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Abstract: Tri-Structural Isotropic (TRISO) fuel particles are a key component of next
generation nuclear fuels. Using X-ray computed tomography (CT) to characterize TRISO
particles is challenging because of the strong attenuation of the X-ray beam by the uranium core
leading to severe photon starvation in a substantial fraction of the measurements. Furthermore, the
overall acquisition time for a high-resolution CT scan can be very long when using conventional
lab-based X-ray systems and reconstruction algorithms. Specifically, when analytic methods
like the Feldkamp-Davis-Kress (FDK) algorithm is used for reconstruction, it results in severe
streaks artifacts and noise in the corresponding 3D volume which make subsequent analysis of
the particles challenging. In this article, we develop and apply model-based image reconstruction
(MBIR) algorithms for improving the quality of CT reconstructions for TRISO particles in
order to facilitate better characterization. We demonstrate that the proposed MBIR algorithms
can significantly suppress artifacts with minimal pre-processing compared to the conventional
approaches. We also demonstrate that the proposed MBIR approach can obtain high-quality
reconstruction compared to the FDK approach even when using a fraction of the typically acquired
measurements, thereby enabling dramatically faster measurement times for TRISO particles.

© 2021 Optical Society of America

1. Introduction

Tri-structural isotropic (TRISO) particles are a promising new fuel technology for next-generation
nuclear reactors. These particles are approximately spherical, about 1 mm in diameter and
are composed of a uranium based kernel surrounded by several layers of carbon and silicon
carbide cladding designed to retain the uranium kernel and fission products generated in a reactor.
Characterization of the cladding regions of TRISO particles is vital in order to better understand
their structure and how they degrade in the course of operation of a nuclear reactor. One approach
for characterization is focused ion-beam scanning electron microscopy (FIB-SEM) [1] imaging in
which the sample is imaged one layer at a time by polishing off a layer of the material. In contrast
to FIB-SEM, X-ray computed tomography (CT) enables non-destructive characterization (NDC)
of TRISO particles [2, 3] and hence is a appealing choice for 3D NDC. X-ray CT is typically
carried out by illuminating a sample with a poly-chromatic cone-beam source and measuring
the attenuated beam using a high-resolution area detector (see Fig. 1). Several such projection
measurements are obtained by rotating the sample about a single axis, after which a cone-beam
CT (CBCT) reconstruction algorithm such as the Feldkamp-Davis-Kress (FDK) [4] is used to
obtain a 3D reconstruction corresponding to the sample.
While XCT is a well established characterization technique, the imaging of TRISO particles

poses several challenges. First, these particles strongly attenuate the X-ray beam due to the
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Fig. 1. Illustration of the CT scan process for TRISO particles. The sample is rotated
about a single axis in a cone-beam CT scanner and at each position a single projection
image is acquired using a high-resolution detector. Due to the strongly attenuating
uranium core, we get measurements with very few counts at the center of the detector
as shown in the image above (displayed in the range of 0-350 counts), resulting in
strong artifacts in reconstructions (noise, streaks - indicated using red dashed arrow
etc.) obtained using conventional algorithms such as the FDK [4] method.

presence of a uranium core resulting in very few counts in a large region (see Fig. 1) of the
detector. If such data is directly used for reconstructions, it can result in significant artifacts (see
Fig. 1) which hamper the use of image analysis algorithms to perform accurate characterization of
the cladding regions of the particle. We note that some of these artifacts are similar to the metal
artifacts observed in medical and baggage-scan X-ray CT, which are caused by beam-hardening
and photon-starvation [5]. Furthermore, for typical exposure settings and X-ray cone-beam CT
(CBCT) scanners used, it can take a very large number of projection measurements to get a
reasonable reconstruction quality when the FDK algorithm is used. Because of the long duration
required to measure a single projection image, this implies that the overall measurement time,
consisting of thousands of such images, can be of the order of several hours to even one day to
complete a typical scan. In summary, the existing measurement protocols and algorithms used
for XCT of TRISO particles result in a characterization system with long measurement times and
sub-optimal reconstruction quality.

