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Motivation

Nearly all U.S. geothermal power production is from
conventional hydrothermal plants in western states
: : : E le u- h h
High-grade hydrothermal fields (e.g., Geysers field) xample U-tube heat exchanger
are the exception and not the norm, stagnate growth

surfac water inlet let.
for geothermal since the 1980s (10,000 — 15000 uriace— R |
GWhe)
14— — formation ~— 5 |s
Estimated 95% available geothermal energy is in hot- K
dry-rock (HDR) with average gradients 30 C/km
i 2
Closed loop geothermal systems (CLGS) are an - - B
alternative to EGS

Different heat exchanger designs (e.g., u-tube,
coaxial)

Working fluid is re-circulated in tubing and can target
hot-dry-rock or wet-rock

How much thermal / mechanical power can be
produced over 20-40 years operational period-for
optimal closed loop systems ?




Methodology |

| 2D axisymmetric

surface _Wa[er inlet water outlet. l T formation model
. 1D fluid model
farmation .
1 43t descending horizontal ascending
formation I 1 2 3
[ 2 ] radius = ' -
flow direction /

decoupled formations

Heat transfer is through heat conduction (i.e., HDR)
Water is the working fluid

1D area-averaged thermal energy balance

Coupled to formations through a convective boundary condition with Gnielinski heat transfer correlation
2D axisymmetric formations

Heat transfer between Region 1 — 2 and Region 2 — 3 is ignored

Heat transfer in “elbow” regions is negligible

Region 2 has constant initial temperature

Pressure computation is decoupled
Incompressible fluid w/ properties as functions of temperature, evaluated at an average pressure

Steady momentum balance w/ Darcy-Weisbach friction factor used to model wall shear stress
Thin layer of insulation modeled as in series thermal resistance added to heat transfer coefficient
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Methodology |

Multi-physics PDE solver

Weak form of coupled PDEs is discretized
using linear (1D fluid) and bilinear elements
(formation)

Meshed biased to resolve radial gradients
SUPG stabilization

Adaptive time stepping w/ predictor-corrector
Nonlinear system of equation solved using
Newton iterations w/ preconditioned GMRES

Optimization / Uncertainty Quantification / Sensitivity Analysis

Used to drive SIERRA
Gradient-based optimization of the
objective function w/ central differences

T/ 1 | cL
Foech = f mAhm ——max(W,,0) ) dt — =
0 Mp e

Parametric sweep of design space
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Validation |

Comparison to Song et al. (2018) and Stanford
solution for u-tube placed in Xinji thermal reservoir
w/ water as the working fluid

—e— Song et al.

Formation thermal characteristics 85 R

Rock Rock thermal Formation %) 6o —— Stanford
density heat [J/kg-K] conductivity [C] gradient —
[kg/m3] [W/K-m] [C/m] @
2200 850 3.0 25 30 “E
g
. : . c
Insulation is neglected in our model here (resultsin @

slight underprediction)

Flow rate | Formation Depth Horizontal
[kg/s] gradient [km] length
[C/m] [km]
30 3.5 6

varied

Time [years]

Heat transfer coefficient is effectively infinite, any
sufficiently large value will produce a similar
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Validation |l

Comparison to HGP-A Downhole Coaxial Heat
Exchanger (DCHE) experiments in Hawaii (Morita et

4 o~ N~

20 axisymmetric
: formation model

[ = = + 1D fluid model 2D axisymmetric pipe wall
e e 20 axisymmetric pipe wall e 10 fluid model
- descending/fascending -
descending annulus
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baorehale

insulating wall

" R H . Temperature (*C)

Rock Rock Rock thermal 'te rIStIC gl %0 4 G0 B W0 w0 M
density specific heat conductivity i Wel : HGP-A
[kg/m3] [J/kg-K] [W/K-m] Pl S

3050 870 1.6 ]

m -

1™

£ 60
LIrrD A NNLIC nArarnan~ B0
Injection Flow rate Well Insulation  Sometation o
temp [keg/s] depth [W/K-m] P00 g Measured e 15 Fab, 1981 .
k- o Mogsmrnd on 21 Feb. 1941 -
[C] [m] m:_I_I_J. . J_.J_l_'I_I_IJ
1.33 876.5 0.06
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Results |

