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Abstract—We consider the problem of distributed downlink
beam scheduling and power allocation for millimeter-Wave
(mmWave) cellular networks where multiple base stations (BSs)
belonging to different service operators share the same unlicensed
spectrum with no centralized control or explicit coordination
among them. Our goal is to design efficient distributed beam
scheduling and power allocation schemes such that the network-
level payoff, defined as the weighted sum of the total throughput
and a power penalization term, can be maximized. To this
end, we propose a distributed scheduling approach to power
allocation and adaptation for efficient interference management
over the shared spectrum by modeling each BS as an independent
Q-learning agent. As a baseline, we compare the proposed
approach to the state-of-the-art non-cooperative game-based
approach which was previously developed for the same problem.
We conduct extensive experiments under various scenarios to
verify the effect of multiple factors on the performance of both
approaches. Experiment results show that the proposed approach
adapts well to different interference conditions by learning from
experience and thus can achieve higher payoff than the game-
based approach. The proposed approach can also be integrated
into our previously developed Lyapunov stochastic optimization
framework for the purpose of network utility maximization with
optimality guarantee. As a result, the weights in the payoff
function can be automatically and optimally determined by the
virtual queue values from the sub-problems derived from the
Lyapunov optimization framework.

Index Terms—mmWave, distributed scheduling, reinforcement
learning, Q-learning, optimality

I. INTRODUCTION

The proliferation of mmWave frequencies in 5G cellular
networks has increased wireless bandwidth by orders of mag-
nitude and has also enhanced spectrum availability. Spectrum
sharing enables the secondary utilization of additional unli-
censed or shared spectrum that is available by allowing concur-
rent beam-based transmission and has the potential to largely
enhance the the system-level throughput performance [1]–[3].
However, highly directional transmission may also present a
severe interference condition, which is even worsened by the
dense population of access points and user equipment (UEs), if
there is no proper coordination of the beams. To handle inter-
ference and improve system throughput, two major paradigms
– centralized and distributed, are considered in the literature. In
general, centralized approaches can be effective but are usually
limited by high complexity and limited scalability especially
for large networks.

Distributed approaches [4]–[13], on the other hand, are scal-
able and have the advantage of improving system security by
removing any central point of attack as well as any falsification
of reports of spectrum use to the central control server. Some
existing distributed approaches [4]–[9], including our own [9],
have proposed the use of game theory, for beam scheduling.
In [9], combined with the Lyapunonv optimization framework,
we proposed a distributed game-based beam scheduling for
mmWave networks with non-cooperative operators.

In this paper, we propose an alternate approach that uses
Q-learning for distributed beam scheduling as well as for
power allocation for mmWave networks with non-cooperative
operators. Our main contributions are two-fold. First, we
present a general framework for dynamic spectrum sharing
for the purpose of optimizing a network- level payoff function,
which is defined as the sum throughput penalized by power
consumption. The weights in the payoff function can be tuned
to find a desirable trade-off between throughput maximization
and power consumption. This formulation can work for various
different beam scheduling methods and therefore, provides a
unified framework for performance evaluation and compar-
ison of these methods. Second, under the proposed payoff
optimization framework, we apply classical Q-learning due to
its simplicity and yet promising performance. We propose a
learning-based power allocation algorithm by modeling each
BS as an independent Q-learning agent that interacts with
the radio environment determined by the joint actions of
all BSs and channel uncertainty. We compare the proposed
approach with our, state-of-the-art, non-cooperative game-
based approach [9] and demonstrate that the our learning
approach adapts well to different interference conditions and
achieves higher network-level payoff. We conduct simulation-
based experiments under various interference scenarios and
the results show that our approach can achieve 23% to 80%
more payoff than the game-based approach under practical
network settings, and the performance gain is more prominent
in the relatively low SINR regime. In addition, our approach
can be integrated seamlessly into a general network utility
maximization framework by using the Lyapunov stochastic
optimization proposed in [9]. In this case, the weights in the
payoff function can be automatically and optimally determined
by the virtual queues derived from the Lyapunov optimization.
Further experiments show that the proposed approach can also



achieve 7% to 23% more utility than the game-based approach.
This performance gain is significant as the utility is defined
as an increasing concave function of the average throughput
which has a diminishing marginal utility.
Why Reinforcement Learning: In general, reinforcement
learning (RL)-based methods have the advantage of being
adaptive to different interference conditions by learning from
experience, i.e., past interaction with the environment, the
quality of each decision made indicated by the corresponding
reward. In addition, by actively exploring non-greedy actions,
there is a higher chance of finding the optimal actions in the
long run. In contrast, the game-based methods are greedy by
nature – regardless of the interference, each BS will always
choose an action that maximizes its payoff in the current
step. This greedy nature prevents the BSs from exploring
non-greedy actions or adapting their decisions to different
interference conditions. This motivates the use of Q-learning
for adaptive interference management in mmWave networks
in this work.