In this paper, we present algorithms for improving the quality of CT reconstructions for TRISO
particles. We use model-based image reconstruction (MBIR) algorithms [6] as the basis for
improving reconstruction quality while also enabling significant reduction in the measurement
time for these particles. MBIR involves formulating the reconstruction task as minimizing a high
dimensional cost function that balances two sets of terms - one that incorporates the physics of
the image formation and noise statistics of the detector; and a second term that accounts for a
model for the sample to be imaged. MBIR approaches have been widely developed for various
CT applications demonstrating that it is possible to reduce dose [7], shorten the measurement
time [8] and get high-quality reconstructions from limited view data [9]. MBIR approaches
have also been adapted to improve CT reconstructions of samples having small dense regions
(such as metal implants in medical imaging or metallic objects in baggage screening) [10–12]
that can cause strong streaking artifacts due to beam-hardening and photon-starvation. Our core
contribution is the modification of the noise modeling term in the MBIR approach in the spirit of



the works in [10–12] to account for the large highly-attenuated regions of the TRISO particle
measurements and effectively reconstruct the sample using only measurements which are reliable.
We achieve our modified MBIR by adjusting a weight term based on the actual measured signal,
determining a threshold, and performing the reconstruction from only a sub-set of the measured
pixels whose values are above this threshold. Using experimental data of a TRISO particle from
a 40 kV scanner we demonstrate that the proposed MBIR method can dramatically improve upon
the FDK algorithm by suppressing artifacts and noise in the reconstruction despite a large fraction
of measurements being impacted by severe photon starvation and statistical noise. Furthermore,
we also highlight the ability of the MBIR method to obtain high-quality reconstructions using a
fraction of the typically measured data, illustrating that it is possible to dramatically accelerate
the measurement process while preserving the quality of the reconstructed images. The rest of
this paper is organized as follows. In section 2 we present a summary of the MBIR approach. In
section 3 we present the modification to the MBIR approach for the TRISO particles. In section
4 we present results from an experimental data set and in section 5 we present our conclusions.

2. Model-based Image Reconstruction

In order to reconstruct the samples in 3D from the raw measurements, we use the MBIR [7]
framework. The reconstruction is formulated as a minimization problem,

5̂ ← argmin
5

{;(6; 5 ) + B( 5 )} (1)

where 6 is the vector of all the projection measurements, 5 is the vector containing all the voxels,
;(; ) is a data fidelity enforcing function and B(.) is a function that enforces regularity in 5 . We
propose to use the well-established quadratic data-fidelity term [13,14] of the form

;(6; 5 ) =
1
2
‖6 − � 5 ‖2, (2)

where � is a forward projection matrix that accounts for the the cone-beam geometry, and, is a
diagonal matrix with entries set to be the inverse variance of the noise in 6, and 6 is a vector
containing the log-normalized projection measurements. A typical choice for, is to set it to
,88 = _8 [13, 14] where _8 is the raw count at the 8Cℎ measurement which has an intuitively
appealing interpretation that the terms corresponding to lower counts are weighted less in the
overall cost function. We design � to model the cone-beam geometry by using the ASTRA
tool-box [15, 16] that can utilize multiple GPUs [17, 18] to accelerate the application of this
matrix. However, the projection (�) and back-projection (�) ) matrices are not perfectly matched.
For B( 5 ), we choose the negative log of q-generalized Markov-random field (qGGMRF)

probability density function [19]. It is given by

B( 5 ) =
∑

{ 9 ,: }∈N
F 9: d( 5 9 − 5: ) (3)

d( 5 9 − 5: ) =

��� 59− 5:f 5

���2
2 +

��� 59− 5:f 5

���2−?
N is the set of pairs of neighboring voxels (e.g. a 26 point neighborhood), 1 ≤ ? ≤ 2, 2 and f 5
are qGGMRF parameters. The weights F 9: are inversely proportional to the distance between
voxels 9 and : , normalized to 1. This model provides a greater degree of flexibility in the quality
of reconstructions compared to an algorithm specifically designed for a total-variation regularizer
that may force the reconstructions to appear “waxy” [6].



Combining the data fidelity model (2) with the image model (3) the MBIR cost function is

2( 5 ) =
1
2
‖6 − � 5 ‖2, + B( 5 ) (4)

Thus, the reconstruction is obtained by

5̂ ← argmin
5

2( 5 )

3. Modified MBIR for TRISO Measurements

One of the main challenges in obtaining high quality reconstructions for X-ray CT of TRISO
particles is the strong attenuation of X-rays by the core. For example, Fig. 1 shows a line profile
from a single projection image acquired from the X-ray CT scan of a TRISO particle. Notice
that the counts in a central region rapidly drops to almost zero due to the beam being blocked
by the uranium core, making these measurements extremely unreliable to use in order to do
reconstructions. If the conventional FDK algorithm is directly used to process such data, it can
result in significant artifacts (see Fig. 1).

One way to address this challenge is to directly use the MBIR algorithm (1). Since the weight
term in the MBIR framework is typically set such that,88 = _8 , where _8 is the raw measurement
count [13], we could expect this to help in reducing artifacts because the cost-function terms
corresponding to very low counts are naturally weighted less compared to the other terms.
Empirically, we observe (see section 4) that this results in a reduction of artifacts but we still
continue to see some “blooming” and streak artifacts around the corners of the core because of
the inherent noise in the low-count data. Instead, we propose to simply set this weight to zero if
the detected counts are below a certain threshold i.e.

