist

Completion Criteria Checklist

1. Successful deployment of infrastructure on CTS-1 system (Eclipse)
v' Target version of LDMS (i.e., Streams enabled) has been in continuous deployment on Eclipse since Jan 28, 2021

2. Demonstration of capability for continuous collection and storage of system data over a 2-week rolling
window
v" We have demonstrated continuous collection and storage over a 30-day (2 x 2 weeks) window of system data

on the 1500 node Eclipse cluster

° A 30-day window produced ~60TB (including indexing overhead) of data stored in NVMe-based Scalable Object Store (SOS)
databases distributed across 14 nodes of the Shirley Monitoring and Analysis cluster. This is < 10% of the NVMe storage
capability of Shirley

> Rolling window previously demonstrated on a single SOS database on our Bitzer system

3. Identification of an application throughput metric(s) for an ASC-relevant code (EMPIRE)

v Throughput indicated by the total number of kokkos kernel executions per-minute over a defined time window
while running the Empire application (see video)

4. ldentification of an application progress metric for an ASC-relevant code (EMPIRE)
v" Number of kernel calls per second over a defined time window (15 sec. default) for a kernel indicative of
science work accomplished (ParticleMove::Move)

Completion Criteria Checklist

5.

Demonstration of capability on target application (EMPIRE) run(s) on CTS-1 system (Eclipse)

v Demonstrated 32- to 290-node Empire application runs on Eclipse (1500 node CTS-1 production
system)

Demonstrate a visualization interface that will enable a user to look at post-run application
progress in conjunction with system conditions

v" Shown in slides 27-30

Demonstrate a visualization interface that will enable a user to look at run time application
progress in conjunction with system conditions

v" Shown in slides 27-30

Document feedback and future work
v" Shown in slides 32-33

I I Em B

DAT Acknowledgements

As part of the L2 milestone, in Jan 2021 we held a 30-hour DAT on Eclipse for LDMS
(v4) overhead testing and to validate the interoperability of our initial application +
Kokkos Sampler + Streams functionality. This involved substantial work up front in
determining applicable workload and metrics to collect as well as all of the
infrastructure and analysis/visualization configuration.

Special thanks to:

° L2 members Mark Schmitz and Phil Regier for multiple days efforts in configuration and
deployment of LDMS v4 on Eclipse ahead of the LDMS v4 TOSS Release as well as
continuous support throughout the DAT

° 9327 for enabling the long-running DAT

o Anthony Agelastos, Douglas Pase, Joel Stevenson, and Gary Lawson of 9326 for their
development of an application work package, which they ran over a 24-hour time period,
and their post-run analysis validating low overhead (~<1.0%).

Fin

