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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
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Introduction

Earth models have important applications for seismic event monitoring including the location
and characterization of potential underground nuclear tests. Seismic waves generated by
earthquakes and man-made events are altered by variations in Earth’s subsurface properties;
and these distortions effect the arrival times of energy packets (phases) and obscure the
characteristics of the original energy source (event mechanism). Three-dimensional models of
Earth’s seismic properties can help explain and predict the distortions to the seismic wavefield
and reveal the properties of a source that generated the waves, including the event location
using the model-predicted timing of the phases and source mechanism using the model-
predicted waveform characteristics.

The US National Laboratories have a long history in the research and development of Earth
models designed for monitoring purposes, including 3-D and simpler models. One of the most
successful examples is the Regional Seismic Travel Time (RSTT) model developed as a multi-
laboratory effort to account for regional travel time bias due to strong shallow upper mantle
heterogeneities that lead to seismic event location inaccuracy (Phillips et al., 2007; Steck et al.,
2009; Myers et al., 2010; Begnaud et al., 2020). RSTT models includes velocity variations in the
crust and lateral variations of the velocity gradients in the shallow upper mantle and are now
becoming routinely used by multiple monitoring agencies for accurate event location. Research
at the National Laboratories has since evolved into the development of fully 3-D models
including several examples on the global-scale including the early LLNL series of models (e.g.
Simmons et al., 2012; 2015), the SALSA3D model (e.g. Ballard et al., 2016), and the SPiRaL
model (Simmons et al. 2021). Like the earlier models, the SPiRaL model was developed
primarily for the purpose of predicting seismic travel times for accurate event location
prediction using travel times at regional (~¥200-2000km) and teleseismic (>~2000km) distances.
However, SPiRaL differs from the previous models since it was constructed with surface wave
dispersion estimates as well as body wave travel times (see the next section for more details).

We now seek to, not only utilize travel times and dispersion to create 3-D models but construct
a more comprehensive global model via waveform inversion which exploits more information in
the seismograms than arrival times of specific seismic phases. Waveform inversion research is
well-established and has led to numerous studies on regional and global scales (e.g., Leki¢ and
B. Romanowicz, 2011; Yuan et al., 2014; French and Romanowicz, 2015; Afansiev et al., 2016;
Bozdag et al., 2016; Fichtner et al., 2018; Krischer et al., 2018; Tao et al., 2018; Lei et al., 2020;
Orsvuran et al., 2020; van Herwaarden et al., 2021). However, higher-fidelity models are rare,
particularly those that can predict complete waveforms with periods of <<30 seconds over large
regions, which limits their applicability to monitoring applications including moment tensor
inversion of smaller events.

Exploiting more information contained in complete waveforms, and possibly fitting them
“wiggle-for-wiggle”, has a twofold advantage. Firstly, the shape and character of the wave
trains contain important information about the underlying Earth structure, and accounting for
these characteristics lead to more accurate Earth models. This is especially significant in regions



with sparse coverage as opposed to highly sampled regions where travel time data could
appreciably resolve gross Earth structure. Secondly, fitting seismograms wiggle-for-wiggle lead
to increased model-based predictability of complete waveforms which has applications in
source characterization via 3-D moment tensor inversion. This report describes the progress
and plans to improve LLNL’s SPiRaL global model via application of full-waveform inversion
techniques. An area of emphasis is on the development of a streamlined process to execute the
complex and computationally-intensive workflow and apply it to the global problem which
presents unique challenges including: the physical size of the Earth model in memory, the
amount of data that must be considered, and the ability to continuously improve the model as
new events of interest emerge (including smaller events) without increasing the computational
burden which can easily snowball into an unmanageable problem.