A. Related Work

Besides game-theoretic approaches, another line of research
[10]–[16] has focused on learning-based methods. Galindo-
Serrano et al. [10] considered the interference control problem
in cognitive radio systems where a set of UEs aim to maxi-
mize their own throughput while ensuring that the aggregate
interference to the primary licensed UEs does not exceed a
threshold. A decentralized Q-learning algorithm was proposed
based on partial observation of the interference state. In [12],
Kar et al. presented and analyzed a distributed RL algorithm
for collaborative multi-agent Markov decision processes. In
particular, a distributed variant of Q-learning was proposed
where each agent sequentially refines its learning parameters
based on the local payoff data and the information received
from neighboring agents. Despite these classical methods, the
use of deep neural networks (DNNs) as function approxi-
mators has also gained tremendous attention recently [13]–
[16]. Several works [13], [15], [16] are relevant along this
direction. Ghadimi et al. [13] proposed a deep RL approach
for downlink power control and rate adaptation in order to
optimize a utility function based on partial observability of the
system state where each user is given an equal share of the
bandwidth. In [15], a scalable and distributed multi-agent deep
RL framework was proposed for transmit power control in
cellular networks by assuming that each transmitter can obtain
the CSI and QoS information from neighboring transmitters.
Most relevant to our work is [16] where a deep RL-based
distributed power allocation and UE scheduling algorithm was
proposed using a centralized training and distributed execution
paradigm. Each access point can exchange instantaneous in-
terference measurement with its neighbors.

There are, however, several drawbacks of the aforemen-
tioned works. First, most of these works assume data exchange
among BSs in the vicinity. This may not be practical if
these BSs belong to different operators. How these approaches
perform in such a fully distributed scenario also needs to be
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Fig. 1: A cellular network consisting of M BSs and K UEs where
each BS is associated with four UEs. The solid green lines represent
the data links and the dashed red lines represent the interfering links.

evaluated. Second, the performance of the deep RL-based ap-
proaches depend heavily on the size and quality of the training
dataset. However, it is not straightforward how these datasets
can be obtained in advance. Offline training of the DNNs
usually takes a significant amount of time which may not
be suitable for delay-critical wireless systems. Third, models
trained for a specific network configuration, e.g., number of
BS/UEs, topology, fading etc., may not generalize well to
other configurations, thus presenting scalability and robustness
issues for these approaches.

In this paper, we present a general framework for distributed
payoff optimization in non-cooperative mmWave networks
and propose a Q-learning-based beam scheduling and power
allocation approach using an independent modeling for each
agent (i.e., BS) with a simple tabular representation of action-
state values. The proposed approach has lower complexity and
better scalability than most deep RL-based approaches and is
robust to network configuration change. At a similar com-
plexity level, the proposed approach outperforms the game-
based approach [9] devised for the same problem. Experiment
results demonstrate that the proposed approach achieves a
similar performance in the high SINR regime to the game-
based approach and beats the game-based approach by a large
margin in the relatively low SINR regime.

II. PROBLEM FORMULATION

A. System Description

Consider a cellular network with M BSsM ∆
= {1, 2, ...,M}

and K UEs K ∆
= {1, 2, ...,K} as shown in Fig. 1. Each

BS belongs to a different service operator and is responsible
for serving a set of |Ki| = Ki UEs within its coverage
area. We assume that each UE can only subscribe to one BS
and each BS can serve at most one UE at any given time.
This means that Ki 6= ∅,∀i ∈ M, Ki ∩ Kj = ∅,∀i 6= j,
and ∪i∈MKi = K. The BS-UE association {Ki}i∈M is
assumed to be determined by some exogenous mechanism and
is fixed during the considered scheduling process. The system



operates synchronously1 over a shared unlicensed spectrum of
bandwidth W Hz. We use a frame structure as shown in Fig. 2.
Each time frame contains Nf blocks and each block contains
Nb time slots where each slot has a duration of Ts seconds.
Therefore, each frame has a duration Tf = NfNbTs seconds
and each block has duration Tb = NbTs seconds. Beam and
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Fig. 2: Frame structure. Each frame contains Nf blocks and each
block contains Nb slots.

UE scheduling happens in each block of a frame meaning
that the beam and UE selection will stay unchanged in each
block but will possibly change over different blocks. BS/UEs
are equipped with directional antennas which are characterized
by a keyhole-like antenna model that is commonly used in the
literature (e.g., by [17], [18] etc). The keyhole model has a
constant main-lobe radiation gain Gmax and a constant side-
lobe gain Gmin. In particular, the antenna gain G(θ) in the
direction θ is

G(θ) =

{
Gmax, |θ| ≤ Θ/2

Gmin, |θ| > Θ/2
(1)

where Θ is the beamwidth. The antenna also has a total
power radiation gain of E = ΘGmax + (360◦ −Θ)Gmin. We
further use GBS

j,i and GUE
j,i to respectively represent the antenna

gain of BSi and UEj along the direction connecting BSi and
UEj . The main to side-lobe gain ratio (MSR) is defined as
MSR ∆

= 10 lg
(
Gmax/Gmin

)
dB. A large MSR means that

the antenna has strong radiation in the main-lobe while a
small MSR implies energy leakage in the side-lobe. Due to
the proximity of locations, the BSs may interfere with the
UEs associated with other BSs. Let UEji(ji ∈ Ki) be the
UE scheduled by BSi. Also, for any UEj , let BSij be the BS
that UEj subscribes to (j ∈ Kij ). The Signal-to-Interference-
Noise-Ratio (SINR) at UEj can be written as

SINRj,ij =
pj,ijG

UE
j,ij
GBS
j,ij
|hj,ij |2d

−η
j,ij∑

`∈M, 6̀=i pj`,`G
UE
j,` G

BS
j,` |hj,`|2d

−η
j,` + σ2

, (2)

where pj,i denotes the transmit power of BSi to UEj if UEj
is served by BSi; η is the path-loss factor; σ2 = N0W is the
power of the random Gaussian noise (N0 is the noise power
spectrum density); hj,i is the small-scale fading between
UEj and BSi which is assumed to follow the Nakagami-m
distribution [19] with probability density

f(h;µ,Ω) =
2µµ

Γ(µ)Ωµ
h2µ−1exp

(
−µ

Ω
h2
)
, h ≥ 0, (3)

1This can be achieved by letting each BS synchronizing with the GPS or
other synchronization mechanisms.

where µ ∆
= E[h2]2

Var(h2) , Ω
∆
= E[h2] and Γ is the Gamma function.

