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Superconfiguration Calculations Using
Green’s Functions
A New STA Opacity Capability at Los Alamos

Matt Gill, XCP-5
Chris Fontes, Charlie Starrett
09/06/2022




» Overview of Superconfigurations and STA Opacity
« Superconfiguration electronic structure calculation
—SCF Procedure
—Green'’s function approach

* Influence of different continuum electron treatments

—Challenges for high density plasmas

« Comparisons to Z experiments
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Superconfigurations

« Group together atomic Configurations:
_ C = [lsecs%, e.g. C = 1s%2p?
subshells into supershells ”
: : Supershells:
« Superconfiguration (SC) P
determined by supershell o= 1_[5
. Seo
occupation
Superconfigurations:
« SCs can represent many g ?
. . : = 1_[ glo
different configurations
o)

e.g. 2= (1s 25 2p)3(3s 3p 3d)*(4s ... 10k)"

Bar-Shalom et al, Phys. Rev. A, 40 (6), 1989
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STA Opacity

« SC gives one “average”
_ ; electronic structure to represent
Iron Opacity, 175 eV, 0.001 g/cm all constituent configurations

« Super Transition Array (STA)

E | | I I 1 I | I I I I? )
1()6; ~50,000 configurations j i ?’Eﬁl\glscu’pgghells E: formallsm used to generate
E | supercontieurations 1  representative opacities from
@ E SCs
'y - STA spectra replace many
2 g .
g transition arrays with fewer,
@)

broader STAs
« Statistical moments (average

| | | | | | opacity, transition energies,

500 750 1000 1250 1500 1750 variance of arrays)
Photon Energy (eV) .
approximately the same as that

of “true” spectra
» Refine SCs - Resolve Opacity
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STA Opacity

« SC gives one “average”
electronic structure to represent
all configurations

S - Super Transition Array (STA)

— ATOMIC, CA formalism used to generate

—— STA, 4 supershells . .
representative opacities from
SCs

» STA spectra replace many
transition arrays with fewer,
broader STAs

« Statistical moments (average
| | | | | | opacity, transition energies,
500 750 1000 1250 1500 1750 Variance Of al"rayS)
Photon Energy (eV) .
approximately the same as that
of “true” spectra

» Refine SCs - Resolve Opacity
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Iron Opacity, 175 eV, 0.001 g/cm3

~50,000 configurations

50 superconfigurations

|I|'|T|'| T IIII|T|'| UL

[
o
LiLLL

Opacity (sz/ 2)




STA Opacity

« SC gives one “average”
electronic structure to represent
all configurations

« Super Transition Array (STA)
formalism used to generate
representative opacities from
SCs

» STA spectra replace many
transition arrays with fewer,
broader STAs

« Statistical moments (average
opacity, transition energies,

Iron Opacity, 175 eV, 0.001 g/cm3

T | T | T T | T | T
we - ATOMIC, CA
—— STA, 7 supershells

~50,000 configurations

200 superconfigurations

S
|||II|'|T| IIIII|T|| T 1T
IIlIl|,|,|,| IIIII[J_Il IIIIH,I]

Opacity (cmz/g)

N I U ST B R _
500 750 1000 1250 1500 1750 variance of arrays)

Photon Energy (eV) .
approximately the same as that

of “true” spectra
» Refine SCs - Resolve Opacity
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Superconfiguration Electronic Structure

® + lon-Sphere Model
(15)2(252p)®(353p3d)  (4sdp .. 10k)2 1 prore MOTE

— Finite sphere size based on plasma

mass density (cuts off high n orbitals)

— Plasma screening through boundary

| condition (fields perfectly screened
ny (1) outside sphere)
@ ‘n(r) =n,(r) + nc(r)’ — Sphere charge neutral
i » Solve self-consistent field (SCF)

equations

— Nonrelativistic and fully relativistic

modes

@ — Orbitals and occupations used to
Enl ’ Pnl

construct electron density
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Superconfiguration Electronic Structure

@ * lon-Sphere Model
(15)2(252p)8 (353p3d) 1 (454D ... 10k)? P

— Finite sphere size based on plasma

mass density (cuts off high n orbitals)

— Plasma screening through boundary

| condition (fields perfectly screened
ny (1) / outside sphere)
_ — Sphere charge neutral
@ | O=mn0+n0),
i » Solve self-consistent field (SCF)

equations

— Nonrelativistic and fully relativistic

modes

@ — Orbitals and occupations used to
Enl ’ Pnl

construct electron density
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Continuum Electron Density

(0]