The Starting Model (SPiRal)

The SPiRaL model (Simmons et al., 2021) is a global-scale tomography model of seismic
velocities (P and S) and anisotropy variations (vertical transverse isotropy) from the crust to the
core. SPiRaL (S-, P-, Rayleigh, and Love waves) is a follow-up to the LLNL-G3D series of travel-
time-based models, including the LLNL-G3Dv3 P-wave model (Simmons et al., 2012) and the
LLNL-G3D-JPS joint P and S wave velocity model (Simmons et al., 2015). One of the key
differences from our previous models is the inclusion of surface wave constraints based on
global surface wave phase and group velocity maps for Rayleigh and Love waves from Ma &
Masters (2014) and Ma et al. (2014). Collectively, these surface wave maps provide 25-200
second dispersion profiles covering the Earth and therefore important additional constraints on
upper mantle wave speeds that body wave travel times cannot provide. SPiRal includes
modeled terms that account for 3-D variations of radial anisotropy in the crust and mantle,
which is necessitated by simultaneous inversion of Rayleigh and Love waves. Finally, high-
resolution regions in the crust and upper mantle were included in SPiRaL beneath North
America and Eurasia (minimum node spacing of ~0.25°) to capture details in these well-sampled
regions (see Figure 1).

Although SPiRal is a travel-time-based model, we demonstrated that the model is on par with
independent 3-D waveform-based models when predicting waveforms for a few key events in
the period band of 10-50 seconds in multiple regions (Simmons et al., 2021) including the
western United States, northeast Asia, and the Middle East (see Figure 2). An additional study
performed under an LLNL Laboratory Directed Research and Development (LDRD) project
showed that the travel-time-based SPiRaL model is at least on par with regional waveform-
based models for predicting waveforms in the western United States (Rodgers et al., 2022).
These findings demonstrate that the SPiRalL global model is a valuable starting model for full-
waveform inversion which exploits seismograms wiggle-for-wiggle rather than only considering
the onset times of arriving seismic phases which is done in travel-time-based tomography
methods.
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Figure 1. The SPiRaL global multi-resolution seismic model. The left panel shows a depth slice of the horizontally
polarized shear wave speeds (Vsh). The panels on the right show the multi-resolution grid in the western United
States (top) and the compressional wavespeed (Vp) in the shallow upper mantle (bottom).
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Figure 2. Seismic wavefield simulations using the SPiRal travel-time-based model for an earthquake occurring
beneath Qeshm Island, Iran in 2005. The figure on the left shows a snapshot of the displacement wavefield ~8
minutes after the event and the figure on right shows the simulations (red lines) compared to data (black lines) at
station ABKT in Turkmenistan. These waveform comparisons were used in Simmons et al. (2021) to benchmark
SPiRal with independent waveform-based models.



FWI Process and Workflow Development

Full-waveform inversion (FWI) is via the adjoint method is a well-established method used for
seismic tomography of Earth’s subsurface. See Tarantola 1984, Tromp et al. 2005, and Tape et
al. 2007 for some key papers that developed and described the adjoint process and application
methods. The adjoint method involves 3-D seismic wavefield simulations in a forward sense
(forward through time from seismic sources to a set of receivers) and reversed-time simulations
of “adjoint sources” propagating from the receivers back to the sources. The “adjoint sources”
are derived by some measurement of the misfit between the predicted wavefield and the
simulations. The interaction of the forward and adjoint wavefields integrated over time
effectively projects the misfit into the model volume and model sensitivity and needed model
changes are derived from this interaction (Figure 3). See the textbook by Fichtner (2011) for a
comprehensive examination of full waveform modeling methods including the adjoint inversion
method.
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Figure 3. The construction of adjoint sources and model sensitivity kernels (adapted from Tape et al. 2007). (LEFT) A
simple seismic source function (top panel) is propagated to a seismic receiver and compared to the data (middle
panel). The difference between the observed (DATA) and predicted (SYN) waveforms is taken and time-reversed to
construct the adjoint source (bottom panel). (RIGHT) The reqular wavefield (1°t column) and adjoint wavefield (2"
column) are pointwise multiplied at discrete time steps to create the interaction wavefield (3" column). The
sensitivity kernels are developed though time integrating the interaction wavefield (4" column).
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The adjoint inversion method is computationally intensive due to the necessary full wavefield
simulations necessary and requires supercomputing in many 3-D studies, especially a global-
scale study undertaken here. The inversion process is highly non-linear and therefore requires
multiple iterations (and simulations) further amplifying the computational requirements.



Ultimately, millions of CPU-hours are often needed for larger problems including global-scale
inversions.