FORGE site approx. thermal characteristics (225 C bottom borehole temp)

Rock Rock specific Rock thermal Surface Formation
density heat [J/kg- conductivity temp gradient

[kg/m3] K] [W/K-m] [C] [K/km]
2750 790 3.05 25 78.8

Emplace 8.5" diameter u-tube heat exchanger w/ water as the working fluid

Thin-layer of insulation 0.01 m thick w/ conductivity .025 W/K-m added to the ascending

II'\II L'\l\lﬁf\

Injection Pipe WAL Flow rate Horizontal Insulation
temp Diameter depth [kg/s] length length
[C] [m] [km] [km] [km]

0.2159 2.5 Varied Varied Varied
[1-60] [1-10] [0-2.5]
T 1 CL Flow rate | Horizontal | Insulation Obj. Mechanical
_ . o ’ - [kg/s] length length function Output
Fimech = J; (mﬂhm " maX(Wp*O)) dt C. [km] [km] [GWhe] [GWhe]
Optlmlzatlon 1.4 88 324.6

drilling cost € = 1640 $/m

electricity price ¢, = 104500 $/GWhe
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Results |l

Feasibility envelope is narrow, depends
strongly on drilling costs (Fig. a)

Optimal mass flow rate exist for each
horizontal length, no true optima in 1-
10km (i.e., increasing length still
increases obj.) (Fig. b)

8.5" diameter pipe has wide
thermosiphon envelope (Fig. c)

Carnot efficiency peaks around narrow
band, does not correspond to max
output, chosen design corresponds to
plant efficiency of 0.18 (Fig. d)
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insulation length [m]

R e S u ‘tS | | | Thermal drawdown of HDR reservoir at

optimal conditions

Mass flow rate - insulation length plane SO o ——
(max. horizontal length) 200 /7
2500 87.9 2500 324.6 5 175 ﬁ
!54_1 _ lzgn.? @ 150 F
2000 20.2 "ﬁ.‘:‘ E‘2000 255"32 % ‘
136 2 g 122303 g .
1500 _ s 2 1500 [ 189.2= E — Oyrs
e it I =7
1000 S5 S 1000 = - —— 20yrs
-1151= 3 [1215°g S0 - 132 — 40yrs
500 ~149.08 £ ., 87.7 = 25 : : . : : ; ;
o [} 20 40 60 80 100 120 140
-182.8 53.8 Radial distance [m]
’ 5 U S ’ 5 0 5w Insulation impact on outlet
mass flow rate [kg/s] mass flow rate [kg/s] t u t t P ti |. u diti
. . . emperature at optimal conditions
 Insulation increases mech. output by less than 6% at optimal oo P P
conditions, increases outlet temp by about 10 C [ Nesge
*  Thermal drawdown is contained to 100 m radius at 40 years g
° Increasing diameter to 15” results in less than 10% increase 2o
(penalties on diameter not considered) 2 k
& 140
Flow rate Horizontal Insulation Mechanical %
[km] [GWhe]
12.26 10 1.38 355.1 GWhe 1oo 5 10 15 20 35 30 35 40

Time [years]
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Conclusions

Optimal system for 8.5” diameter pipe produces ~325 GWhe
over 40 years (< 1 MWe average) and operates as a
thermosiphon, equates to less than 800 homes powered

Flow rate Horizontal Insulation Obj. Mechanical
[kg/s] length length function Output
[km] [km] [GWhe] [GWhe]
10.8

324.6

Longer horizontal legs always better for (8.5” pipe w/ 1-10km
horizontal leg)

Each horizontal leg length has an optimal mass flow rate
(i.e., there is balance in increasing residency time versus
increasing enthalpy flux)

Insulation length and diameter have modest impact on
output at optimal mass flow rate / horizontal leg length

other mechanisms are needed to enhance heat,transfer
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