We assume a block fading channel where the fading coeffi-
cients stay unchanged during each frame and are i.i.d. over
different frames2. We further define the equivalent channel
gain gj,ij between UEj and BSij as gj,ij

∆
= SINRj,ij/pj,ij if

UEj is scheduled and pj,ij 6= 0.

B. Payoff Maximization

Each BS is subject to an instantaneous peak transmit (TX)
power constraint in each slot, i.e.,

∑
j∈Ki

pj,i ≤ pmax
i . Since

it is assumed that at most one UE can be scheduled at a time,
we have pji,i ≤ pmax

i where UEji is the scheduled UE by
BSi. Let p ∆

= {pji,i}i∈M denote the TX powers of the BSs to
their respective scheduled UEs. We consider a general form
of payoff function (for a unit time duration of one second) for
each BS defined as

Ri(p)
∆
= αiW log (1 + SINRji,i)− βipji,i, (4)

i.e., the payoff of BSi is the throughput of its scheduled UE
(weighted by αi) plus a power penalizing term (weighted
by βi). The weights αi, βi ≥ 0 can be tuned manually or
determined using some algorithms3 in order to find a desirable
trade-off between throughput and power consumption. In
particular, the ratio αi/βi determines the relative importance
of throughput maximization to power consumption. If αi/βi
is very large, eq. (4) becomes equivalent to maximizing the
throughput Ri(p) ≈ αiW log (1 + SINRji,i). Note that the
solution becomes trivial when either αi or βi is equal to zero.
For any given set of scheduled UEs {ji}i∈M, we aim to find
efficient power allocation schemes to maximize the sum payoff
R(p) of all BSs R (p)

∆
=
∑
i∈MRi(p). Let p(t) denote the

power allocation profile in slot t. Our goal is to maximize the
long-term average payoff

R̄ = lim
T→∞

1

T

T∑
t=1

R (p(t)) . (5)

The challenge lies in that this sum payoff maximization
problem must be solved in a distributed manner, that is, there is
no centralized control or coordination among the BSs as they
belong to different operators. It should also be noted that the
above formulation is not particular to any specific scheduling
method so new scheduling methods can be developed under
the same framework and be effectively evaluated by comparing
to previous methods.

III. PROPOSED APPROACH

Under the general formulation in Section II-B, we propose
to solve the payoff maximization problem (5) using Q-learning
by modeling each BS as an independent learning agent that
interacts with the radio environment which is governed by the

2Although UE mobility is not considered here, the proposed approach still
applies if the UEs have mobility to some extent for which the proposed
approach can keep track of.

3An example is presented in Section V-A where the weights are determined
by the queue values derived from the Lyapunov optimization framework.



collective behavior of all agents and channel uncertainty. By
properly defining the state space and rewards, the proposed
learning-based beam scheduling and power allocation is able
to outperform the game-theoretic (GT) approach [9] – a
previously developed iterative power allocation algorithm for
the considered mmWave scheduling problem, especially in the
interference-limited regime. In the following, we first present
a brief background of Q-learning and then proceed to the
description of the proposed approach.

A. Q-learning Preliminary

In RL, an agent interacts with the environment by making
decisions that may affect the state of the environment in
a sequence of discrete time steps. In particular, at time t,
based on the observation of the current state s(t) of the
environment, the agent takes an action a(t) according to a
policy π as a(t) ∼ π(·|s(t)) with a special case of being
deterministic with a(t) = π(s(t)). After taking the action, the
agent receives an immediate reward r(t) which indicates the
quality of the chosen action a(t) in state s(t). As a result of the
above interaction, the environment transitions to a new state
s(t+1). The goal of RL is to maximize the agent’s long-term
expected return G(t) defined as G(t) ∆

=
∑∞
k=0 γ

kr(t+k+1),
where γ is the discount factor which indicates the importance
of future rewards. Model-free RL aims to find a an optimal
policy π∗ that maximizes the expected return G(t) by learning
directly from the agent-environment interactions represented
by a set of quadruples

{
(s(`), a(`), r(`), s(`+1)) : ` ≤ t

}
called

experience (up to time t), without any specific knowledge of
the underlying transition probabilities of the environment.

