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Summary of control design
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Summary of control design
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Microgrid - Single or networked power grid

Agents - Software that coordinates how the different controls operate the
microgrid based on information from the sensors and its own internal algorithms

Sensors - Any instrumentation that provide information about the microgrid
Real-time Controller - Control that provides fast, subsecond updates
On-line Controller - Control that provides medium to long term planning

Predictive Engine - Algorithm that provides long term forecasting for the microgrid



Summary of control design

On-line

> Executes in a variable amount of time

» Solves for new control while the system is in operation
Optimal Control

» Control based on an optimization formulation

» Generally, solution time only deterministic for a linear-quadratic control
Receding Horizon Control

» Behavior of system predicted over a time period called the planning horizon

» Control based on this prediction

» Control executed for as long as the prediction remains accurate, which is called

the execution horizon

This presentation details an optimal control algorithm based on an on-line optimization
engine that solves for a receding-horizon control



High-level view of optimal control

Minimize  Use of storage devices
Deviation from dispatchable load
Subject to Series DC component dynamics
Parallel DC component dynamics

Detail of microgrid components to come next
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Parallel DC components (P)
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Discretization



Hermite cubic splines
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Orthogonal spline collocation method (OSCM)

P> Represent each function by a Hermite cubic spline
Satisfy dynamics at Gaussian quadrature (collocation) points

» Practical approach uses evaluation, E, and derivative, D, operators that map
spline coefficients to collocation points. Allows differential equation

v

to be discretized as

where « represents the spline coefficients

» Convergence rate O(h*) where h largest interval in mesh



Useful Hermite spline properties

» Constant Bounds - Hermite polynomial

p(t) = arhoo(t) + aohio(t) + azho1(t) + aahai(t)
is bounded between [ and u on the interval [0, 1] whenever

3l < Ba1+ax <3u
31 < 3a1—ar <3u
3l < Baz+as <3u
3l < 3Baz3—as <3u
» Nonlinear Bounds - Approximate nonlinear bound with Hermite spline and then
bound the difference between the original polynomial and this approximation

» Integration - Given the mesh Q = (fo, ..., thele), spline s, and collocation points
C, then

nele—1

/totne|e S(t)dt = Z (ter1 — te)(s(Cort1) + s(Cor2))

k=0



Numerical Study



Topology of the microgrid
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Microgrid parameters (PV)
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Microgrid parameters (Transmission)
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Microgrid parameters (Connection)
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Microgrid parameters (House)
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Parameter | Value Info

Tsre lconn 1 and 2 Connection

Tsnk _ None

v 220 V

o _ Constant voltage

R 193.6 Q 250 W parasitic loss

P Variable Load profile taken from sampled data collected

from houses in Albuquerque, NM
D _ None
Winaz 3or4 MJ  Local storage at each house, 0.83 kW h

for house 1 and 1.11 kW h for house 2



Scenario overview
Goal
> Meet demand when combined loads exceed generation capacity
» Coordinate use of storage to minimize storage use and keep storage 90% full
Setup
» Scenario lasts for 9 h, 0700-1600

» Generation capacity estimated using the NREL code SAM with 5 kW max
generation using averaged historical weather information for Albuquerque, NM on
a typical May 1

» Load sampled directly from two houses in Albuquerque, NM in 1 s intervals and
averaged over 15 s intervals

> Storage devices located at houses
Results
» |Load demands met

> Storage only used when generation exceeded demand



Power used by loads
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Power generation
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Energy in the storage
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Power used by loads (zoomed)
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Power generation (zoomed)
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Energy in the storage (zoomed)
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Summary



Summary

Current Results

» Nested control architecture consisting of

> Agents that coordinate information between the microgrid and the various control
algorithms

» Real-time controller
» Predictive engine
» On-line controller

» Hermite cubic splines used to discretize DAE and bound state, control parameters
» Obtained the optimal control of a microgrid driven by collected, real-world data
» Coordinated use of storage devices

Future Work
» Perform additional case studies with other scenarios
» Run scenarios with entire, combined control framework

» Refine and mature software stack
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For additional questions or interest please contact joe@optimojoe.com



