
SchedInspector: A Batch Job Scheduling Inspector Using
Reinforcement Learning

Di Zhang
Computer Science Department,
University of North Carolina at

Charlotte
Charlotte, NC, USA
dzhang16@uncc.edu

Dong Dai
Computer Science Department,
University of North Carolina at

Charlotte
Charlotte, NC, USA
ddai@uncc.edu

Bing Xie
Oak Ridge Leadership Computing

Facility, Oak Ridge National
Laboratory

Oak Ridge, TN, USA
xieb@ornl.gov

ABSTRACT
Improving the performance of job executions is an important goal
of HPC batch job schedulers, such as minimizing job waiting time,
slowdown, or completion time. Such a goal is often accomplished
using carefully designed heuristics based on job features, such as
job size and job duration. However, these heuristics overlook im-
portant runtime factors (e.g., cluster availability and waiting job
patterns), which may vary across time and make a previously sound
scheduling decision not hold any longer. In this study, we propose a
new approach to incorporate runtime factors into batch job sched-
uling for better job execution performance. The key idea is to add
a scheduling inspector on top of the base job scheduler to scrutinize
its scheduling decisions. The inspector will take the runtime factors
into consideration and accordingly determine the fitness of the
scheduled job. It then either accepts the scheduled job or rejects it
and asks the base schedulers to try again later. We realize such an
inspector, namely SchedInspector, by leveraging the intelligence of
reinforcement learning. Through extensive experiments, we show
SchedInspector can intelligently integrate the runtime factors into
various batch job scheduling policies, including the state-of-the-art
one, to gain better job execution performance, such as smaller aver-
age bounded job slowdown (up to 69% better) or average job waiting
time (up to 52% better), across various real-world workloads. We
also show that although rejecting scheduling decisions may leave
the resources idle hence affect the system utilization, SchedInspec-
tor is able to achieve the job execution performance improvement
with marginal impact on the system utilization (typically less than
1%). We consider one key advantage of SchedInspector is it auto-
matically learns to work with and improve existing job scheduling
policies without changing them, which makes it promising to serve
as a generic enhancer for various batch job scheduling policies.

CCS CONCEPTS
• Software and its engineering → Scheduling; • Computer
systems organization → Parallel architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA

KEYWORDS
High Performance Computing (HPC); batch job scheduling; rein-
forcement learning

ACM Reference Format:
Di Zhang, Dong Dai, and Bing Xie. 2022. SchedInspector: A Batch Job
Scheduling Inspector Using Reinforcement Learning. In Proceedings of the
31st International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’22), June 27-July 1, 2022, Minneapolis, MN, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3502181.3531470

1 INTRODUCTION
Batch jobs are still dominating in high-performance computing
(HPC) platforms. End users submit batch jobs via job scripts which
describe detailed job properties such as resource requests or wall-
time. These batch jobs will be scheduled by a centralized batch
job scheduler that utilizes predefined scheduling policies, such as
first-come-first-serve (FCFS) or shortest job first (SJF).

Built around such jobs, various batch job scheduling policies are
designed/engineered to improve the performance of batch job exe-
cutions via optimizing metrics like minimizing job waiting time, job
slowdown, or completion time. In theory, designing optimal batch
job scheduling policy is proved NP-hard [33]. Hence, in practice,
the policies based on heuristics have been studied extensively [3–
5, 9, 23, 32, 35]. Most of them define the heuristics based on known
job features from the job scripts, such as job requested resources
(𝑟𝑒𝑠 𝑗), job estimated execution time (𝑒𝑠𝑡 𝑗), to make scheduling deci-
sions. Different heuristic scheduling policies may weight job fea-
tures differently, such as Shortest Job First (SJF) relies only on 𝑒𝑠𝑡 𝑗 ,
Smallest Resource Requirement First (SQF) only on 𝑟𝑒𝑠 𝑗 [24], Small-
est estimated Area First (SAF) on 𝑒𝑠𝑡 𝑗 ∗ 𝑟𝑒𝑠 𝑗 , Smallest estimated
Ratio First (SRF) on 𝑒𝑠𝑡 𝑗/𝑟𝑒𝑠 𝑗 [19], and machine learning-based poli-
cies (e.g., F1 [9]) on a non-linear combination of multiple factors
such as 𝑟𝑒𝑠 𝑗 , 𝑒𝑠𝑡 𝑗 , and waiting time.