Q-learning is a model-free off-policy learning algorithm
for estimating the optimal action-state values q∗(a, s) for
each action-state pair (a, s) ∈ A × S (A and S denote the
action and state space respectively). Let Q(s, a) denote an
estimate of q∗(a, s). At time t, the agent chooses its action
using the ε-greedy action selection method, that is, with a
small probability ε (also termed as exploration rate), the agent
chooses a random action in A; otherwise it chooses a greedy
action a(t) = arg maxa∈AQ(a, s(t)). After the selection, the
action-state values are updated according to

Q
(
a(t), s(t)

)
← (1− lr)Q

(
a(t), s(t)

)
+ lr

(
r(t) + γmax

a∈A
Q
(
a, s(t+1)

))
, (6)

and Q (a, s) does not update if (a, s) 6= (a(t), s(t)). lr ∈ (0, 1]
is the learning rate which determines to what extent the
new estimate r(t) + γmaxa∈AQ

(
s(t+1), a

)
overrides the old

estimate Q
(
a(t), s(t)

)
. Q-learning usually employs a tabu-

lar representation [Q(a, s)]|A|×|S|, the Q-table, to store the
estimated action-state values. For continuous action or state
spaces, function approximators (e.g., linear, DNN) can be
used [20], [21]. For a stationary underlying transition model,
the Q-learning algorithm converges to with probability one
asymptotically if 1) The learning rate lr(t) at time t satisfies∑∞
t=1 lr(t) = ∞,

∑∞
t=1 lr(t)

2 < ∞, and 2) Every action-

state pair is visited infinitely many times. For optimizing an
expected return over a finite horizon T , a constant learning
rate lr can be used.x’f

B.

One key feature of the learning-based methods, specifically
Q-learning that will be used in this work, is the ability to adapt
by learning from experience and exploring, going beyond the
mere greedy nature of the game-based methods. One major
challenge in the considered mmWave scheduling problem is
how to handle the strong interference due to the lack of
centralized coordination of beams. Being purely greedy in
this scenario can potentially hurt the overall performance. In
particular, if we model each BS as a non-cooperative game
player that myopically focuses on maximizing its own payoff
(say the throughput) in each slot, then each BS will always
choose the maximum power to transmit since it gets maximum
throughput from this decision. However, if the beams of
different BSs overlap, there will be very strong interference at
the scheduled UEs, which in turn yields a small network-level
payoff (also see Section IV-B for a detailed analysis). What
is even worse is that this situation can happen over and over
again as the BSs do not learn from these bad experiences.
In contrast, if we model each BS as a Q-learning agent,
the case of overlapping beams can still occur. However, the
decisions of the BSs can be very different from the game-based
methods. First, each BS can explore non-greedy actions using
the ε-greedy action selection, partly avoiding the maximum
TX power dilemma. Second, each BS can also learn from its
past experience to improve the performance. If the overlapping
beam situation happens and the BS has chosen the maximum
power, then it will receive a small reward (r(t) in (6)) due to
strong inter-cell interference. This will inform the BS to avoid
using maximum power in similar situations in the future and
thus improves the long-term throughput performance.

C. Proposed Beam Scheduling and Power Allocation

Due to the adaptation ability of Q-learning as described
in the previous section and its simplicity, we focus on ap-
plying the classical Q-learning algorithm to the considered
mmWave scheduling problem. In particular, we model each
non-cooperative BS as an independent learning agent that
implements the Q-learning algorithm presented in the previous
section in parallel. The key Q-learning components for each
agent are defined as follows.

1) Environment: Each agent interacts with the physical radio
environment governed by the collective behaviors, e.g.,
UE scheduling, TX powers, beam generation, etc., of the
BSs subject to random channel realization.

2) Action: The action for BSi in each slot is the TX power
p

(t)
ji,i

. To use the tabular representation of Q-learning, the
action and state spaces must be discrete. Therefore, we
quantize the TX power range [0, pmax

i ] uniformly into Pq
discrete levels Pq = {p1

i , p
2
i , · · · , p

Pq

i } to represent the



action space where

pji = (j − 1)
pmax
i

Pq − 1
, j ∈ {1, · · · , Pq}. (7)

This means p1
i = 0 and pPq

i = pmax
i . The same uniform

power quantization is used by all BSs.
3) Observation: Each BS’s observation of the environment

is defined as the received (RX) interference (plus noise)
at its scheduled UE. Let Iji,i denote the measured RX
interference at UEji . Suppose Iji,i follows a (possibly
unknown) distribution Dji,i over the range [Imin

ji,i
, Imax
ji,i

]
with Imin

ji,i
and Imax

ji,i
being the minimum and maximum

possible interference respectively. The RX interference
also needs to be quantized in order to be represented by
a discrete state. We propose a percentile-based quanti-
zation method as follows. We first derive Iq percentiles
Iq = {I1, I2, · · · , IIq} over the distribution Dji,i. This
means that the probability that Iji,i falls into any in-
terval (Ij , Ij+1] is identical and is equal to 1/Iq,∀j ∈
{1, · · · , Iq − 1}. If the measured interference Iji,i falls
into the interval (Ij , Ij+1], we say that the observation
of BSi is ‘state j’. Therefore, the state space of BSi
can be represented by Si = {1, 2, · · · , Iq}. The proposed
quantization method guarantees that each state will be
visited approximately the same number of times in the
long run which facilitates convergence. An illustration of
the percentile-based quantization method with Iq = 10
states is shown in Fig. 3. We assume all BSs use the
same number of states. It should be noted that the UE
interference distributions are not know by the BSs so they
have to be estimated (See the Training phase later in this
section), after which the above state quantization can be
performed.

Fig. 3: Percentile-based interference quantization with ten levels
based on an empirical interference distribution.

