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ABSTRACT: 
Computed tomography (CT) resolution has become high enough to monitor morphological 
changes due to aging in materials in long-term applications. We explored the utility of the critic of 
a generative adversarial network (GAN) to automatically detect such changes. The GAN was 
trained with images of pristine Pharmatose, which is used as a surrogate energetic material. It is 
important to note that images of the material with altered morphology were only used during the 
test phase. The GAN-generated images visually reproduced the microstructure of Pharmatose well, 
although some unrealistic particle fusion was seen. Calculated morphological metrics (volume 
fraction, interfacial line length, and local thickness) for the synthetic images also showed good 
agreement with the training data, albeit with signs of mode collapse in the interfacial line length. 
While the critic exposed changes in particle size, it showed limited ability to distinguish images 
by particle shape. The detection of shape differences was also a more challenging task for the 
selected morphological metrics that related to energetic material performance. We further tested 
the critic with images of aged Pharmatose. Subtle changes due to aging are difficult for the human 
analyst to detect. Both critic and morphological metrics analysis showed image differentiation.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS: 
Computed tomography (CT) is increasingly used for quality control of manufactured parts to detect 
production defects. Although high-resolution is not necessary for these applications, in recent 
years, laboratory CT instruments that yield images with voxel sizes smaller than one micrometer 
have become available, allowing the study of material microstructure. In particular, we are 
interested in the detection of morphological changes that may occur due to material aging in long-
term applications. Since a single CT scan produces on the order of a thousand images, an 
automated analysis technique is highly desirable. In addition, a quantitative measure of 
morphological material changes would enable the discovery of aging trends based on image data.
Traditionally, morphological analysis of material image data is performed by identifying relevant 
descriptors, typically after image segmentation. These morphological descriptors encompass 
single-point metrics, spatial correlations, size distributions, regional statistics, topology measures, 
and more. [1] Their interpretability provides an intuitive understanding of material morphology and 
structure/property relationships; [2] however, their predefined functional form and low 
dimensionality prevents a comprehensive description of complex morphologies and 
interdependencies.
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Scheme 1. General structure of a Wasserstein Generative Adversarial Network (WGAN).

Within the field of computer vision, convolutional neural networks (CNN) have been developed 
to perform image analysis without imposing underlying probability distributions a priori and 
without the need for simplified metrics. [3] An example of a CNN developed to learn a probability 
distribution from training images for the purpose of generating more images from the learned 
distribution is the generative adversarial network (GAN). [4] It provides an efficient sampling 
method for high-dimensional and intractable density functions. GANs consist of two competing 
subnetworks: a generator whose role it is to generate samples of the unknown density and a 
discriminator that tries to distinguish between real and synthetic images created by the generator. 
Recently, GANs have been used to generate synthetic microstructure images of diverse materials 
(natural stone, lithium-ion battery cathodes, solid oxide fuel cell anodes, aluminum foam, High 
Melting eXplosive) trained on SEM and CT images. [5-10] In addition to visual verification of the 
synthetic realizations, the authors showed that the underlying distributions of morphological 
descriptors (effective porosity, volume fraction, particle size, interfacial area, void properties, two-
point correlation function, etc.) were reproduced and that simulation output (electrochemical 
performance, [8] reactive dynamics, [9] and flow simulations [7]) of real versus generated 
microstructures was comparable. 

While previous work utilizes the ability of the generator subnetwork to learn and generate 
realistic representations of material microstructure from SEM and CT images, to our knowledge, 
the capability of the discriminator has not been exploited so far. However, the discriminator is 
trained in conjunction with the generator to compute the probability that the material morphology 
captured in a query image is sampled from the learned distribution. If the distribution is learned 
from pristine material, the discriminator is able to distinguish between pristine and altered material. 