However, only considering job features overlooks critical run-
time factors, such as the available resources in the cluster, the
distribution of overall waiting jobs, or the arrival patterns of future
jobs, which will impact the scheduling outcomes. Once these fac-
tors changed, a scheduling policy might not perform as expected
anymore. In such cases, abandoning current scheduling decision
and taking an opportunistic action towards future jobs may be
beneficial. For example, SJF policy prioritizes the shortest jobs, aim-
ing at reducing the average job waiting time. But, if currently the
cluster is almost full and all the waiting jobs have long execution
time, then even running the shortest one among them will make
the cluster full for a long time, blocking other jobs and leading to a

https://doi.org/10.1145/3502181.3531470

larger job waiting time. In such case, it might be beneficial to avoid
running the current job and wait until next scheduling point to
schedule a different job (a detailed example is given in § 2.1).

In this study, we propose a new approach to incorporate runtime
factors into a batch job scheduling policy to improve its perfor-
mance. Specifically, we introduce a scheduling inspector to scru-
tinize the scheduling decisions made by the existing scheduling
policy. The inspector will take runtime factors into consideration
and accordingly decide whether the scheduled job fits the runtime.
If it believes the current job as a good fit for the runtime, the sched-
uling continues as normal. Otherwise, this scheduling decision will
be rejected and the job will be put back to the waiting queue and
be considered again at the next scheduling point. In another word,
the scheduling is ‘held’ and ‘delayed’ to a later time. At the next
scheduling point, the runtime factors may have changed: new jobs
might arrive and be added into the waiting queue and cluster avail-
ability might change. The same scheduling policy may generate
better scheduling decision this time and eventually improve the
overall job execution performance.

Beyond the potentials on performance improvement, inspecting
the scheduling and rejecting the unfit jobs also introduce overheads
as it delays the execution of the scheduled job and accordingly
leaves the resources idle shortly. Such a delay may become a pure
waste of time and resources if runtime factors do not change at the
next scheduling point or the decisions made in the future reward
back the same or worse. Intuitively, making the rejection beneficial
relies on two facets: the precise assessment on whether a job fits
to the current runtime, and the accurate predictions about the jobs
and the runtime in the future. Not surprisingly, both of the facets
are challenging due to the complications in the HPC environment.

In this work, we show that rejecting scheduling decisions can
be consistently beneficial if done properly. To achieve this, instead
of expecting benefits from every inspection and rejection, we take
a statistical approach to identify the ‘big-gain’ and ‘small-loss’ op-
portunities and build high confidence on these opportunities. For
instance, in SJF, if the current shortest job is still too long and
requests excessive resources, and the cluster is almost full, then
rejecting this job and accordingly yielding resources to shorter jobs
arriving in the near future has higher possibility to be beneficial
and hence should be taken (see the examples in § 2.1).

We leverage deep reinforcement learning (RL) [30] to realize such
a statistical approach. In particular, we implement SchedInspector,
an RL-based inspector that automatically learns how to inspect
scheduling decisions via continuously trial-and-error. We introduce
two new reinforcement learning designs to improve the accuracy
and efficiency of SchedInspector. More details are included in §3.
Different from existing batch job scheduling studies, SchedInspector
can automatically learns to work with and improve existing batch
job scheduling policies, called base scheduler, without altering their
priority heuristics. Because of this design, SchedInspector may
serve as a generic enhancer for various scheduling policies. We
summarize our contributions into threefold:

• To the best of our knowledge, SchedInspector is the first
study that introduces scheduling inspector to integrate run-
time factor into existing batch job scheduling for better job
execution performance.

J1n1

n2

n3

n4

n5

Job J0 , J1 arrive at time t0;
Job J2 arrives at time t1

tt0 t5 t10

J0

J2
t1
jp

J1

n1

n2

n3

n4

n5

tt0 t5 t9

J0

J2

t1
jp

J1

rejected

n1

n2

n3

n4

n5

Job J0 arrives at time t0;
Job J1 arrives at time t1

tt0 t4 t10

J0

t1
jp

n1

n2

n3

n4

n5

tt0 t4 t8t1
jp

rejected

J1
J0

(a) Sufficient resources case (b) Insufficient resources case

Figure 1: Scheduling jobswith/without SchedInspector. x-axis shows
the timeline in minutes; y-axis shows the compute nodes (𝑛1→5); each
block represents a job that takes amount of nodes and time; 𝐽𝑝 is the
preliminary job running before the scheduling starts.

