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Motivation
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• Nearly all U.S. geothermal power production is from 
conventional hydrothermal plants in western states

 High-grade hydrothermal fields (e.g., Geysers field) 
are the exception and not the norm, stagnate growth 
for geothermal since the 1980s (10,000 – 15000 
GWhe)

 Estimated 95% available geothermal energy is in hot-
dry-rock (HDR) with average gradients 30 C/km

• Closed loop geothermal systems (CLGS) are an 
alternative to EGS

 Different heat exchanger designs (e.g., u-tube, 
coaxial)

 Working fluid is re-circulated in tubing and can target 
hot-dry-rock or wet-rock

 How much thermal / mechanical power can be 
produced over 20-40 years operational period for 
optimal closed loop systems ? 

Example u-tube heat exchanger



Methodology I
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1. Heat transfer is through heat conduction (i.e., HDR)
2. Water is the working fluid

• 1D area-averaged thermal energy balance 
• Coupled to formations through a convective boundary condition with Gnielinski heat transfer correlation 

3. 2D axisymmetric formations
• Heat transfer between Region 1 – 2 and Region 2 – 3 is ignored
• Heat transfer in “elbow” regions is negligible 
• Region 2 has constant initial temperature

4. Pressure computation is decoupled
• Incompressible fluid w/ properties as functions of temperature, evaluated at an average pressure
• Steady momentum balance w/ Darcy-Weisbach friction factor used to model wall shear stress

5. Thin layer of insulation modeled as in series thermal resistance added to heat transfer coefficient



Methodology II
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• Weak form of coupled PDEs is discretized 
using linear (1D fluid) and bilinear elements 
(formation)

• Meshed biased to resolve radial gradients
• SUPG stabilization
• Adaptive time stepping w/ predictor-corrector 
• Nonlinear system of equation solved using 

Newton iterations w/ preconditioned GMRES 
for linear systems

Multi-physics PDE solver Optimization / Uncertainty Quantification / Sensitivity Analysis

• Used to drive SIERRA
• Gradient-based optimization of the 

objective function w/ central differences

• Parametric sweep of design space



Validation I
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• Comparison to Song et al. (2018) and Stanford 
solution for u-tube placed in Xinji thermal reservoir 
w/ water as the working fluid

• Formation thermal characteristics

• Insulation is neglected in our model here (results in 
slight underprediction)

• Heat transfer coefficient is effectively infinite, any 
sufficiently large value will produce a similar 
solution

Flow rate
[kg/s]

Formation 
gradient

[C/m]

Depth 
[km]

Horizontal 
length 
[km]

varied 30 3.5 6

Rock 
density 
[kg/m3]

Rock specific 
heat [J/kg-K]

Rock thermal 
conductivity 

[W/K-m]

Surface temp
[C]

Formation 
gradient

[C/m]

2200 850 3.0 25 30

Q = 90 m3/h

Q = 60 m3/h

Q = 40 m3/h



Validation II
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• Comparison to HGP-A Downhole Coaxial Heat 
Exchanger (DCHE) experiments in Hawaii (Morita et 
al. 1992)

• Formation thermal characteristics

• HGP-A DCHE params

Rock 
density 
[kg/m3]

Rock 
specific heat 

[J/kg-K]

Rock thermal 
conductivity 

[W/K-m]

3050 870 1.6

Injection 
temp
[C]

Flow rate
[kg/s]

Well 
depth
[m]

Insulation 
[W/K-m]

30 1.33 876.5 0.06



Results I
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• FORGE site approx. thermal characteristics (225 C bottom borehole temp)

• Emplace 8.5" diameter u-tube heat exchanger w/ water as the working fluid

• Thin-layer of insulation 0.01 m thick w/ conductivity .025 W/K-m added to the ascending 
well bore

• Optimization

Rock 
density 
[kg/m3]

Rock specific 
heat [J/kg-

K]

Rock thermal 
conductivity 

[W/K-m]

Surface 
temp
[C]

Formation
gradient 
[K/km]

2750 790 3.05 25 78.8

Injection 
temp
[C]

Pipe 
Diameter

[m]

Well 
depth 
[km]

Flow rate
[kg/s]

Horizontal 
length 
[km]

Insulation 
length
[km]

27 0.2159 2.5 Varied
[1-60]

Varied
[1-10]

Varied
[0-2.5]

Flow rate
[kg/s]

Horizontal 
length 
[km]

Insulation 
length
[km]

Obj. 
function
[GWhe]

Mechanical
Output
[GWhe]

10.8 10 1.4 88 324.6

drilling cost

electricity price



Results II
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Mass flow rate – horizonal length plane
(no insulation)

• Feasibility envelope is narrow, depends 
strongly on drilling costs (Fig. a)

• Optimal mass flow rate exist for each 
horizontal length, no true optima in 1-
10km (i.e., increasing length still 
increases obj.) (Fig. b)

• 8.5” diameter pipe has wide 
thermosiphon envelope (Fig. c)

• Carnot efficiency peaks around narrow 
band, does not correspond to max 
output, chosen design corresponds to 
plant efficiency of 0.18 (Fig. d)



Results III
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Mass flow rate – insulation length plane
(max. horizontal length)

Thermal drawdown of HDR reservoir at 
optimal conditions

Insulation impact on outlet 
temperature at optimal conditions• Insulation increases mech. output by less than 6% at optimal 

conditions, increases outlet temp by about 10 C
• Thermal drawdown is contained to 100 m radius at 40 years 
• Increasing diameter to 15”  results in less than 10% increase 

(penalties on diameter not considered)

Flow rate
[kg/s]

Horizontal 
length [km]

Insulation 
length
[km]

Mechanical
Output
[GWhe]

12.26 10 1.38 355.1 GWhe



Conclusions
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• Optimal system for 8.5” diameter pipe produces ~325 GWhe 
over 40 years (< 1 MWe average) and operates as a 
thermosiphon, equates to less than 800 homes powered

• Longer horizontal legs always better for (8.5” pipe w/ 1-10km 
horizontal leg)

• Each horizontal leg length has an optimal mass flow rate 
(i.e., there is balance in increasing residency time versus 
increasing enthalpy flux)

• Insulation length and diameter have modest impact on 
output at optimal mass flow rate / horizontal leg length

• Other mechanisms are needed to enhance heat transfer

Flow rate
[kg/s]

Horizontal 
length 
[km]

Insulation 
length
[km]

Obj. 
function
[GWhe]

Mechanical
Output
[GWhe]

10.8 10 1.4 88 324.6
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