In addition to the computational burden, a complex iterative workflow is required to properly
develop misfits and stabilize the inversion for convergence (see Figure 4). Specifically,
sophisticated data windowing techniques must be applied to select time windows where the
data and synthetics are similar enough to develop a reliable misfit function that will ultimately
lead to reliable model kernels. These methods include FLEXWIN (Maggi et al. 2009) and python-
based version called Pyflex (Krischer and Casarotti, 2015). After the raw kernel construction,
pre-conditioning must be applied to the kernels so that the model changes are not too complex
and sensitivities are not focused only at the source and receivers. Kernel (gradient) pre-
conditioning includes masking the source region and applying the diagonal of the Hessian
matrix for each event kernel which prevents the projection of the misfit to very complex source
effects which are likely not reasonable or resolved (see Modrak and Tromp, 2016). Summation
of event kernels and smoothing further simplifies the resulting model gradient leading to
smooth model changes at each step (see Figure 5 for a synthetic example).

Our current custom workflow begins with the base SeisFlows seismic waveform inversion
workflow framework (Modrak et al. 2018). While SeisFlows provides a basic framework, several
significant modifications have been made including the elements discussed above and
diagrammed in Figure 4. Modifications also include changes in SLURM batch job messaging
across compute nodes and the development of a custom SPECFEM3D_Globe (Komatitsch and
Tromp, 2002a, 2002b; Komatitsch et al., 2015) interface to properly run forward/adjoint
simulations, construct kernels, and execute a kernel smoothing algorithm. We initially used a
Gaussian kernel smoother that is applied across all of the elements; however, the Gaussian
smoother required to much computational resources. For example, the global mesh can take
>24 hours using >300 processors to apply the Gaussian-based smoother. One way to reduce the
compute time is to use a GPU-accelerated implementation (rather than using CPU-based
systems), however we decided to integrate and use a Laplacian-based smoother since our tests
concluded that it could be applied at more than an order magnitude faster than the Gaussian-
based version on a more standard CPU-based compute platform.
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Figure 4. Our custom adjoint FWI workflow is a significant modification to SeisFlows (Modrak et al. 2018). Some of
the integrated features include window picking and adjoint source calculations with Pyflex (ref) and Pyadjoint (ref),
a custom SPECFEM3D_Globe interface and modifications required for execution on the LLNL Ruby supercomputer.
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Figure 5. Workflow testing using a single chunk in the SPECFEM3D_Globe. (LEFT) A synthetic checkerboard model
with 7 sources (large spheres) and 82 receivers (small spheres). (CENTER) The first model gradient calculation
without pre-conditioning. (RIGHT) The first model gradient with Hessian pre-conditioning and smoothing. Note that
the model will change in the opposite direction of the gradient (negative sign applied).

Our modified waveform inversion workflow has been tested with synthetic setups using
SPECFEM2D, SPECFEM3D (Cartesian) and SPECFEM3D_Globe (cubed-sphere) with a single
chunk (1 part of the 6 sided cubed-sphere). Each of the tests have increased in size in both the
scale of the models and the number of stations and synthetically derived data. Working with
real data and the full-scale global model presents further challenges. Compared to synthetically
derived data, real seismic data are notoriously more difficult to handle for numerous reasons.
For example, real seismic data are often plagued with issues including metadata errors, missing
segments, various noise conditions at different stations, and instabilities when deconvolving
the instrument response. Data issues can be handled with thorough pre-processing steps which
we have developed and refined, but other issues arise in the real problem due to the increased
amount of data, simulation time, and the size of the data files that must be created and



modified. Here is a list of some key factors involved with the global-scale problem that present
some unique challenges:

1) All seismic events are potentially relevant (enormous amount of available data, even
with careful event selection)

2) All seismic stations are potentially relevant (>1,000 available stations globally in the
most recent years)

3) Thorough pre-processing of large datasets is required to identify and handle corrupt or
incomplete data streams

4) Signals are easily seen at large distances requiring long time series simulations (~1 hour
long records)

5) The physical memory size of the spectral element model is large (A model mesh with the
shortest resolved period of 30 seconds requires ~1.2 M elements and ~80 M model
points)

