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A New STA Opacity Capability at Los Alamos
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• Overview of Superconfigurations and STA Opacity

• Superconfiguration electronic structure calculation

–SCF Procedure

–Green’s function approach

• Influence of different continuum electron treatments

–Challenges for high density plasmas

• Comparisons to Z experiments



Superconfigurations
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• Group together atomic 

subshells into supershells

• Superconfiguration (SC) 

determined by supershell

occupation

• SCs can represent many 

different configurations
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Configurations:
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Superconfigurations:

e.g. Ξ = 1𝑠 2𝑠 2𝑝 ! 3𝑠 3𝑝 3𝑑 "(4𝑠 …10𝑘)#

Bar-Shalom et al, Phys. Rev. A, 40 (6), 1989



STA Opacity
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• SC gives one “average” 
electronic structure to represent 
all constituent configurations

• Super Transition Array (STA) 
formalism used to generate 
representative opacities from 
SCs

• STA spectra replace many 
transition arrays with fewer, 
broader STAs

• Statistical moments (average 
opacity, transition energies, 
variance of arrays) 
approximately the same as that 
of “true” spectra

• Refine SCs à Resolve Opacity

Iron Opacity, 175 eV, 0.001 g/cm3
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Superconfiguration Electronic Structure
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1𝑠 " 2𝑠2𝑝 $ 3𝑠3𝑝3𝑑 %(4𝑠4𝑝…10𝑘)"
• Ion-Sphere Model

– Finite sphere size based on plasma 

mass density (cuts off high n orbitals)

– Plasma screening through boundary 

condition (fields perfectly screened 

outside sphere)

– Sphere charge neutral

• Solve self-consistent field (SCF) 

equations

– Nonrelativistic and fully relativistic 

modes

– Orbitals and occupations used to 

construct electron density
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Superconfiguration Electronic Structure
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Continuum Electron Density

09/06/2022   |   9Los Alamos National Laboratory

• Integration over real energy changed to integration over complex 
energy

• Integrand is smoother the larger the imaginary part of the energy, 
ℑ(𝑧)

• No approximation – Cauchy’s integral theorem

𝑛' 𝑟 = 7
(!"#

)
𝑑𝐸𝑓(𝐸) 𝜓((𝑟) " = −

1
𝜋ℑ7(!"#
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Starrett et al, Comp. Phys. Comm., 235 (50-62), 2019



Complex Contour
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Starrett, HEDP, 16 (18-22), 2015
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Cauchy’s integral theorem:



Complex Contour
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Starrett, HEDP, 16 (18-22), 2015
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Density of States (DOS) along contour broadened by 
Lorentzian: FWHM proportional to imaginary part of 
energy



Density of States Along Contour
Iron 120 eV, 0.5 g/cm3
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M shell



Density of States Along Contour
Iron 120 eV, 0.5 g/cm3
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Continuum Supershell
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Ξ = 1𝑠 I (2𝑠 2𝑝)J (3𝑠 3𝑝 3𝑑)I (4𝑠 …6𝑓)I
For Example, Iron Z=26



Continuum Supershell
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Ξ = 1𝑠 I (2𝑠 2𝑝)J (3𝑠 3𝑝 3𝑑)I (4𝑠 …6𝑓)I
For Example, Iron Z=26

Highest Orbital Predicted by
average atom calculation



Continuum Supershell
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Ξ = 1𝑠 I (2𝑠 2𝑝)J (3𝑠 3𝑝 3𝑑)I (4𝑠 …6𝑓)I
For Example, Iron Z=26

Highest Orbital Predicted by
average atom calculation

Ξ = 1𝑠 I (2𝑠 2𝑝)J (3𝑠 3𝑝 3𝑑)I (4𝑠 …6𝑓)I(𝜀 = 0,… ,∞)KI

Continuum Supershell



Continuum Supershell, Iron Example
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Ξ = 1𝑠 I (2𝑠 2𝑝)J (3𝑠 3𝑝 3𝑑)I (4𝑠 …6𝑓)I(6𝑔 6ℎ , 𝜀 = 0,… ,∞)KI