• We leverage reinforcement learning (RL) and propose two
new RL optimizations to automatically and efficiently learn
inspecting job scheduling. We carefully analyze and summa-
rize the statistical rules learned by SchedInspector.

• Via extensive experiments, we carefully discuss how SchedIn-
spector performs on various job scheduling policies under
various workloads. We also analyze its trade-off between job
execution performance and system utilization.

The remainder of this paper is organized as follows: In §2 we
motivate SchedInspector via a detailed example and discuss its chal-
lenges. We also briefly introduce the concept of deep reinforcement
learning. In §3 we present SchedInspector and its key designs and
optimizations. We present the main results in §4. We summarize
and discuss the learned rules in §5. We compare with related work
in §6, conclude this paper and discuss the future work in §7.

2 MOTIVATION AND BACKGROUND
2.1 An Example of SchedInspector
We use a simple example to demonstrate the potentials of SchedIn-
spector. Here, we schedule job sequences on a 5-node cluster using
Shortest Job First (SJF) as the base scheduling policy (without back-
filling). We discuss two scheduling cases based on whether the
shortest job has enough resources to run or not at the scheduling
point. We report performance of both cases without (top) and with
SchedInspector (down) in Figure 1.

Figure 1(a) shows the case when the selected shortest job has
sufficient resources to run immediately. Without SchedInspector
(top), when jobs 𝐽0 and 𝐽1 arrive at time 𝑡0, SJF schedules 𝐽0 as it
is the shortest one (break tie by smaller id). Later, 𝐽2 arrives at
time 𝑡1. It has higher priority than 𝐽1, hence will run first when
𝐽0 finishes. Note that, 𝐽1 cannot run when 𝐽𝑝 finishes because its
priority is lower than 𝐽2. In this way, the entire job sequence finishes
at 𝑡10. Comparatively, the bottom figure shows the results when
SchedInspector is enabled. In this case, 𝐽0 is rejected at 𝑡0, SJF
scheduler will put it back into waiting queue and try again at 𝑡1
(when 𝐽2 arrives). At this point, SJF will select 𝐽2 due to its shortest

Table 1: Performance metrics of the example cases.
Scheduling Cases Waiting time Bounded job slowdown

Case(a)-NoInspect (0+5+4)/3=3 (1+2+2.3)/3=1.77
Case(a)-Inspected (4+4+1)/3=3 (1.8+1.8+1)/3=1.53
Case(b)-NoInspect (3+7)/2=5 (1.6+3.3)/2=2.45
Case(b)-Inspected (4+0)/2=2 (1.8+1)/2=1.4

execution time. After finishing 𝐽2, the other two jobs (𝐽0 and 𝐽1)
can start at 𝑡4. As we can see, although rejecting 𝐽0 delays the
scheduling and introduces an idle time (marked as gray), the entire
job sequence completes earlier at 𝑡9.

Figure 1(b) shows the case when the selected shortest job cannot
run immediately due to insufficient resources. Without SchedIn-
spector (top), 𝐽0 arrives first and will be scheduled by SJF. But it
needs to wait until enough resources are released. 𝐽1 runs after 𝐽0
and finishes at 𝑡10. If SchedInspector is enabled and 𝐽0 is rejected at
𝑡0, the scheduler will then observe both 𝐽0 and 𝐽1 at the next schedul-
ing point when new job arrives at 𝑡1. At this time, SJF will schedule
𝐽1 due to its shorter execution time. Accordingly, the future job 𝐽1
finishes earlier and eventually leads to an earlier completion of the
whole job sequence.

In addition to the completion time of the whole job sequences, we
also calculate two more performance metrics: average job waiting
time (wait) and average bounded job slowdown (bsld) to validate
our results. Both metrics are also used in our later evaluations. The
results are in Table 1, which again show SchedInspector improves
both metrics.

• averagewaiting time (wait): the average duration between
the job’s submission and its start time.