Moreover, in the case of the SPiRalL model, there are 5 parameters at each point (vertical
compressional and shear wave speeds with anisotropy) giving ~400 M total model property
values for the whole Earth. The physical memory for this model and mesh properties is ~14
Gbytes. For a spectral element mesh applicable for a minimum resolved period of 30 seconds, a
single forward simulation requires ~200 CPU-hours to generate 1-hour long seismic records.
Therefore, to make the problem tractable, hundreds of processors are required for each event
simulation (our current setup uses 216 CPUs and 4-6 compute nodes for each simulation on our
current computing platforms). The run time for the full inversion workflow can easily exceed 24
hours for a single iteration, depending on how many events are considered in a single run. This
run time can easily approach maximum allowable run times (“walltime”) without priority or
special access to the computer systems which can lead to shutdown of the inversion workflow
prior to completion. One way to deal with this issue is to select the right number of events that
can be considered in a single run while providing the coverage needed to construct gradients
that create reasonable model updates. A staged approach to consider only batches of events in
sequence is attractive as discussed in a section below. Finally, the amount of data that must be
read and written (I/O) requires stable file systems with sufficient communication across
compute nodes to limit run failures and data loss. We have encountered this latter issue on
multiple occasions and are seeking ways to mitigate the problems.



Large-Magnitude Event Dataset

For regional or local tomographic studies, we are often seeking all available data to provide
enough coverage of the study area (see Rodgers et al. 2022 for a recent example) and source-
receiver paths outside of the regions are justifiably omitted from the studies. For global-scale
tomographic studies however, all seismic data recorded at instruments around the globe are
potentially useful for constraining structure. Therefore, any seismic event that has ever
occurred is potentially relevant to the study. Obviously, it is not feasible to consider all data and
an event selection process must narrow down to only the most valuable and reliable data.
Larger events tend to provide the most valuable seismic recordings for global studies and this
section development of this primary dataset. Large events are most valuable for three main
reasons:

1. they generate strong long-period signals (>>20 seconds) that help resolve deep
structure,

2. signals can be easily observed above the noise level at very long distances (>10,000 km),

3. source parameters derived from moment tensor inversion are reliable

Therefore, the magnitude of the events provides the first criteria for down-selecting to develop
a large-event global waveform dataset.

The Global Centroid Moment Tensor project (GCMT, https://www.globalcmt.org) was
established in 1982 by Adam Dziewonski and others at Harvard University to determine source
parameters (moment tensors) for earthquakes occurring from 1976 to the present, including
rapid determinations for events M>5.5. See Ekstrom et al. (2012) for technical details about the
project. The GCMT catalog consists of >25,000 events and moment tensor solutions and forms
the basis for our large-event global event selection. We further reduced the GCMT catalog to
only include events in the magnitude range of M=5.8-6.8. The lower threshold (M=5.8) was
selected based on our experience in evaluating waveforms for events with M<5.8 for waveform
cross-correlation measurements for travel-time-based tomography (e.g. Grand 2002) where we
found that several events in this range did not always yield the highest-quality long-period
seismograms at very far distances (>10,000 km). Moreover, limiting to these larger events for
the large-event dataset reduces the number of events to a more manageable set. The higher
threshold (M=6.8) was selected for a very different reason. Specifically, events approaching
M=7 and larger often have very complex sources due to the large earthquake rupture zones
(long rupture planes) and long rupture durations. The complexity of these very large sources
introduces directivity and source-time-function issues that require special care for wavefield
simulations and comparisons to data. Limiting the magnitude to M~6.8 avoids many of these
complexities.

Seismic instrumentation and the availability of public broadband data has dramatically
increased over the past few decades. There are often data available for >1,500 seismic stations
around the world provided to the public by the Incorporated Research Institutions for
Seismology (IRIS) Data Management Center (DMC), which is our source for the large-event



dataset compiled in this study. However, going back to the mid 1990’s, the number of seismic
stations with available data from IRIS drops to <200 and this number drops even further prior to
the 1990’s. For this study and other global waveform tomography studies, there is a lot of value
added for events with the most available recordings (i.e. stations) since every modeled events
requires multiple 3-D wavefield simulations which are computationally expensive.