4) Reward: The reward of BSi in slot t is defined as

r
(t)
i

∆
= αi

(
TsW log

(
1 + SINR(t)

ji,i

))
− βi

(
Tsp

(t)
ji,i

)
,

(8)
where SINR(t)

ji,i
is the SINR at UEji in slot t. The goal of

BSi is to maximize the long-term expected (discounted)
return

G
(t)
i =

∞∑
k=0

γkr
(t+k+1)
i (9)

starting from any time t. It should be noted that when
the discount factor γ is close to 1, eq. (9) can be used to
approximate (5) after averaging over time.

With the above definitions of the action, observation/state
and the reward function, we propose to solve the sum payoff
maximization problem (5) by letting each BS ‘selfishly’ max-
imize its own average payoff R̄i

∆
= limT→∞

1
TRi(p(t)). To

do this, we model each BS as an independent learning agent
implementing the ε-greedy action selection method with the
goal of optimizing its long-term expected return (9). For a
any finite T and γ ≈ 1, optimizing R̄i = 1

T

∑T
t=1Ri(p(t))

becomes equivalent to optimizing (9). Therefore, we have
provided a fully distributed approach using Q-learning in
a multi-agent scenario. The proposed beam scheduling and
power allocation scheme consists of a training phase followed
by an execution phase, which are described as follows.

Training Phase: This phase is to estimate the empirical
distribution of the RX interference at each UE so that the
interference quantization can be performed. In particular, for
the set of scheduled UEs {ji}i∈M, we run Ttrain frames of
‘simulated scheduling’ in which the TX powers of the BSs are
chosen randomly from Pq in each slot and the wireless chan-
nels are subject to change from frame to frame. We record the
interference at each scheduled UEji in all the training frames
and derive an empirical interference distribution D̂ji,i, which
will be used to quantize the RX interference in the execution
phase. Note that during the training phase, although the powers
are randomly selected, the BS/UEs still achieve some data
throughput in each slot. Moreover, this training phase only
needs to be done once before the ‘real’ scheduling begins,
so the overhead induced by this phase becomes negligible if
we consider the scheduling problem over a large number of
frames.

Execution Phase: Beam scheduling and power allocation
happen in this phase where the frame structure of Fig. 2
is used. Since we do not consider UE scheduling in this
paper, the UEs can be scheduled randomly or in a round
robin manner in different blocks. Therefore, we focus on the
application of the proposed scheduling approach in one block.
Each BS implements the Q-learning algorithm as follows. At
the beginning of slot t, based on the current state which is
defined as the quantized RX interference at UEji in slot t− 1
(this interference is measured by UEji and then feedback to
BSi), BSi chooses TX power p(t)

ji,i
according to the ε-greedy

action selection method, and then generates a beam towards
UEji and starts the data transmission. Note that no beams
will be generated if p(t)

ji,i
= 0. After the beam generation,

BSi updates its Q-table according to (6) where the next state
s(t+1) is defined as the quantized RX interference at UEji
in slot t (after the power selection), and the reward r

(t)
i is

defined in (8). The above process is repeated until the end of
the current block. The proposed approach, performed in one
block, is summarized in Algorithm 1. We use the notation
[n]

∆
= {1, 2, · · · , n} for n ∈ N.

Remark 1: In Algorithm 1, the Q-tables of the BSs are



Algorithm 1 Proposed Beam Scheduling & Power Allocation:
Execution Phase

1: Input: Pq, Iq, Nb, α, β, γ, ε, lr and {ji}i∈M.
2: Initialization: Each BSi initializes Q-table as Qi(a, s) =

1,∀(a, s). Set t = 1.
3: Step 1: BSi chooses TX power p(t)

ji,i
in slot t according to

p
(t)
ji,i

=

 randomly pick from Pq, w.p. ε
pâ, â = arg max

a∈[Pq ]
Qi
(
a, s(t)

)
, w.p. 1− ε

BSi generates a beam towards UEji if p(t)
ji,i
6= 0 and starts

data transmission. Continue for one slot.
4: Step 2: Each BSi updates its Q-table as: let Qi(a, s) ←
Qi(a, s), if (a, s) 6= (a(t), s(t)); let Qi(a, s) ←
(1− lr)Qi(a, s) + lr

(
r

(t)
i + γmaxa∈[Pq ]Qi

(
a, s(t+1)

))
,

if (a, s) = (a(t), s(t)).
5: Step 3: t← t+ 1. If t ≤ Nb, go back to Step 1, else stop.
6: Output: Average reward of all BSs.

initialized with all one matrices, i.e., the initial value estimate
are set to be Qi(a, s) = 1,∀a, s. This is termed as the principle
of being optimistic in the face of uncertainty which is widely
used in value-based RL applications.

Remark 2 (Complexity): For each BS, the storage complex-
ity of the proposed algorithm is O

(
KPqIq
M

)
(supposing each

BS is associated with the same number of UEs) since each
BS has to store a Q-table of size Pq× Iq for each of its K/M
associated UEs. In the execution phase, the implementation
complexity per slot is O (max{Pq, Iq}) which is due to the UE
interference quantization (O(Iq)) and greedy action selection
(O(Pq)). The Q-table update has complexity O(1). It can
be seen that both the storage and implementation complexity
scale linearly with the number of discrete powers and inter-
ference states, and the storage complexity also scales linearly
with the number of UEs. This linear scaling is acceptable in
general. Our experiments in Section IV show that the typical
values of Pq = 10, Iq = 20 suffice to achieve the near-
optimal (by letting Pq, Iq being arbitrarily large) performance
for the considered network in the experiment with four BSs
and twelve UEs in total.