• average bounded slowdown (bsld): the job slowdown
relative to the given ‘interactive thresholds’ (10 seconds) cal-
culated from𝑚𝑎𝑥 ((𝑤𝑎𝑖𝑡 𝑗 +𝑒𝑥𝑒 𝑗)/𝑚𝑎𝑥 (𝑒𝑥𝑒 𝑗 , 10), 1) (waiting
time𝑤𝑎𝑖𝑡 𝑗 and execution time 𝑒𝑥𝑒 𝑗).

2.2 Challenges and Opportunities
When taking a closer look into the aforementioned two examples,
we notice that the better performance comes from the cases: 1)
new jobs arrived and were added into the waiting queue before the
next scheduling point; 2) the new jobs match the cluster availability
better and are scheduled to improve the performance. Then, it is
expected, small variations, such as 𝐽2 in Case(a) requests more
resource, may lead to a totally different result. In a real system, we
cannot eliminate such variations nor accurately predict the future,
which makes implementing the inspector extremely challenging.

In this work, we argue that, although obtaining perfect result on
each inspection is impractical, identifying the statistically ‘big gain’
and ‘small loss’ opportunities is still achievable. For instance, as-
suming the scenario where SJF is used as the base scheduling policy
and the current shortest job requests more execution time and more
resources than the historical jobs do on average. Moreover, if we
assure that the average job arrival interval is small, then rejecting
the current job is likely more beneficial than scheduling/running it
since the rejection may yield the resources to the upcoming jobs
and achieve better overall performance. Although we cannot accu-
rately predict the exact features or the arrivals of future jobs, from

Agent

Environment

action
At

Rt+1

St+1

reward
Rt

state
St

SchedInspector

Reject?

Original Scheduler and HPC

Figure 2: General framework of reinforcement learning.

the historical job and environmental statistics, we still can learn
when rejection has higher chance to win.

In summary, the key of SchedInspector is to learn a statistically
winning strategy. Such a strategy will be closely relevant to the
historical job trace statistics (such as average job size and arrival
interval), the real-time scheduling environment (such as currently
scheduled job and waiting jobs), and the currently used scheduler.
Such information is highly dynamic and complex, and can hardly
be modeled using traditional heuristic methods. In this study, we
leverage deep reinforcement learning to capture such knowledge
automatically.

2.3 The Basics of Reinforcement Learning
Reinforcement learning is a type of machine learning technique
that enables an agent to autonomously learn in an interactive envi-
ronment by trials and errors using feedback from its own actions
and experiences [17, 30].

Figure 2 shows a general RL framework and how SchedInspector
fits into it. Here, SchedInspector will be the agent. At each time step
𝑡 , it observes a corresponding state 𝑆𝑡 (include the original sched-
uling decision and other scheduling relevant states), and takes an
action𝐴𝑡 (‘reject’ or not) based on its internal policy. Consequently,
the action will transfer the environment (HPC system) state from 𝑆𝑡
to 𝑆𝑡+1 and the agent will receive the reward 𝑅𝑡+1 (measured based
on the given performance metrics). RL repeats this until reaches the
final state. The goal of reinforcement learning is to learn a policy
that can maximize the expected cumulative discounted reward col-
lected from the environment. More details about RL and its training
methods can be seen in [30].

3 SCHEDINSPECTOR DESIGN
Figure 3 presents the SchedInspector architecture and its major
components. It adheres to the general reinforcement learning frame-
work shown in Figure 2, with the key components of State (Environ-
ment State), Action (RL Agent), Reward and Environment (Simulated
Environment).

SchedInspector performs training following the typical policy-
gradient RL training workflow [31]. It starts from the simulated
environment simulating job arrivals. The arrived jobs are from a
job sequence randomly sampled from the job trace file (1). Next, at
a scheduling point, the base scheduling policy (e.g., SJF) picks a job.
Accordingly, the full scheduling contexts (e.g., the scheduled job,
waiting queue, cluster status) will be formulated as environmental
state (2), which will be further summarized into concise State
Features (3) and fed to the RL agent to generate the inspection

Env. State

Scheduled Job

Cluster Status

Waiting Queue

…

State Features

attributes

rejected times

queue delays

cluster avail.

runnable

…

…

..

…

..

..
RL Agent

action

Simulated
Env.

job traces

scheduler

reward
cluster

… …

backfilling

1

2
3

4

4

5

Figure 3: Architecture of SchedInspector.

result. The result will be applied to the simulated environment
(discussed in Section §3.2) and transforms its internal state from
𝑆𝑡 to 𝑆𝑡+1 (4). Finally, the reward for this action is calculated (5)
and returned to the agent for training.