©2013
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Source: http://www.usarray.org/maps ’ Source: https://africaarray.net/stations-and-data/

Figure 6. Examples of temporary broadband seismic station deployments and schedules. (left) The USArray
Transportable Array deployment in the United States during the 2004-2013 timeframe. (right) The temporary
deployments of the AfricaArray deployed in portions of Africa during the 2007-2010 timeframe. Note that is only a
portion of the important deployments within the AfricaArray.

Based on the point made above, it may seem reasonable to only consider the most recent
events given the increase of available of seismic data through the years. However, there are
two important reasons to consider events spanning at least several decades. Firstly, many
seismic station deployments are temporary and therefore the global station configurations
change each year providing unique coverage of the planet. One of the best examples is the
USArray Transportable Array (TA) funded by the US National Science Foundation that marched
hundreds of stations across the United States from 2004-2013 (Figure 6). However, there are
several other great examples including the temporary deployments in Africa under the
AfricaArray project that cover this under sampled part of the Earth below the African continent
(AfricaArray was operated by the University of Witwatersrand in South Africa, the South African
Geological Survey, and Pennsylvania State University). The second important reason to consider
events spanning a few decades is that earlier events can fill spatial gaps in event coverage not
provided by the more recent events. These include rarer events that may occur on mostly
aseismic portions of mid-ocean ridges or rare intracontinental events occurring in regions
without major tectonic plate margins.

To balance the available number of stations in more recent years and the coverage provided by
temporary deployments in prior years we chose to consider events in the years spanning 1997-
2021. This down-selection of the GCMT catalog (from 1976-present to 1997-2021) reduces the

event pool for the large-event dataset down to 4,526 events (Figure 7).
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Figure 7. Locations and moment tensor solutions (plotted as “beach balls”) for all GCMT catalog events with
magnitude range of M=5.8-6.8 in the years spanning 1997-2021. The catalog is reduced from >25,000 events down
to 4,526 events in this plot. The color of the beach balls corresponds to the depth of the events: red=0-100 km,
blue=100-400 km, green=400+ km.

The locations of the events plotted in Figure 7 are often very similar for clusters of events in the
high-seismicity regions, most notably along the Pacific Ocean margins. To reduce the
redundancy and the number of events that must be simulated/modeled, we further down-
sampled the events based on interspatial distances. To do this, we first selected the last event
occurring in 2021 from the pool of events shown in Figure 7 and went backwards in time
selected the next event that was at least 1° from any previous event (~111 km separation
required). Shallow events (in the crust and shallow upper mantle) often spatially overlap events
in the deeper upper mantle and transition zone (~¥400-700 km). The deep upper mantle and
transition zone events are much rarer than crustal and shallow upper mantle events and
provide important coverage of subducted slabs (sunken tectonic plates). To guarantee selection
of deeper events, we performed the 1° sampling procedure described above in multiple event
depth bins including:

1) 0-50 km (~crust)

2) 50-150 km (shallow upper mantle)

3) 150-400 km (deep upper mantle — rare)
4) 400-500 km (shallow transition zone)
5) 500-600 km (middle transition zone)

6) 600+ km (deep transition zone)

This down-selection process reduces the number events from 4,526 (in Figure 7) to 1,198
events with a very similar spatial coverage which can be seen in Figure 8. Note that the number
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of selected events (1,198) is comparable to the number of events considered in the
development of the GLAD_M25 global adjoint waveform model (1,480) (Lei et al. 2020).

Events_Years_1997-2021_AllEvents: N=4526 Events_Years_1997-2021_MinDist_1: N=1198

?‘ 00’0;30 bl

Figure 8. Comparison of the initial selection of 4,526 GCMT events with M=5.8-6.8 between the years 1997-2021
(left) with the spatial down-sampling to 1,198 events (right). The down-selected event coverage is very similar to
the initial selection since redundant events are effectively removed from the event set. Events in regions with lower
large-event seismicity remain in the down-selection while events in high-seismicity regions are thinned. The color of
the beach balls corresponds to the depth of the events: red=0-100 km, blue=100-400 km, green=400+ km.