IV. EVALUATION

A. Experiment Setup

We consider a cellular network (see Fig. 4) with four BSs
each belonging to a different operator. Each BS is associated
with three UEs located in its coverage area. Let l = 20 meters
be the height of the BS antenna. UE antenna height is assumed
to be zero. Therefore, the distance from BSi to UEj is equal
to dj,i =

√
l2 + d̄2

j,i where d̄j,i is the planar distance between
BSi site and UEj . The system has a shared bandwidth of W =
400 MHz with a center frequency at 37 GHz. Each BS is

Fig. 4: Locations of the BSs and UEs on a 100×100 meter2 planar
grid. UE (j, i) represents the jth UE of BSi.

subject to a peak power constraint pmax
i = 39 dBm (7.94

Watt). Noise power is calculated according to

σ2 (dBm) = 10 lg(κBT0 × 103) + NR (dB) + 10 lgW

where κB = 1.38 × 10−23 J/K is the Boltzmann’s constant,
NR is the UE noise figure and T0 is the temperature. Taking
the typical values of NR = 1.5 dB and T0 = 290 K, the
total noise power over the 400 MHz bandwidth is equal to
σ2 = −86.46 dBm. We examine beam scheduling and power
allocation in one block with Nb = 100 slots. Each slot has a
duration of one milli-second. The physical environment and
learning parameters are listed as follows:

Parameter Value
exploration rate ε 0.05
discount factor γ 0.9
learning rate lr 0.1
pmax
i ,∀i ∈M 7.94 Watt

noise power σ2 −86.46 dBm
pass loss η 4

Nakagami fading Ω, µ 100, 104

block size Nb 100 slots
slot duration Ts 1 millisecond
antenna height l 20 meters

B. Baseline Scheme

Game-Theoretic (GT) Power Allocation: In [9], a non-
cooperative game-based power allocation was proposed for
distributed interference management in mmWave networks. In
particular, each BS was treated as an independent player that
selfishly attempts to maximize its own payoff, defined in the
form of (4). A parallel power adaptation scheme was proposed
based on the the concept of best response in game theory. In
each slot, BSi updates its power according to

p
(t+1)
ji,i

=

[
αiW

βi
− 1

g
(t)
ji,i

]pmax
i

0

, (10)



where g(t)
ji,i

∆
= GBS

ji,i
GUE
ji,i
|hji,i|2d

−η
ji,i
/(I

(t)
ji,i

+ σ2) is the equiva-
lent channel gain between BSi and UEji in slot t. g(t)

ji,i
can be

obtained by BSi by letting UEji measure the RX interference
(plus noise) I(t)

ji,i
+ σ2 and then sending back to BSi. The

Euclidean projection operator [·]ba is defined as [x]ba = a if
x < a, [x]ba = b if x > b and [x]ba = x if x ∈ [a, b]. The above
power adaptation is proved to converge to Nash equilibrium
under certain conditions.

Drawback of the GT power allocation: The GT power
allocation has a disadvantage due to its greedy nature: it
may perform poorly in the high interference regime. This
is because, for example, for the case of βi ≈ 0, each BS
only aims to maximize its own throughput. The solution
to GT is always choosing the maximum power to transmit,
regardless of the interference. This may cause severe interfer-
ence if the scheduled UEs are close to each other or there
is beam overlapping (See Fig. 5), and thus dampening the

UE 1 UE 2

BS 1

BS 2

UE 1 UE 2

BS 1

BS 2

Fig. 5: BS colocation and and closely located UEs (left). There is
strong interference due to beam overlapping. GT cannot distinguish
between these two cases.

overall performance. However, our proposed Q-learning-based
approach can overcome the above disadvantage by adapting
to the physical environment (via observation and action-state
value update) which is governed by the joint behaviors of
all the agents. Each BS may make decisions other than
maximum power based on the current interference state and
its experience. For example, for the overlapping beam case,
if all BSs are transmitting with high powers, being greedy
by choosing a large TX power will emit a small reward as
all UE are experiencing strong interference. By learning from
the small reward, the proposed approach can shift to a lower
power to explore new possibilities of higher reward. However,
the GT allocation will be greedy and unable to adapt. Another
drawback of the GT method is that it operates with continuous
power which is infeasible in practice. However, quantization
of TX power will inevitably incur performance loss by the
adaptation rule of (10). In Section IV-C, we verify the effect
of multiple factors that affect the performance of the proposed
approach and show that the performance can be significantly
enhanced over GT.

C. Results

We compare the proposed approach with the GT power
allocation and verify the effect of the reward weights α, β, the
number of power levels and interference states and the BS/UE
antenna gain and beamwidth. Throughout the experiment, we

assume that all UEs have omnidirectional antennas.4 We fix
α = 1 for all BSs and and let β = 0 and β = 0.1W = 4×107