,̃88 =

_8 _8 ≥ )

0 _8 < )
(5)

where ) is a pre-determined threshold. This step effectively has the impact of completely
leaving out those measurements which are deemed unreliable. With this simple modification, the
resulting cost function to optimize using the MBIR framework is

2̃( 5 ) =
1
2
‖6 − � 5 ‖2

,̃
+ B( 5 ). (6)

Thus, the reconstruction is obtained by

5̂ ← argmin
5

2̃( 5 )

We emphasize that this approach cannot be directly extended to the FDK algorithm because it
only operates on the normalized projection data, and hence there is no straight-forward means to
leave out the low-count projection data as a part of the reconstruction.
We use the optimized gradient method (OGM) [20] to find a minimum of the cost function

in (6). The algorithm involves a standard gradient computation combined with a step-size



determined using Nesterov’s method. Specifically, for each iteration : ,

ℎ(:+1) ← 5 (:) − 1
!
∇2̃( 5 (:)) (7)

C(:+1) ← 1 +
√

1 + 4(C(:))2

2
(8)

5 (:+1) ← ℎ(:+1) +
C(:) − 1
C(:+1) (ℎ(:+1) − ℎ(:))

+
C(:)

C(:+1) (ℎ(:+1) − 5 (:)) (9)

where C(0) = 1, ! is the Lipschitz constant of the gradient of 2̃(.), ℎ(0) = 5 (0) is an initial estimate
for the reconstruction. The gradient of the cost-function 2̃(.) is given by

∇2̃( 5 ) = −�) ,̃(6 − � 5 ) + ∇B( 5 ). (10)

4. Results

We measured a single TRISO particle using an Xradia MicroXCT-400 X-ray CT system with a
Hamamatsu source operated at 40kV and 8W along with a detector of size 1972 × 1972 pixels
each having an effective pixel size of 0.55 micrometer. The source to object sample was set to
97.5 mm, the sample to detector distance was set to 20 mm and the optical magnification was set
to 20. The TRISO particle is composed of a dense uranium bearing core kernel, surrounded
by a buffer region, inner Pyrolytic Carbon layer (iPyC), Silicon carbide (SiC) layer and outer
Pyrolytic Carbon (oPyC) layer (see Fig. 2 (b)). The goal of our XCT studies are to understand
the structure of these layers that surround the core in order to improve the design of the TRISO
particles - and hence the scanner settings were chosen to best help in carrying out this task.
3200 projection images were acquired with an exposure time of 15 seconds plus some time for
processing and repositioning, resulting in a total acquisition time of approximately 20 hours.
The system automatically shifts the detector in the imaging plane to reduce ring-artifacts [21].
We begin by pre-processing the data-set by applying a median filter with window size set to
7 in order to suppress the effect of impulse noise due to gamma/X-ray strikes on the detector
which can cause streaks in the reconstruction. Next, we normalize the data using the open-beam
measurements followed by applying a shift to each (normalized) projection image to account
for the detector shifts during acquisition. Finally, we apply different reconstruction algorithms
to this data sets in order to compare their performance. Each of the reconstructions are of size
900 × 982 × 982 voxels with each voxel of size 1.0045 micrometer. The MBIR code used for
cone-beam CT is at https://github.com/svvenkatakrishnan/pyMBIR. Since we
do not have access to the “ground-truth” we rely on the visual quality of the reconstructions for
the comparisons.
First, we compare the performance of the FDK and the conventional MBIR method when

no additional processing is done to account for the severe photon starvation in the data. The
parameters for the algorithm are set empirically so that the edge resolution at the core-shell
boundary for the FDK andMBIR methods are visually similar. Fig. 2 shows a single cross-section
from the reconstructed volume using the FDK and MBIR algorithms. Notice that the FDK
reconstruction has severe noise in the cross-section because of the noisy and photon-starved
measurements. The MBIR algorithm significantly improves the reconstruction compared to the
FDK method because of the natural weighting in the cost function because of an accurate noise
model. The MBIR algorithm enables the reconstruction and separation of the different layers
that surround the dense core as can be seen in Fig 2 (b) and (e) - demonstrating the utility of the
algorithm compared to the conventional FDK approach. Next, we compare the proposed MBIR

https://github.com/svvenkatakrishnan/pyMBIR
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Fig. 2. A single cross-section from the (a) FDK and (b) conventional MBIR recon-
struction without any special pre-processing of the data. The different layers of the
TRISO particle are indicated in (b). (c) and (d) are patches from (a) and (b) for a
more detailed view. Notice that the MBIR reconstructions have much lower noise and
artifacts compared to the FDK reconstruction despite of the photon starvation in a large
fraction of the original measurements. Furthermore, the MBIR reconstructions clearly
delineate the different layers of the core-shell TRISO particle, which are challenging to
distinguish in the standard FDK reconstructions due to the noise in the reconstruction.
(e) Line profile indicated corresponding to the line in (a) from the FDK and MBIR
reconstruction highlighting the various artifacts in the reconstruction (best viewed in
color).