Our down-selection process steps backwards in time from 2021 to 1997. This selection process
results in more events in the later years and fewer events per year as we go backwards in time
to 1997. The later events are the most well-recorded (more available seismic stations) while the
earlier events take advantage of prior station configurations while also filling in spatial gaps in
regions with less seismicity and perhaps very rare large events. The distribution of the 1,198
down-selected events by year is shown in Figure 9 and some example station configurations by
year are shown in Figure 10.
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Figure 9. The number events selected by year from GCMT catalog. The blue bars show the number of events per
year in the GCMT catalog with the magnitude range of M=5.8.6.8 (4,526 events; ~181 events per year). The red
bars show the number of events per year resulting from the down-selection stepping backwards from 2021 to 1997
(1,198 events; ~48 events per year on average).
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Figure 10. Example station configurations for randomly selected events from the 1,198 large-event (M=5.8-6.8)
dataset. Stations with available public data from the IRIS DMC are plotted for the selected events spanning from
1997 to 2021. The red labels identify the year the event occurred, the red dots are the event locations, the black
lines are equidistance rings from the event, the black dots are station locations, and the value of “N” in the title of
each frame indicates the number of stations for that event. Note the progression of the USArray, the temporary
nature of several arrays, and the overall decline of the number of available stations going backwards in time. Prior
to 1997, the number of stations drops below 200.

Map of All Stations (9723) and Networks (241)

Figure 11. Map of stations (9,723) and networks (241) with available data from the IRIS DMC for the 1,198 selected
events spanning the years 1997-2021. Although, the oceans are largely under-instrumented, the collection of
networks/stations deployed in that time frame provide reasonable coverage of the planet.
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The network configurations vary by year, largely due to the transient nature of temporary
seismic deployments. If we were to consider only events within a narrow timespan, constraints
on Earth structure would be limited to available stations in that timeframe (see Figure 10).
However, by considering events spanning multiple decades, we can take advantage of more
stations and provide a much more comprehensive coverage of the planet. Figure 11 illustrates
the stations (9,723) and seismic networks (241) with available public data from the IRIS DMC for

the 1,198 selected large-event global data set.

We downloaded all available public data for the 1,198 events via the IRIS DMC/FDSN services
using customized Python/Obspy utilities. The data includes all broadband channels (BHE, BHN,
BHZ, BH1, BH2) for all stations for the entire planet (0-180° distance). The data consists of >4.1
million seismic traces and we included time windows sufficient to record the event for the given
event-station distance (time series range from 700 to 10,000 seconds). The data were collected
as native miniseed files and converted to Adaptable Seismic Data Format (ASDF). Data for each
event were subsequently archived into event-based files using Hierarchical Data Format (HDF5)
containers for convenience. Finally, the HDF5 archive data were pre-processed using custom
parallel processing scripts includes time synching, clipping, down-sampling to 10
samples/second, and removing the instrument response to create displacement seismograms
(see Figure 12 for an example). The final storage size of the global database is ~1.1 terabytes

and summary is provided in Table 1.

Note that we recognize that smaller events are significant as well, particularly in regions
without large events (M>5.8), and we intend on developing an additional “Special Event”
dataset which include large events of interest that were not randomly selected as well as small
events in some low-seismicity regions including the eastern United States.

Table 1. Large-event dataset summary statistics
E_

Number of events
Number of seismic traces
Event-Station distances
Time series lengths

Size of dataset

Dataset format

Number of stations per event

Total number of unique
stations

Total number of networks

1198

~4.1 million

0 to 180 degrees

700 to 10,000 seconds
~1.1 terabytes

ASDF format stored in HDF5
containers

169 to 1,804
Average = 1,148

9,723

241
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Figure 12. Example of seismograms for an event occurring in January of 2020 beneath the Ascension Islands in the
South Atlantic Ocean. Network and stations names are labeled next to several of the traces and the length of the
stored time series depends on the event-station distance. This example shows vertical component broadband
seismograms (BHZ channel) and the data are pre-processed with standard seismic signal processing steps to
synchronize, down-sample, instrument response removal, etc. The pre-processed displacement seismograms are
stored in ASDF format in HDF5 archives (1 archive per event).