Different SCs have different bound states and therefore 
(possibly) different pressure ionization thresholds 

𝐸LMN = 𝐸OP + 𝛿

“Unexpected” bound states 
now part of continuum, 
occupied according to Fermi-
Dirac with continuum chemical 
potential



Continuum Supershell, Iron Example
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Ξ = 1𝑠 I (2𝑠 2𝑝)J (3𝑠 3𝑝 3𝑑)I (4𝑠 …6𝑓)I(6𝑔 6ℎ , 𝜀 = 0,… ,∞)KI

• Stabilizes SCF procedure at high 
plasma densities

• If predicted orbitals become 
pressure ionized, still accounts for 
them as part of continuum 
(resonances)

-Breaks model consistency, but  
less than other methods



Opacity Near Pressure Ionization
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Iron 120 eV, 3.6 g/cm3 • Most 4f electrons near 

pressure ionization

–Exist as bound states for 

some SCs

• Free electron ---> Weaker 

plasma screening

• Thomas-Fermi ---> Stronger 

plasma screening

• Differences disappear for 

high temperatures, extreme 

densities, near-neutral



Opacity Near Pressure Ionization
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Iron 120 eV, 3.6 g/cm3 • Electronic structure has 

consistent continuum 

treatment

• EOS from SB using only 

bound electrons

– Need Free Energy of 

continuum to improve EOS

• Free electron/TF shift peak 

of charge state distribution 

(CSD) around proper 

continuum treatment



CSD, Iron 120 eV, 3.6 g/cm3
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CSD, Iron 120 eV, 3.6 g/cm3
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TF ---> Higher Ionization

Free Electrons ---> Lower 
Ionization



Correction to Transition Energies
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• Need two-electron 

corrections to get accurate 

transition energies

• Corrections inaccurate when 

pressure ionization is 

significant, especially for 

bound-free correlations 

Bar-Shalom et al, Phys. Rev. 
A, 40 (6), 1989



Bound-Free Interaction
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Iron 120 eV, 3.6 g/cm3

• Bound-Free resonances not apparent 

because of edge energy corrections 

failing 

• TF 4f-resonance fully “dissolved” in 

continuum states

• When electronic structure is dominated 

by electrons occupying continuum 

resonances, too much information lost 

by throwing away bound-continuum 

interaction

< 𝑟, 𝑠 >≠ 0



Pressure Ionization of 3p States in Aluminum

09/06/2022   |   25Los Alamos National Laboratory

• Independent particle 

transition energies

– Still need to improve 

description of bound-

continuum interaction 

under photo-absorption

• Bound-bound features 

smoothly turn into 

bound-free features 

after pressure 

ionization event

Aluminum, 700 eV

D. J. Hoarty et al., Phys. Rev. 
Lett. 110, 265003 (2013)



Sandia Z Experiments
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• Nonrel, natural and 

Doppler broadening

• Different continuum 

treatments not important 

for structure or EOS

• No change in 

discrepancies when 

comparing to experiments

Fe (180 eV, 0.16 g/cm3)

Cr (180 eV, 0.16 g/cm3)

Ni (180 eV, 0.17 g/cm3)



Conclusions
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• Developed superconfiguration and STA opacity codes

– Focus on robustness over wide range of plasma conditions

– Includes consistent treatment of continuum electrons using Green’s 

functions and complex contour integration

• Comparisons to configuration-average calculations excellent in the isolated 

atom limit and for highly charged systems

• Comparison between various treatments of electron continuum highlights 

challenges of modeling dense plasmas

– EOS may need consistent level of approximation to have confidence in 

CSDs

– Transition energies need reasonable inclusion of bound-continuum 

Coulomb interaction