The particular GAN implementation we used was a Wasserstein GAN (WGAN). [11] In contrast 
to the traditional GAN implementation, [4] the WGAN implements the Wasserstein loss as a 
measure of the distance between probability distributions. In the context of a WGAN, the 
discriminator is called a critic, which assigns, instead of a probability, a score to the realness or 
fakeness of a given image. The general structure of a WGAN is given in Computed tomography 
(CT) is increasingly used for quality control of manufactured parts to detect production defects. 
Although high-resolution is not necessary for these applications, in recent years, laboratory CT 
instruments that yield images with voxel sizes smaller than one micrometer have become available, 
allowing the study of material microstructure. In particular, we are interested in the detection of 
morphological changes that may occur due to material aging in long-term applications. Since a 
single CT scan produces on the order of a thousand images, an automated analysis technique is 
highly desirable. In addition, a quantitative measure of morphological material changes would 
enable the discovery of aging trends based on image data.
Traditionally, morphological analysis of material image data is performed by identifying relevant 
descriptors, typically after image segmentation. These morphological descriptors encompass 
single-point metrics, spatial correlations, size distributions, regional statistics, topology measures, 
and more. [1] Their interpretability provides an intuitive understanding of material morphology and 
structure/property relationships; [2] however, their predefined functional form and low 
dimensionality prevents a comprehensive description of complex morphologies and 
interdependencies.

Scheme 1. After training, we can use the critic  as a one-class classifier, [12] where images of 
the pristine material are in-class images. When the critic is tested with images of potentially altered 
material, its scores are a measure of the difference between test images and images of the pristine 
material. Application of the Wasserstein loss results in more stable training and larger output 
variability; however, reminiscent of small microstructure variations observed in other work, [5, 7] 
the WGAN is able to learn average structures better than outliers. [8] 

Here, we tested the utility of the trained critic to distinguish between CT images of pristine 
Pharmatose ® (pharmaceutical a-lactose monohydrate produced by DFE Pharma, Goch, Germany) 
and images of Pharmatose with altered morphology. Pharmatose was used as a surrogate for 
energetic materials. The microstructure of Pharmatose was well reproduced in the images 
generated by the network, although occasional, unrealistic particle fusion occurred. We calculated 
morphological metrics for generated and real images focusing on metrics that relate to energetic 
material performance. Overall, we found good agreement, but observed signs of mode collapse. 
The trained critic was presented with three different test sets. Test set 1 contained images of 
Pharmatose with different particle sizes than in the images the network was trained on. The critic 
detected changed morphology. Score ordering was consistent with morphological metric analysis. 
Test set 2 consisted of transformed training images, where the particle shape was distorted. While 
it was easy for the human analyst to visually distinguish these particle shape differences from the 
training images, critic scores did not reflect that. Likewise, the particle shape changes did not 



significantly influence morphological metrics relating to performance. Test set 3 included images 
of aged Pharmatose. Visually, the aged images were difficult to differentiate from pristine data. 
However, critic as well as morphological metric analysis detected change.     

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY: 
Network Description
Details of the network implementation are given elsewhere. [8] The generator input is a vector of 
random noise, which is fully connected to the first layer. The following layers are up-sampling, 
convolutional, and batch normalization layers, including four convolutional layers with ReLu 
activation yielding the output image. The critic takes that image as an input. The critic consists of 
seven convolutional layers with LeakyReLu activation and a single connected layer to produce the 
critic score. The learning rate was adjusted during training depending on observed oscillations in 
the loss function. The number of filters per convolutional layer can conveniently be set as an input 
parameter. We used two settings: In setting 1, the generator has 256-128-64-32 filters in 
consecutive convolutional layers and the critic has 32-32-64-64-128-128-256. Network training 
and testing was performed on a Nvidia V100 (Volta) GPU with 32 GB RAM. For filter setting 1, 
network training with 512×512 pixel images was memory limited. In setting 2, we used a reduced 
number of filters for the generator of 128-64-32-16 and for the critic of 16-16-32-32-64-64-128 to 
speed up training.        

Image Data
Pharmatose has been used in our laboratory as a highly compactable surrogate for energetic 
materials. It is readily available for purchase at varying degrees of fineness; Pharmatose 60M, 
100M, and 200M have nominal mean particle diameters of 280, 150, and 40 μm, respectively. 
Pharmatose powder was placed in cylindrical aging vehicles and scanned using a Zeiss Xradia 520 
Versa operated at 40 kV for training set 1 and 60 kV for all other scans. Scans yielded a stack of 
tiff images (x/y plane) along the length of the cylinder (z-axes) with pixel size in the range of 1 to 
1.5 μm as described below. 