1
AEFEs (I = -—3 [ dBFEITIGE, )

Emin

(0.0)

ne(7) = j

1
= 2kgT E RTrG (7, z;) +;Sfdzf(z)TrG(f’,z)
. C
l

min

* Integration over real energy changed to integration over complex

energy
* Integrand is smoother the larger the imaginary part of the energy,
3(2)
* No approximation — Cauchy’s integral theorem

Starrett et al, Comp. Phys. Comm., 235 (50-62), 2019
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Complex Contour

Cauchy’s integral theorem: | f(z)dz = ZﬂizReS f(z) = jf(Z)dZ +J f(z)dz
ccC ; C —00

1
— n(7) = 2kgT E RTrG (7, z;) +;dezf(z)TrG(77,Z)
. C
l

Im|z]
Matsubara poles at
4+« z=pHn(2-1) kT
RIS E— <~———————— El=7r.kBT 2N
| 1
| |
| + {
I
v A
|
|
: Discrete bound |
| states + {
| .
| / \ Continuum states {
L * , = Re[z]
Emin u max

Starrett, HEDP, 16 (18-22), 2015
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Complex Contour

Density of States (DOS) along contour broadened by
Lorentzian: FWHM proportional to imaginary part of
energy

_1m 3(2) :
1@ = 2] e s maR )

Im|z]
Matsubara poles at
4+« z=pHn(2-1) kT
RIS E— <~———————— El=7l:kBT 2N
' |
' |
| + |
I
I
v A
|
: Discrete bound |
| states + :
| .
| / \ Continuum states :
I * ¥ T * RC[Z]
E
I::min u max

Starrett, HEDP, 16 (18-22), 2015

Los Alamos National Laboratory 09/06/2022 | 11



Density of States Along Contour

Iron 120 eV, 0.5 g/cm?3
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Density of States Along Contour

Iron 120 eV, 0.5 g/cm?3
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Continuum Supersheli

For Example, Iron Z=26

E = (15)* (25 2p)° (3s 3p 3d)* (45 ... 6f)°
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Continuum Supersheli

For Example, Iron Z=26

E = (15)* (25 2p)° (3s 3p 3d)* (45 ... 6f)°

Highest Orbital Predicted by
average atom calculation

Los Alamos National Laboratory 09/06/2022 | 15



Continuum Supersheli

For Example, Iron Z=26

E = (15)* (25 2p)° (3s 3p 3d)* (45 ... 6f)°

|

Highest Orbital Predicted by
average atom calculation

E = (1s)* (2s 2p)® (3s 3p 3d)? (4s ...6f)*(e = 0, ..., 0)12
|

Continuum Supershell
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Continuum Supershell, Iron Example

Different SCs have different bound states and therefore
(possibly) different pressure ionization thresholds

= = (15)? (25 2p)® (3s 3p 3d)* (45 ...6f)%(6g 6h,c = 0, ..., 0)1?

Im[z]

Matsubara poles at
++ zpHn(j-1) kT

________________________ E =nk,T2N e
| < T Emin = E¢f + 0
| |
| + :
’ b “Unexpected” bound states
| Discree bound . | now part of continuum,
|States . . .
/' \ Confinuum states | occupied according to Fermi-
B ; E. weted Dirac with continuum chemical

potential
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Continuum Supershell, Iron Example

= = (15)? (25 2p)® (B3s 3p 3d)? (4s ...6f)*(6g 6h,c = 0, ..., 0)1?

Im(z]

o M ot » Stabilizes SCF procedure at high
' plasma densities

T D « If predicted orbitals become
| * | pressure ionized, still accounts for
v » them as part of continuum
| Disot bound . i (resonances)
WA Continuum states . -Breaks model consistency, but
Erin Y B less than other methods
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Opacity Near Pressure lonization

Iron 120 eV, 3.6 glcm? » Most 4f electrons near

pressure ionization

—— Free Electron Gas

Thomas-Fermi —Exist as bound states for

— Full Continuum

2p ---> 4d

/

some SCs

IIIIIIII
IIIIIllI

* Free electron ---> Weaker

T

plasma screening

 Thomas-Fermi ---> Stronger

plasma screening

100 200 300 400 500 600 700 800 900 1000 1100 1200

Photon Energy (eV) » Differences disappear for

high temperatures, extreme

densities, near-neutral
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Opacity Near Pressure lonization

Iron 120 eV, 3.6 g/em? * Electronic structure has

consistent continuum

T | T | T | T |
—— Free Electron Gas |
Thomas-Fermi tre atme nt

— Full Continuum

p/ 4d 1« EOS from SB using only

bound electrons

—Need Free Energy of

continuum to improve EOS

* Free electron/TF shift peak

PR I S E S NN R

100 200 300 400 500 600 700 800 900 1000 1100 1200 of Charge state distribution

Photon Energy (eV)

(CSD) around proper

continuum treatment
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CSD, Iron 120 eV, 3.6 g/cm?