Staged Approach for Model Updating

The vast amount of data that are required for the global waveform tomography problem
presents several significant challenges that differ from a travel-time-based approach, including
with respect to the relatively complex approach used to construct the SPiRaL model. As
described in a previous section, the workflow to update a model using full waveforms involves
the orchestration of several processes including numerous forward and adjoint 3-D wavefield
simulations. These simulations are very computationally expensive, especially in the global case
where simulations must be run for up to 1-hour simulations (1-hr time series). Therefore, we
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reduce the global set of events through a down-selection process to make global waveform
inversion a more tractable problem. However, the number of required events and the amount
of data needed to ingest and analyze (compute data misfits and adjoint sources) remains
substantial (1,198 large events and 1.1 terabytes of data in the current study).

Given the computational burden, an attractive approach is to construct global waveform
models by increasing the number of events during the progression of the model construction or
using subsets of an pre-determined event pool. A recent example of the former method
(increased number of events during the progression) is in the development of the GLAD_M25
model (Lei et al. 2020). The development of GLAD_M25 extends to development of a prior
model GLAD_M15 (Bozdag et al. 2016) which served as starting model. GLAD_M15 was
developed using 253 earthquakes and the first iterations of GLAD_M25 were derived using an
expanded set of 520 global events. The event set was subsequently expanded through the
iterations from 520 to 1,040 events, eventually finishing with 1,480 events as the model began
to become more refined. Note that this final set of events used in GLAD_M25 is comparable to
our large-event data set selection (1,198 events).

Another recent approach to deal with large waveform datasets and computational issues is a
concept of “dynamic mini-batches” (van Herwaarden et al., 2021). In this approach, subsets of
sources are selected in a quasi-random fashion from a pool of events. The selection of events at
each stage is designed to reduce redundancy of the information based on the properties of the
model update gradients that each event would provide. Overlap between sets of events from
one stage to the next is achieved by using a control group of events from a previous
optimization iteration, providing a smooth transition to the next mini-batch set of events used
to construct the new model gradient and update. Importantly, a major benefit of this approach
is that new events can be introduced into the inversion without inverting the entire dataset.

Our proposed approach is to consider event subsets and is most similar to the mini-batch
approach described above (Figure 13). Subsets of 100-200 events for the pool of 1,198 large
events will be considered at each optimization stage. After 3-5 iterations have been performed
for a given subset, the final model gradient will be stored. Initiation of the next stage (with a
new subset of events) will take an average of the prior and new model gradients (computed
with the new subset) to initiate the next stage of the optimization. This process will provide
some overlap from one event subset to the next, similar to the mini-batch approach. Similar to
the mini-batch approach, our proposed approach will also allow insertion of new events of
interest at any stage of the inversion. These may include new large events of interest or smaller
events that are of regional importance.

The periods of the seismograms will decrease from a minimum period of 40 seconds until
convergence (Phase 1), then the minimum period will be reduced to 30 seconds in Phase 2. The
tentative plan for Phase 3 is to return to a SPiRalL-like travel time inversion to ensure onset
times (travel times) are still satisfactorily matched. However, it may be determined that
alternative events of interest or regional refinements with additional waveform data is more
attractive research pursuit for Phase 3.
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Recall that the 1,198 large events were selected across a 25-year timespan (1997-2021). Given
the natural recurrence of earthquakes, we would expect that if we selected all events occurring
in a given month (across all years), that we would get roughly equal number events occurring in
each month (1,198/12~100). We indeed find =100 events per month selected for the large-
event set (Figure 14). The breakdown of events by month provides a convenient way to create
event subsets since each month provides the target number of events in our proposed FWI
Data Scheme (Figure 13) and each subset is a quasi-random set of events spanning all years
(takes advantage of all network configurations).