Training Sets
We used two different training sets. Training set 1 was obtained from a CT scan of Pharmatose 
60M, consisting of 2,026 images, each 2048×2004 pixels with a pixel length of 1.55 μm. This set 
was used to train the network for subsequent critic interrogation with test sets 1 and 2. Since no 
aged data was available for this particular Pharmatose batch, we retrained the network with training 
set 2, which was generated from a CT scan of Pharmatose 100M, consisting of 2,022 images, each 
2048×2007 pixels with a pixel length of 1.22 μm. The critic was subsequently tested with test set 
3. 



Test Set 1
Test set 1 includes images of Pharmatose with varying particle sizes. Pharmatose 60M is the 
coarsest of the three sizes; Pharmatose 100M is milled to smaller size particles than Pharmatose 
60M, and Pharmatose 200M is milled to an even finer size. CT instrument settings to generate test 
set 1 were the same as for training set 2, resulting in the same image and pixel sizes. Set “Large” 
was obtained from a CT scan of Pharmatose 60M. The fact that the particles appear larger in test 
set “Large” than in training set 1, which also consists of images of Pharmatose 60M, is a 
combination of different CT magnification (which can be scaled for) and varying details in the 
material specifications. Test set “Medium” is the same as training set 2. Pharmatose 200M was 
scanned to obtain test set “Small.”        

Test Set 2
Test set 2 was generated by transforming the images of training set 1 to distort the particle shape. 
We utilized the Python library Scikit-Image. [13] A swirl was added to create test set “Swirl.” The 
images were remapped into polar coordinate space to obtain test set “Polar,” and a sinus wave was 
superimposed, yielding test set “Wave.”



Figure 1. Example images for train and test sets.

Test Set 3 
Test set 3 was obtained from aged Pharmatose 100M. Aging vehicles containing Pharmatose 100M 
were placed in an oven for one week (test set “1 week”) and two weeks (test set “2 weeks”) at 
100°C. Aged Pharmatose was scanned using the same instrument settings as those used for training 
set 2.



Training and test sets were pre-processed prior to training/testing. The bottom and the top of 
the aging vehicle were imaged in approximately the first and last 100 images (imaging artifacts 
may also occur close to the bottom and the top of the container). Images along the z-axes that 
either showed the aging vehicle or imaging artifacts were removed from the tiff stack. The aging 
vehicle is visible as a ring in the x/y plane. Images were cropped to 1380×1380 pixels to exclude 
the container from the images. Further, images were down-sampled to one quarter in image area. 
Sub-image batches for training and testing were created by randomly rotating and flipping the 
images and cropping to 512×512 pixel image segments. An example image for each train/test batch 
is shown in Figure 1. Batches of 1,000 images were scored for critic and generator evaluations. 

Morphological Metrics
To verify and interpret the network scores, we calculated morphological metrics. We chose to 
calculate the volume fraction, which relates to the density of the material, and the interfacial line 
length, which is the two-dimensional equivalent of the specific surface area. Both correlate with 
performance properties of energetic materials. [14, 15] Further, we calculated the local thickness[16] 

of the particle phase, which is related to particle size distribution, but does not require segmentation 
of individual particles.

Prior to morphological metric calculations, the images were segmented into particle and void 
space. A bilateral filter was applied, followed by a random walker algorithm for segmentation, 
again utilizing the Scikit-Image library.[8] The calculation of the volume fraction only required 
counting of void and particle pixels, while the calculation of the interfacial line length was more 
involved. Splines were used to interpolate a smoothed curve as the interface between two phases. 
Subsequently, the contour length along that curve was computed and then divided by the total area 
of the image, resulting in units of voxels-1. We used the PoreSpy library [17] to evaluate the local 
thickness, which approximates local particle sizes by fitting maximal circles of different sizes into 
the particle space.

Morphological metrics are reported as averages over 100 test images and 100 generated images.



RESULTS AND DISCUSSION: 
Image Generation
Before testing the critic, we verified that the network was generating realistic images of 
Pharmatose. 

Training Set 1
We trained the network with training set 1 and filter setting 1. An example of an image generated 
from the same random seed vector at different epochs is compared to an example training image 
(real image) in Figure 2. Overall, the microstructure of Pharmatose was well-reproduced by the 
network; however, some particles had an unrealistic appearance. This can be observed in Figure 
2 and is marked with red arrows. Particle boundaries were not always well-recreated in the 
synthetic images, resulting in fused particles. This behavior persisted up to high epochs. 