Since most of the job execution performance metrics (e.g., aver-
age waiting time or bounded job slowdown) can only be calculated
after the entire sequence of jobs get scheduled, during reward calcu-
lation, we hold the intermediate rewards of each individual action
to be 0 and only calculate the final reward after finishing the last
job in a job sequence. We discuss more details about the reward cal-
culation in §3.4. Once the entire job sequence is scheduled, we build
a trajectory that contains multiple inspection actions and a final
reward. After creating a batch of such trajectories, SchedInspector
trains its neural networks from these actions and their associated
rewards using policy-gradient algorithm. For inference, SchedIn-
spector acts similarly as it does in the training process but outputs
its actions to actual HPC clusters.

3.1 RL Agent
RL agent serves as the brain of SchedInspector. It takes the top-
priority job and the current scheduling context as inputs and gener-
ates a binary action (reject or not) as the decision. In SchedInspector,
the RL agent uses a 3-layer fully connected neural networks, struc-
tured the same as 3-layer perceptron (MLP) [8], as its core network.
As shown in Figure 3, besides the input layer and the one dimen-
sional output layer (reject or not), the three hidden layers in our
MLP have 32, 16, and 8 neurons respectively. The total parameter
size of the network is 938. We choose MLP for two reasons: 1) it
has been widely used in RL-based optimization research for its
flexibility and simplicity [20, 21, 25]; 2) as we will show in the fol-
lowing section, our feature selection mechanism highly simplifies
the inputs of RL agent and enables us to use simple networks such
as MLP to achieve high training accuracy.

SchedInspector uses Actor-Critic model [18] to accelerate and
stabilize the training. The core idea is to introduce an extra value
network as a critic to work with the original policy network. These
two networks use the same architecture and take the same inputs,
but output different values. The policy network outputs delay ac-
tion; the value network outputs the expected cumulative rewards
of current state, which serves the policy network as the baseline re-
ward of similar states to guide its training. Such a baseline will help

stabilize the policy network. Without the value network, we ob-
served high variations during the training. As these two networks
are the same, we do not differentiate them in Figure 3.

3.2 Simulated Environment
Training an RL model often needs enormous interactions between
the agent and the environment. It is impractical to perform such
training in a real HPC cluster. Hence SchedInspector conducts train-
ing using a simulatedHPC environment (Simulated Env). In SchedIn-
spector, we build our simulated environment based on SchedGym,
a RL-compatible simulator implemented in RLScheduler [39]. We
extended it to acknowledge the reject decisions as well as to support
more base job schedulers. We added state trackers to record job
states such as how many times a job has been rejected.

The simulator works as Figure 3. Each time the base job sched-
uling policy selects a top-priority job, it will run the RL agent to
inspect it. If RL returns ‘reject’, the simulator will cancel the sched-
uling, put the job back into the waiting queue, and move forward to
the next scheduling point (cut-off by the parameter ‘maximal retry
interval’ MAX_INTERVAL). Otherwise, the simulator will provision
resources for that job as usual. If there are not sufficient resources to
run the job now, the simulator will wait until enough resources are
released. During waiting, if backfilling is enabled, it may schedule
other waiting jobs if that does not affect execution of the currently
scheduled job. There is another parameter (MAX_REJECTION_TIMES)
to control the maximal number of rejections that one job can re-
ceive. If a job has been rejected too many times, SchedInspector
will not reject it again.

Note, in our simulator, we differentiate two job execution times
carefully. We use the actual execution time (𝑒𝑥𝑒 𝑗) to calculate the
job’s finishing time. We use the estimated execution time (𝑒𝑠𝑡 𝑗) to
conduct scheduling for schedulers and SchedInspector. Unless ex-
plicitly stated, ‘job execution time’ always refers to the estimated
execution time.

3.3 Feature Building
As discussed earlier, SchedInspector inspects scheduling decisions
based on the runtime environmental factors. Hence, all these sched-
uling related contexts should form the state for RL agent to observe.
However, such a raw state does not work efficiently for RL training.
First, the raw state is large and contains features that are irrelevant
to training but generate overhead, such as job IDs. Second, many
state features are correlated and can be better modeled if manually
pre-processed. In SchedInspector, we manually build following fea-
tures, designed for the inspection tasks, to maximize the training
efficiency.