0.5 | | | | | |
~ ¥—X Full Continuum [
»—x Free Electron Gas
0.4 — ¥—x Thomas-Fermi
> 03+ —
3
o
=02 |
0.1 — —
0> | I | I | <
10 11 12 13 14 15 16 17 18 19 20

Number of Bound Electrons
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CSD, Iron 120 eV, 3.6 g/cm?

0.5 | | | | | |

I

— »—X Full Continuum

TF ---> Higher lonization »—X Free Electron Gas
»—X Thomas-Fermi

04—

Free Electrons ---> Lower
lonization

I
o

Probability

—
b

0.1

| I | I | <
10 11 12 13 14 15 16 17 18 19 20
Number of Bound Electrons
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Correction to Transition Energies

Ec'=3 (¢ |H,+H,ldc) /g, /

éc

=g (s)+ X q,(q,—58,,){rs) .

seC rnseC
CETF T T  Need two-electron
105 ‘ eV, 0.001 g/cm
10’ , | Al corrections to get accurate
10’ | ‘ 'It" ,' |||
SN transition energies
1 l 1 l T l T l I I I I I | I | I | I
g , 175 eV, 0.01 g/em’ . _
"g 10 | * Corrections inaccurate when
: 3 ‘ | 1
3 10 | 1 N i —_ . . . .
& 0 ‘ g : ,:il “ ' - iTr%M[(:,CA pressure lonization is
— l\‘ .i‘l Lv I A AN SN NN T N
N 1T . . e .
o oy I significant, especially for
: ! II .
| | el 0~ bound-free correlations

A T RN TR B B R Bar-Shalom et al, Phys. Rev.

1 1
1qSOO 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Photon Energy (e V) A, 40 (6), 1989
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Bound-Free Interaction

<rs>%0 * Bound-Free resonances not apparent

because of edge energy corrections

Iron 120 eV, 3.6 g/cm3 failing

T T T T T

—maeman| | o TF 4f-resonance fully “dissolved” in

Thomas-Fermi
— Full Continuum

/ : continuum states

* \When electronic structure is dominated

Opacity (cm™/g)

by electrons occupying continuum

resonances, too much information lost

100
Cl I | I | I | I | I I
100 200 300 400 500 600 700 800 900 1000 1100 1200

Pron Encry <) by throwing away bound-continuum

interaction
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Pressure lonization of 3p States in Aluminum

Aluminum, 700 eV

10 ' | ' | ' | ' 7 * Independent particle
- - g CI]]3 1 T4 T
s 10 glem 1 transition energies
- — 9.0 g/lcm .
s| ﬁ n — 9.25 g/cm3 | . .
10" 0.5 w/or? 7 —Still need to improve
® 075 gom'| description of bound-
§ B 10.5 g/em 4
z ol n ” | continuum interaction
Sk ] under photo-absorption
- \ -
. D Sy * Bound-bound features
10" £/ ‘h-. — =
- 7 1 smoothly turn into
L '1 Q\Ll )\(,__.’-/ | | -
18:)0 T | I

0 bound-free features

O |1

1895 1900 1905

Photon Energy (eV)
D. J. Hoarty et al., Phys. Reuv. after pressure

Lett. 110, 265003 (2013)

jonization event
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Sandia Z Experiments

* Nonrel, natural and

10 -
10° A olda L ol N Doppler broadening
10° 3 - Different continuum

treatments not important

o ]

oz 10 — STA k=

5 Experiment| J  fOr structure or EOS
2 10 1 ‘.W'IQ'rwuuuudu*__n_ﬁ__ E

£ 10 | ~—=—..] * Nochange in

discrepancies when

111 A

10 ? comparing to experiments
10° ) E 2
o) WWJMM S Fe (180 eV, 0.16 g/cm?)
10" | | 3 Cr (180 eV, 0.16 g/cm®)
500 750 ]OOO 1 750 | SOO 1750

Photon Energy (eV) Ni (1 80 eV, 0.17 g/Cm3)
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Conclusions

» Developed superconfiguration and STA opacity codes
— Focus on robustness over wide range of plasma conditions

— Includes consistent treatment of continuum electrons using Green’s

functions and complex contour integration

« Comparisons to configuration-average calculations excellent in the isolated

atom limit and for highly charged systems

« Comparison between various treatments of electron continuum highlights

challenges of modeling dense plasmas

— EOS may need consistent level of approximation to have confidence in
CSDs

— Transition energies need reasonable inclusion of bound-continuum

Coulomb interaction
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