Figure 3 a) compares the scores for real images to scores for synthetic images at different 
epochs using the critic of the respective epoch. While scores for different epochs varied 
significantly, at each epoch, the critic scored real and synthetic images similarly. Comparing the 
critic scores for real images at different epochs in Figure 3 b), we find a shift to smaller scores as 
the number of epochs increases. We note, however, that convergence of the scores with increasing 
epochs is not necessarily expected because the synthetic images with which the critic trains will 
change with epoch.

Figure 4 contrasts morphological metrics calculated from synthetic images at different epochs 
with those calculated from real images. We observed good agreement between the two sets. The 
volume fraction of the real images appeared to be better reproduced in the synthetic images 
obtained at higher epochs, while interfacial line length and local thickness showed small 
fluctuations with epochs above 600. The interfacial line length of the real images exhibited 
bimodal character. To test if this was the consequence of undersampling, Figure 4 shows the 
histograms of the interfacial line length for 100 and 200 real images. The bimodal character was 
still observable when the interfacial line length is computed for 200 images. This was not 
reproduced in the generated images. Mode collapse was previously observed for distributions 
generated by GANs. [18]



Figure 2. Training set 1: examples of one real and three generated images at different epochs 
obtained from the same random seed vector; unrealistic, fused particles are highlighted with a red 
arrow. 

For network training with training set 2, we used a reduced number of convolutional filters 
(filter setting 2). To ensure that this did not skew our results, we retrained the network using 
training set 1 with filter setting 2. Example images generated by the network and calculated 
morphological metrics can be found in Figure 5 and Figure 6. Note that epochs are not directly 
comparable due to learning rate adjustments. Results for filter setting 1 and 2 were very similar.



Figure 3. Training set 1: a) scores for synthetic images at different epochs compared to scores for 
real images using the respective critic; b) scores for real images using the critic of different epochs 
(1,000 images were scored per histogram).   



Figure 4. Training set 1: a) to c) comparison of morphological metrics computed for synthetic 
images generated at different epochs and for real images (100 images were evaluated); a) volume 
fraction, b) interfacial line length, c) local thickness; d) interfacial line length computed for 100 
and 200 real images.  



Figure 5. Training set 1: reduced number of filters (filter setting 2); examples of a real and 
generated images at different epochs obtained from the same random seed vector; unrealistic, fused 
particles are highlighted with a red arrow. 

Training Set 2
We trained the network with training set 2 and filter setting 2. Visual inspection of generated 

images led to the same conclusion as for training set 1; the microstructure of Pharmatose 100M 
was well reproduced but some particles appeared to be fused, see Figure 7. Figure 8 compares 
the critic scores for generated images at different epochs to the scores of real images. As for 
training set 1, scores tended to get smaller with increasing epochs (although scores are negative 
for training set 2). The score distributions for the synthetic images were wider compared to the 
real images. For training set 1, the distribution widths were comparable. The calculation of 
morphological metrics (volume fraction, interfacial line length, local thickness) yielded similar 
results for generated and real images, see Figure 9.  



Figure 6. Training set 1: a) to c) morphological metrics computed for synthetic images generated 
at different epochs and for real images; a) volume fraction, b) interfacial line length, c) local 
thickness; network filter setting 1 is compared to a reduced filter setting 2 (100 images were 
evaluated).



Figure 7. Training set 2: examples of a real and generated images at different epochs obtained 
from the same random seed vector; unrealistic, fused particles are highlighted with a red arrow.



Figure 8. Training set 2: a) scores for synthetic images at different epochs compared to scores 
for real images using the respective critic; b) scores for real images using the critic of different 
epochs (1,000 images were scored per histogram).   



Figure 9. Training set 2: a) to c) morphological metrics computed for synthetic images generated 
at different epochs and for real images; a) volume fraction, b) interfacial line length, c) local 
thickness (100 images were evaluated).



Figure 10. Test set 1: a) critic scores, b) local thickness, c) volume fraction, d) interfacial line 
length computed for training set 1 (Pristine) and for Pharmatose with varying particle sizes; a) 
1,000 images were evaluated, b) to d) (100 images were evaluated).