to verify its effect.
1) Effect of Pq and Iq: The BS antenna MSR and

beamwidth are chosen to be 20 dB and 30◦ respectively. The
1st UE of each BS is scheduled. This UE selection represents
the behavior of the cell-edge UEs which usually suffer from
strong interference from neighboring BSs. This phenomenon
is even more prominent in ultra-dense small BS 5G cellular
networks. To verify the effect of Pq , we fix Iq = 10 and
let Pq ∈ {10, 20, 40}. Figs. 6a and 6c show the effect of Pq
for β = 0 and 0.1W respectively. Each curve represents the
average reward achieved up to the current slot, averaged over
50 independent trials each containing a set of i.i.d. channel
realizations. For both values of β, it can be seen that the
proposed approach outperforms GT. For β = 0, the proposed
approach achieves 23% to 39% more average reward than
GT in the 100th slot. For β = 0.1W , the proposed approach
achieves 63% to 87% more average reward than GT. Moreover,
the average reward increases as Pq increases because larger Pq
provides more choices for power selection. To verify the effect
of Iq , we fix Pq = 10 and let Iq ∈ {2, 4, 8, 16}. Figs. 6b
and 6d show the result. For both β = 0 and 0.1W , the
achieved average reward of the proposed approach increases
as Iq increases. For β = 0, when Iq = 2, the proposed
approach achieves a similar performance to GT. However,
when Iq = 16, there is a 33% reward gain compared to GT.
For β = 0.1W , the proposed approach achieves 24% to 80%
more reward than GT from Iq = 2 to Iq = 16. The effect of Iq
is expected because when there are more interference states for
each agent, the decision making of each agent becomes more
flexible and can cater to the specific interference condition
according the agent’s past experience.

2) Effect of beamwidth and MSR: The effect of beamwidth
and MSR are shown in Fig. 7 and Fig. 8. We fix β = 0.1W .
In Fig. 7, the first UE of each BS is scheduled. These UEs
represent the cell-edge UEs. We compare the performance of
the proposed approach with GT under the BS antenna config-
urations (20 dB, 30◦), (30 dB, 20◦) and (40 dB, 10◦). For the
first two cases with BS beamwidth 30◦ and 20◦, the proposed
approach achieves 87% and 134% more reward than GT. GT
performs poorly in these cases by being greedy to choose the
maximum power because there is beam overlapping which
causes very strong interference to the non-target UEs due to
high TX powers. This implies that the proposed approach has
much better performance than GT in the interference-limited
regime. However, when the beamwidth is further reduced
to 10◦, the proposed approach achieves a similar reward to
GT. This is because in this case, BS beams are very sharp
so they cause little interference to non-target UEs. It has
been shown by [9] that when the interference level is very
low, GT achieves near-optimal performance. Therefore, the
proposed approach also achieves near-optimal performance in

4Since varying the UE antenna MSR and beamwidth has a similar effect
to that of the BS antenna, we use omnidirectional UEs in the experiment.



(a) Effect of Pq when β = 0, Iq = 10. (b) Effect of Iq when β = 0, Pq = 10.

(c) Effect of Pq when β = 0.1W , Iq = 10. (d) Effect of Iq when β = 0.1W , Pq = 10.

Fig. 6: Effect of Pq and Iq for different β. BSs have MSR of 20 dB and beamwidth 30◦, UEs are omnidirectional.

this case. Fig. 8 shows the case when the third UE of each

Fig. 7: Proposed approach (solid lines) vs. game-based approach
(dash lines) when the 1st UE of each BS is scheduled.

BS is scheduled. Due to their separate locations, these UEs
receive less interference and represent the cell-center UEs,
which usually have high SINR. It can be seen that for any
of the considered BS antenna configurations, the proposed
approach outperforms GT by a small margin, and the margin
diminishes as the beams become sharper (see the extreme case
(40 dB, 10◦)). The reason for this competitive performance
is that the interference level is relatively low because the
scheduled UEs are sparsely distributed. This demonstrates that
the proposed approach is at least as good as GT in the high
SINR regime.

Fig. 8: Proposed approach (solid lines) vs. game-based approach
(dash lines) when the 3rd UE of each BS is scheduled.

V. EXTENSIONS

A. Incorporation of the Lyapunov Optimization Framework

One interesting aspect of the proposed approach is that the
weights α, β can be automatically determined if we apply
the Lyapunov optimization framework on top of the proposed
power allocation algorithm. More specifically, let us consider
the following utility maximization problem

max
∑
i∈M

∑
j∈Ki

U(X̄j,i) (11a)

s.t.
∑
j∈Ki

p̄j,i ≤ Tfpavg
i , ∀i, (11b)

pji,i(k, n) ≤ pmax
i , ∀i, k, n, (11c)



where pji,i(k, n) is the TX power of BSi in the nth block
of the kth frame. Each BSi is subject to a long-term average
and an instantaneous peak power constraint pavg

i and pmax
i

respectively. p̄j,i represents the average power consumption
of BS i to UE j in all frames. X̄j,i denotes the average
number of received bits by UEj in each frame and is referred
to as the average throughput in the following. U represents
the utility function, e.g., fairness function which is concave
and non-decreasing and thus ensures fairness among the BSs.
Using the Lyapunov stochastic optimization framework [22],
the above problem can be decomposed into two sub-problems
to be solved in each frame, together with two virtual queues
to enforce the average constraints. In particular, the first sub-
problem aims to solve the auxiliary variables γj,i(k):

max
∑
i∈M

∑
j∈Ki

V U(γj,i(k))−Hj,i(k)γj,i(k) (12a)

s.t. 0 ≤ γj,i(k) ≤ TfW log
(
1 + gmax

j,i (k)pmax
i

)
, ∀i, j, k

(12b)

where V is a constant. gmax
j,i (k)