MODEL UPDATE FWI DATA SCHEME
PHASES
PHASE 1: FWI Event Set 1
<+ 40-200 second period waves o = (100'200 events)
(body + surface) 7] 5
% 3-5 iterations per event set g s [
> O
. <O
PHASE 2: FWI
%+ 30-200 second period waves Event Set 2
(body + surface) (100-200 events) o>
<+ 3-5 iterations per event set & g
I 2 3
PHASE 3: TT-based g o
< Update \fvith SPiRalL body wave Event Set 3 (-
travel times (P+S) and global
surface wave velocity maps Q= (100'200 events)
¥
PHASE 4: g T I
< TBD é &
Event Set 4
(100-200 events)
Survey
Events i
(100-200 events) (As needed)
[ validation ‘I Event Set N
: Events | (100-200 events)
| (100-200 events) |

Figure 13. Our approach is to update the SPiRal model using a progression of subset events/data for updating.
Subsets of events (100-200 events) will be considered at each stage, and then proceeding to the next by averaging
model gradients determined from the prior and new subsets. A standard approach of reducing the minimum period
will followed in Phases. A “Survey” and “Validation” set will serve to evaluate the model. See the text for more
details.
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GCMT Events by Month (Mw=5.8-6.8, 1997-2021)
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Figure 14. Subsets of the large-event data set broken down by month. The entire pool of events with M=5.8-6.8
from 1997-2021 available in the GCMT catalog are shown in the blue bars. The red bars show the number of events
in the large-event set of selected events (1,198 in total) broken down by month (spanning all years between 1997-
2021). The numbers on the red bars show the fraction of the total (All/Selected). The green bars illustrate the 10
randomly selected events from each monthly subset to serve as the “survey” set.

In addition to the monthly subsets, we also define a set of “survey” events for evaluation of the
model progression at various stages via forward simulations of the current model and
comparison to data. The selection of survey events was done by randomly sampling 10 events
from each monthly subset (see Figure 14). This sampling produces a global set of random
events with a suitable global distribution (Figure 15). Unlike validation events, some survey
events will be included in the inversion at each stage. Evaluating the improvement of fit to the
waveforms for these events will reveal, not only how the updated model fits the data that went
into the inversion, but how well the model will be predicting events that have yet to be
included in the process. For example, if our first subset of ~100 events used in the inversion
consists only of events occurring in January, the fit to the 10 events that were included in the
inversion will be evaluated as well as the remaining 110 events from February-December that
were not. As the inversion progression moves to the February subset of events, we will also
reveal how the fit changes to the January events that are now excluded. Therefore, the survey
event set evaluation will illustrate how the fit evolves as we cycle through the data and give us
an indication of overall convergence.
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Figure 15. The locations and moment tensors (beach balls) of the random selection of large (M=5.8-6.8) events to
serve as the “survey” event set. Ten events were randomly selected from each of the monthly subsets (spanning the
years 1997-2021) to evaluate the fit progression of the updated model at each stage of the inversion. The color of
the beach balls corresponds to the depth of the events: red=0-100 km, blue=100-400 km, green=400+ km.

Conclusions/Next Steps

Global scale seismic tomography modeling at LLNL has evolved from the travel-time-based
SPiRaL model (Simmons et al. 2021) to full-waveform inversion to inform the SPiRaL model by
exploiting more information contained in waveforms beyond the arrival times of specific
seismic phases. The expectation is that a singular model can predict accurate travel times as
well as waveforms for monitoring applications including event location and 3-D model-based
moment tensor inversion. Regional-scale models and data calibration methods are potentially
quite valuable for these purposes in limited areas with substantial empirical information.
However, advanced global scale models are desirable for providing model-based predictions at
long distances, in understudied regions, remote regions around the globe, and with self-
consistency using a singular model.

The next phase of this research will involve execution of our custom workflow with a small
subset of events to mitigate bottlenecks and optimize the process for scale-up to at least
several hundred seismic events (>>100,000 seismograms considered at a single stage). In
parallel, we plan to statistically evaluate the waveform prediction accuracy of current global
scale models including SPiRaL. Previous results suggest SPiRal is on par with some models for
predicting waveforms in multiple regions, but this is not yet confirmed on the global scale. This
will help determine the appropriate minimum waveform periods to target in the early stages of
the inversion workflow with the full dataset. The following step will be to launch the workflow
with the large datasets and execute the staged model updating approach described in previous
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sections. In parallel to this scale-up, we plan to develop additional datasets of “special” events
which will include smaller events than those included in our large-event dataset (M<5.8) and
target regions where large events are rare or non-existent.
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