 

Figure 11. Test set 2: a) critic scores, b) local thickness, c) volume fraction, d) interfacial line 
length computed for training set 1 (Pristine) and for Pharmatose with distorted particle shapes; a) 
1,000 images were evaluated, b) to d) 100 images were evaluated.



Figure 12. Test set 3: a) critic scores, b) local thickness, c) volume fraction, d) interfacial line 
length computed for training set 2 (Pristine) and for aged Pharmatose; a) 1,000 images were 
evaluated, b) to d) 100 images were evaluated.

Test Image Evaluation 
The critic was presented with three different test sets to probe its ability to distinguish between 
images that showed a different Pharmatose morphology than that on which it was trained. The 
critic trained with training set 1 for 800 epochs was used for test sets 1 and 2. The critic trained 
with training set 2 for 900 epochs was employed for test set 3.

Test Set 1
Figure 10 compares the critic scores for images of pristine Pharmatose (training set 1) to images 
of Pharmatose with varying particle sizes. The critic scores of the test sets were distinct from the 
scores of the images of pristine Pharmatose. As the particle size increased, the score distributions 
shifted to higher scores. The calculated morphological metrics also discriminated the test sets. 
Image set “Small” stands out the most for critic scores and morphological metrics. For the “Small” 
set, smaller particles received a higher count in the local thickness, volume fractions were 



calculated smaller, and interfacial line length larger than for the other image sets. The degree of 
differentiation between “Pristine,” “Medium,” and “Large” varied depending on applied measure. 
Interestingly, the order of the image sets was calculated consistently for the critic scores and the 
morphological metrics.  

Test Set 2
Test set 2 probed the sensitivity of the critic to particle shape variations. From Figure 11, we can 
deduce that the critic does not distinguish particle shape well. There was a slight shift of the score 
distribution to smaller scores for the “Swirl” images but there was no appreciable shift for “Polar” 
and “Wave.” The calculation of the volume fraction responded similarly. “Swirl” images also 
produced the largest differences in local thickness and interfacial line length compared to the 
“Pristine” reference (training set 1). While easily distinguishable by the human eye, the shape 
changes introduced by image transformations were difficult for the critic to track and did not 
significantly influence morphological metrics related to performance. For energetic material 
applications this insensitivity of the critic may be a desired attribute and worth further exploration.   
  
Test Set 3
Test set 3 assessed the ability of the computational approaches to identify subtle morphological 
change due to aging of Pharmatose. These changes are difficult for the human analyst to detect. 
Figure 12 reveals that the critic scores were shifted to higher scores for images of the aged material 
and that the interfacial line length decreased with age. When these observations are compared with 
those made for test set 1 (varying particle size), it suggests that aging increases particle size. This 
seems reasonable since particle aggregation due to aging with corresponding specific surface area 
(3-dimensional equivalent to interfacial line length) decrease and particle size increase has been 
observed before. [19, 20] The local thickness changed only slightly but the portion of larger particles 
also appeared to increase with age. However, the volume fraction decreased for the aged image 
sets, while it increased for larger particles (test set 1). Further analysis may be warranted.

ANTICIPATED OUTCOMES AND IMPACTS: 
We showed that the critic of a GAN can be used as a detector of morphological change in image 
data. This was a proof-of-principal study that lays the foundation for the development of an 
automated, quantitative, and consistent tool for image analysis within surveillance. Our interest is 
energetic material surveillance, where image analysis is currently performed manually. However, 
such a tool would be material agnostic. CT scans produce large amounts of data and an automated 
tool would greatly improve the efficiency of subsequent image analysis. Moreover, quantitative 
image analysis allows for the detection of trends and the application of machine learning 



algorithms to discover structure/property relationships that are not possible with manual, 
qualitative image analysis. 

We hope that our investigation will inspire future work to improve the sensitivity of the critic. 
Better sampling (i.e., larger training images) should narrow distributions. An improved generator 
architecture (more layers, filters) might help with the recognition of particle boundaries to avoid 
the occurance of fused particles. Alternative training strategies, where occasionally an out-of-
distribution image is shown to the critic, might also be considered to mitigate the insensitivity of 
the critic to particle shape if this is desired. 