Scheduled job. SchedInspector needs to observe the the sched-
uled job waiting for inspection. Out of all job features, we select
three of them: job waiting time (𝑤𝑎𝑖𝑡 𝑗 , the duration the job has
been waiting in the queue); job execution time (𝑒𝑠𝑡 𝑗 , the estimated
execution time of the job); and job requested computing nodes (𝑟𝑒𝑠 𝑗 ,
the number of nodes requested by the job). We eliminated other
job features such as job id to improve the training efficiency.

Rejected times. We track how many times each job has been
rejected to avoid rejecting a job too many times. Each time, SchedIn-
spectorwill compare the job’s current rejected timeswith the thresh-
old MAX_REJECTION_TIMES to determine whether further rejections
can be granted or not.

Queue delays. Rejecting scheduling decision leaves resources in
idle. It delays not only the execution of currently scheduled job, but
also that of the waiting jobs in the queue. Intuitively, the overhead
or penalty increases when more jobs are waiting in the queue. This
value impacts the inspection and rejections significantly and should
be observed by the agent.

But, simply addressing the number of waiting jobs is not accurate
as the cost is relevant to the metrics used to evaluate the schedulers.
For instance, if the metrics is bsld (average bounded slowdown),
then introducing a Δ𝑡 idle is expected to increase each waiting job’s
bsld by roughly Δ𝑡/𝑚𝑎𝑥 (𝑒𝑥𝑒 𝑗 , 10). If the metrics is wait (average
waiting time), then the increment for each waiting job will be
directly Δ𝑡 . In SchedInspector, we iterate all of the waiting jobs,
calculate their expected delays according to the given performance
metrics, and add them together as the value of queue delays. We
use it as a key factor to help RL agent understand the cost of its
rejection decision.

Runnable and Cluster availability. These two features are
relevant as they reflect the available resources in the cluster and
whether the currently top-priority job can run or not. The clus-
ter availability is calculated as the ratio of free computing nodes
(𝑛𝑓 𝑟𝑒𝑒) and total computing nodes (𝑛𝑡𝑜𝑡𝑎𝑙). Runnable is calculated
by comparing the required resources of the job (𝑟𝑒𝑠 𝑗) and the cur-
rent available computing nodes (𝑛𝑓 𝑟𝑒𝑒) in the cluster. If 𝑟𝑒𝑠 𝑗 is
smaller, runnable value is 1 meaning the job can run immediately;
otherwise its value is 0.

Backfilling Contributions. If Runnable is 0, the cluster does
not have enough resources to run the selected job. It needs to wait
until more resources are released. During waiting, the cluster can
schedule other waiting jobs if backfilling is enabled. As backfilling
changes the scheduling behaviors significantly, the RL agent needs
to knowwhether it is enabled or not.We use this feature to represent
it. If backfilling is not enabled, this feature would be 0. If it is enabled,
we scan the waiting jobs and calculate the number of waiting jobs
that can be backfilled as the final value of this feature. We use it as
a factor to help RL agent work with backfilling.

To summarize, we manually build features for SchedInspector
for better training accuracy and efficiency. Many of these manual
features are aggregated from multiple jobs instead of their raw
individual values (e.g., queue delays and backfilling contributions).
We intentionally do so to prevent SchedInspector from pursuing the
subtle optimal that can only be identified by predicting the future
and exhaustively examining each individual job and their possible
combinations. These opportunities are not stable, hence not our
focus in SchedInspector. Our evaluation results in Section §4 also
confirms that these manually built features not only accelerate the
training, but also help SchedInspector perform consistently well
towards unseen job traces.

3.4 Reward Function
In RL, reward is the feedback from the environment to the agent.
The goal of RL training is to maximize the cumulative rewards
after a sequence of actions. In SchedInspector, the reward should
be relevant to the performance metrics that the job schedulers try
to optimize for, such as minimizing average bounded job slowdown
or average job waiting time.

Intuitively, the reward can simply be the difference between
values of the performance metrics with and without SchedInspector
after scheduling the same sequence of jobs. For instance, if the
metric is minimizing 𝑏𝑠𝑙𝑑 (average bounded slowdown), then the
reward can be 𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔 − 𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡 . The RL agent will maximize
the reward by minimizing 𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡 . If the performance metric
is minimizing average waiting time (𝑤𝑎𝑖𝑡), then the reward can be
𝑤𝑎𝑖𝑡𝑜𝑟𝑖𝑔 −𝑤𝑎𝑖𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡 . We call this direct subtraction Native reward.