∆
= maxn gj,i(k, n) denotes the

maximum equivalent channel gain in the kth frame. Hj,i(k)
is the UE throughput queue which is updated by

Hj,i(k + 1) = max {Hj,i(k) + γj,i(k)−Xj,i(k), 0} ,
∀i ∈M,∀j ∈ Ki. (13)

The second sub-problem aims to solve the TX powers
pj,i(k, n):

min
∑
i∈M

∑
j∈Ki

 ∑
n∈[Nf ]

E
[
T dj,i(k, n)pj,i(k, n)

]
− Tfpavg

i


× Zi(k)−Hj,i(k)X̂j,i(k) (14a)

s.t. 0 ≤ pj,i(k, n) ≤ pmax
i , ∀i, k, n (14b)

where

X̂j,i(k)
∆
=

Nf∑
n=1

E
[
T dj,i(k, n)W log (1 + SINRj,i(k, n))

]
denotes the expected throughput of UEj in the kth frame.
T dj,i(k, n) denotes the data transmission time for UE j by BS
i during block n of frame k. Zi(k) is the TX power queue
which is updated by

Zi(k + 1) =

max

{
Zi(k) +

∑
j∈Ki

∑
n∈[Nf ]

T dj,i(k, n)pj,i(k, n)− Tfpavg
i , 0

}
,

∀i ∈M. (15)

Note that the objective of (14a) has the same form as
the payoff function (4) if we choose αi = Hj,i(k)Nb,
βi = Zi(k)Nb. More specifically, given that UEji is scheduled,
each BSi has an objective function Hji,i(k)X̂ji,i(k, n) −
Zi(k)E

[
T dji,i(k, n)pji,i(k, n)

]
(the constant term Tfp

avg
i is

omitted as it does not affect the optimal solution) to maximize

in block n, where X̂j,ij (k, n) is UEji ’s throughput in block
n. By letting E[T dji,i] = Tb, i.e., the scheduled UE will be
receiving data during the entire block, the objective becomes
αiTsW log(1 + SINRji,i(k, n))− βiTspji,i(k, n). This objec-
tive can be optimized by maximizing the sum or average
throughput in the Nb slots in block n. In this way, the proposed
approach can be used to (approximately) solve the second sub-
problem (14) in each block in a distributed manner. It can be
seen that the reward weights αi, βi are optimally determined
by the virtual queues derived from the Lyapunov optimization
framework. In [9], the GT method (10) was used to solve the
second sub-problem. Since we have shown that the proposed
approach outperforms GT in a single block, it is expected
to also achieve higher utility than GT when the Lyapunov
framework is applied. Fig. 9 shows the achieved utility when
the utility function U(x) = x3/5 is used and under the same
experiment setup as in Section IV. BS beamwidth and MSR
are chosen as 30◦ and 20 dB while the UEs are ominidirec-
tional. It can be seen that the proposed approach achieves 29%

Fig. 9: Proposed approach (red) vs. game-based approach (blue)
when the Lyapunov framework is applied.

more utility (at the 50th frame) than GT when the first UE of
each BS is scheduled and 7% more when the second UE is
scheduled. For the cell-center UEs, i.e., the third UE of each
BS, the proposed approach achieves a similar utility as GT but
with a faster convergence. The queue values of BS1 when the
first UE is scheduled is shown in Table I. It can be seen that
β1/α1 = Z1(k)/H1,1(k) ≈ 0,∀k. This mimics the behavior
of the proposed power allocation algorithm when there is a
very small penalty on power consumption.

TABLE I: Virtual queue values corresponding to BS1.

Frame index k 10 20 30 40 50
Z1(k) 0 0.24 0 0 0

H1,1(k)/109 3.87 0.14 3.92 1.90 0.11



B. Practical Consideration

As discussed in Section III-C, the proposed approach adopts
a per-BS storage complexity of O

(
KPqIq
M

)
and a per-BS per-

slot execution complexity of O (max{Pq, Iq}). The storage
complexity scales linearly with the number of UEs per BS
and the execution complexity does not depend on the number
of UEs. This demonstrates the scalability of the proposed
approach. However, to implement it on real-world cellular
networks, there are still several practical considerations. First,
in the proposed approach, the interference at the scheduled UE
needs to be measured in each slot and then reported back to
the associated BS. The measurements that can be configured at
the UE for the relevant cellular systems, 5G and Beyond, has
to be analyzed for an implementation. Second, it is assumed
in the proposed approach that the channels are block-fading
and do not change within the duration of each scheduling
block. Verification with real world cellular conditions will be
appropriate for an implementation of this solution.

VI. CONCLUSION

In this work, we studied the problem of distributed beam
scheduling and power allocation for non-cooperative mmWave
networks. We presented a unified framework, with a flex-
ible network payoff function definition, that can be used
for systematic performance evaluation and comparison of
different scheduling methods. Furthermore, we proposed a Q-
learning-based approach using an independent agent modeling
where each BS can adaptively control its transmit power for
different interference conditions based on its experience and
active exploration of non-greedy actions. Experiments showed
that the proposed approach outperforms the non-cooperative
game-based approach in the sense that they achieve simi-
lar performance in the high SINR regime but the proposed
approach beats the game-based approach by a large margin
in the interference-limited regime. In addition, the proposed
approach can be integrated into the Lyapunonv stochastic
optimization framework for the purpose of network utility
maximization. In this case, the weights in the reward function
are automatically and optimally determined by the virtual
queues.
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