In this project, we used CT data with documented magnification. Data was collected from 
consistently prepared material in aging vehicles. An obstacle that is common to the application of 
machine learning/deep learning methods to image data is the variation in the images due to 
instrument settings and sampling method. This can be fairly well controlled for CT imaging, where 
all the material in the container is scanned at once. However, the GAN-based image analysis 
developed here may also be extended to other imaging techniques, such as scanning electron 
microscopy (SEM). For SEM, sample preparation can introduce undesired image variations. For 
instance, the sample may be scanned at different angles or material might be placed on a different 
support. Material sampling also affects image content. Often the analyst selects a material sample 
where signs of aging are suspected or most likely. A prerequisite for a successful appliaction of a 
machine learning/deep learning tool is the development of a standardized imaging protocol. We 
plan to implement a consistent SEM imaging strategy for pristine and aged CL-20 and/or PETN 
samples for a future Aging & Lifetime project, which would then allow us to train the GAN on 
SEM image data and test the ability of the critic to detect morphological change in SEM image 
data.  

An immediate follow-on project would be the use of PETN and CL-20 pristine and aged CT 
data sets that are currently being produced within the Aging & Lifetime program. The goal would 
be to understand if, and how, shifts in score distributions correlate to time and/or temperature of 
accelerated aging.   

The generation of realistic images has a potentially impactful application since it allows for 
microstructure control [9] without resolving to oversimplified models. Fitted 2-dimensional pore 
models yield tunable microstructurs that can be used as input to shock-physics codes to study the 
relationship between microstructure and response to shock loading [21]. However, the input 
structures lack realism. Realistic CT images may also be used as input for shock-physics codes but 
without the ability to vary the microstructure. Using the trained GAN to generate input images has 
the unique advantage of providing realistic and tunable microstructures, permitting targeted 
energetic material design.

The GAN is capable of processing 3-dimensional images. Training with 3-dimensional images 
should enhance the sensitivity of the critic. However, current memory limitations hinder training 
with more than approximately 300,000 pixels (flattened vector), which is equivalent to a cube 



length of less than 70 pixels. Strategies are developed at Sandia in the context of other work [22] 
that reduce memory requirements. For extension to 3D, a collaboration is recommended.      

This work was orally presented at the 2022 Machine Learning/ Deep Learning Workshop at 
Sandia on July 27th 2022. The title of the presentation was “Utilization of the Critic Subnetwork 
of a Generative Adversarial Network as Detector of Morphological Material Change in Image 
Data“.

A manuscript with title “Utilization of the Critic Subnetwork of a Generative Adversarial 
Network as Detector of Morphological Material Change in Image Data“ has been prepared for 
submission to a special issue (invitation only) of Propellants, Explosives, Pyrotechnics that is 
focused on data science and machine learning relevant to energetic materials. The manuscript will 
be submitted in FY22.

 
CONCLUSION: 

We investigated the ability of the critic of a GAN to detect out-of-class images displaying a 
change in morphology versus the morphology shown in the images with which the GAN had been 
trained. Train and test images were CT images of Pharmatose, which is used in our laboratory as 
a surrogate for energetic materials. 

Because critic and generator are trained together, we first evaluated generated images. Visually, 
the microstructure of Pharmatose was replicated well, although we observed sporadic, unrealistic 
particle fusion. We also compared morphological metrics for train (real) and synthetic images 
focusing on metrics that correlated to performance of energetic materials. We calculated volume 
fraction and local thickness that were reproduced well in the synthetic images. Volume fraction 
relates to density and local thickness to particle size distribution. The interfacial line length (2-
dimensional equivalent to specific surface area) showed bimodal characteristics in the training 
images. While this was not reflected in the synthetic images, the calculated interfacial line length 
of the generated images approximately peaked at the average location of the bimodal features. 
Mode collapse is not uncommon in GANs. [18] 

We found that the critic can distinguish images of pristine Pharmatose from images of 
Phamatose that have different particle sizes. Scores are ordered consistently with respective 
morphological metrics. However, variations in particle shape that appear considerable to the 
human eye are difficult for the critic to detect. The introduced shape variations do not cause 
considerable morphological metric changes either. By contrast, the critic, as well as morphological 
metric analysis, recognized images of aged Pharmatose that the human eye could hardly 
discriminate from pristine material. We note that while network training is time consuming, it is 
only required once; interrogation of the critic is much faster than morphological metric analysis.
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