algorithm to an algorithm that involves applying pre-processing to the data followed by the FDK
algorithm. For the FDK method, in regions where the weights of the original data are less than
50 counts, we clip the weights to be exactly 50. In the case of the MBIR method, the threshold )
in equation (5) is set to 50 so that measurements corresponding to this value are “rejected” in the
reconstruction. Fig. 3 shows a single cross-section and a line profile through the sample for each
of these methods. Notice that the FDK method (a) results in significant improvements compared
to the results with no pre-processing (Fig. 2 (a)), but still has strong streaks and noise. The MBIR
method suppresses these artifacts compared to the modified FDK algorithm as highlighted by
the suppressed streak noise in Fig. 3 (d). Furthermore compared to the baseline MBIR method,
we observe that the dark spots around the corners are less smeared out (green dashed arrows in
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Fig. 3. A single cross-section from the (a) modified FDK and (b) the proposed MBIR
reconstruction. The FDK reconstruction is obtained by pre-processing the original
count data by clipping the raw count data to a minimum value to reduce the influence of
the noisy low-count measurements. (c) and (d) are patches from (a) and (b) for a more
detailed view. Notice that the proposed MBIR reconstruction suppresses noise and
artifacts compared to the FDK reconstruction (marked in solid red arrows for streaks
and green dashed arrows for the blooming) as well as the MBIR reconstruction in Fig. 2.
(e) Line profile corresponding to the line indicated in (a) from the modified FDK and
proposed MBIR reconstruction highlighting the various artifacts in the reconstruction
(best viewed in color).

Fig. 3 (d)), enabling better characterization of the cladding regions around the core. In summary,
the proposed MBIR method leads to significant improvements in performance compared to the
conventionally used FDK algorithm for characterizing TRISO particles.

Finally, we compare the performance of the improved FDK and proposed MBIR method as a
function of number of projection images used for reconstruction; using 3200 (original), 2400,
1600, 800 images (corresponding to a sub-sampling rate of 50%, 25%, and 12.5% respectively)
and comparing the reconstruction performance. Fig. 4 (a)-(d) shows a single cross-section from
the reconstruction for the different sub-sampling rates along with the normalized root mean
squared error (NRMSE) between the full-view and sparse-view reconstruction in a masked out
region corresponding to the particle. Notice that the FDK method starts to significantly degrade
in performance, while the MBIR preserves the performance as the sub-sampling rate is increased,
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Fig. 4. Cross-section from the 3D volume reconstructed using the modified FDK
and the proposed MBIR approach as a function of the number of projection images
(best viewed in digital display by zooming in) along with a line-profile along the line
indicated in (a). Notice that the noise in the FDK reconstruction increases significantly
as the number of projection data used is decreased. In contrast to the FDK results, the
MBIR reconstruction are of higher quality even when only a fraction of the original
measurements are used, indicating that it is possible to reduce the measurement time
significantly while preserving quality and being able to identify the different layers (see
line profile (d)). The NRMSE between the sparse view and full-view reconstruction (in
percentage) is also shown highlighting the slower degradation in performance of the
MBIR technique compared to the FDK method.



highlighting how we can perform the measurements faster while preserving details such as the
separation between the different layers (as shown in the line plot of Fig. 4 (d)). The noise in the
reconstructed images can also be observed in the line profiles through the different reconstructions,
demonstrating how the FDK algorithm results in significant noise when only a fraction of the
measurements are used. Conservatively, even 800 measurements result in sufficiently high quality
reconstructions, suggesting that it may be possible to reduce the acquisition time by at least 75%
(from 20 hours to nearly 5 hours) while preserving the image quality in the reconstruction when
the proposed MBIR algorithm is used.

5. Conclusion

In this paper, we presented a model-based reconstruction algorithm for improving CT based
characterization of core-shell TRISO particles which are a promising technology for nuclear
fuels. We demonstrated that despite of the severe photon starvation in a large fraction of the
measurements due to the dense core, the proposed MBIR algorithm can enable higher quality
reconstruction of the buffer regions compared to the FDK method that is typically used. We also
demonstrate that it is possible to dramatically accelerate the scan time for these particles while
preserving the details in the reconstruction.
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