The major issue of native reward, however, is the high variances
of some performance metrics, which may decrease the training
accuracy. For example, the average bounded slowdown (bsld) of
scheduling 256 continuous jobs sampled from a real-world job
trace (SDSC-SP2) ranges from 1 to 2414. The improvements in a
bsld=2414 job sequence can be easily larger than the improvements
in a bsld=2 job sequence, which may confuse the RL agent dur-
ing training. Such a bias needs to be eliminated. One bias free
reward could be just counting how many times SchedInspector
wins the base scheduler. The reward function then can be defined
as 𝑐𝑜𝑢𝑛𝑡 (𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡 < 𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔). This reward, namely Win/Loss
reward, is easy to calculate and will not be affected by the variances
of the metric values. However, it treats all improvements the same,
hence does not reward the big-gain actions and can not guide the
RL agent to identify high-gain opportunities limiting its training
performance.

In SchedInspector, we design a new reward function called Per-
centage Reward to address the issues of previous two reward func-
tions. For instance, if the performance metric is minimizing bsld,
then the reward is defined as (𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔−𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡)/𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔 . Com-
pared to the previous two rewards, this function eliminates the high
variance of 𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔 − 𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡 by dividing it by 𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔 ; it also
awards the big-gain actions as the percentage could be higher in
that case. In §4, we compared different reward functions and show
the advantage of the percentage reward.

4 EVALUATION
This section evaluates the performance of SchedInspector. In par-
ticular, we focus on answering the following questions:

• Can SchedInspector learn how to inspect scheduling deci-
sions and improve the performance of the base scheduling
policies? If yes, how efficiently does it learn?

• How much SchedInspector could improve the job execution
performance upon different scheduling policies on different
workloads?When does SchedInspector not perform well and
why? How does backfilling impact the results? How would
SchedInspector impact the system utilization?

• Does SchedInspector still work in more realistic scheduling
settings? Are the overheads of SchedInspector acceptable in
production system?

(a) SJF

(b) F1

Figure 4: Training curves of SchedInspector on four job traces using two schedulers. The 𝑥-axis shows the training epoch, the 𝑦-axis shows the
metrics improvements on the selected metrics (𝑏𝑠𝑙𝑑). Larger than 0 means SchedInspector performs better than the base schedulers.

Table 2: List of job traces in use.

Name cluster size interval (sec) 𝑒𝑠𝑡 𝑗 (sec) 𝑟𝑒𝑠 𝑗

CTC-SP2 338 379 11277 11
SDSC-SP2 128 1055 6687 11
HPC2N 240 538 17024 6
Lublin 256 771 4862 22

4.1 Implementation and Configuration
We implement SchedInspector based on OpenAI SpinningUp li-
brary [2] using Tensorflow [1]. SchedInspector uses Proximal Policy
Optimization (PPO) algorithm, a state-of-the-art policy-gradient
RL algorithm, to train [28].

SchedInspector contains several hyper parameters. Two are rel-
evant to the inspection itself. MAX_INTERVAL means the maximal
waiting time for the base schedulers to try again after being rejected.
We set it to be 600 seconds or 10 minutes to avoid idling resources
for too long. MAX_REJECTION_TIMES means the maximal number
of rejections that one job can receive. We empirically set it to be
72. In this way, a job might not get scheduled in 600 ∗ 72 seconds
or 12 hours, which is a relatively long range as we want to pro-
mote SchedInspector to explore. The policy-gradient reinforcement
learning algorithm also contains several hyper parameters. Its batch
size is 100, which means the agent collects 100 trajectories before
updating its model. Each time the agent updates the model, we call
it an epoch. Each trajectory contains 128 sequential jobs selected
from a random start index of the job trace. The learning rate of the
network updating is 10−3. More details about the implementation
and configuration can be found in our code repo1.

4.2 Evaluation Setup
We evaluate SchedInspector using job traces from Parallel Work-
loads Archive [12]. Table 2 shows the job traces in use and their key
features, such as the total number of processors in the cluster (clus-
ter size), average job arrival interval (interval), average estimated
execution runtime (𝑒𝑠𝑡 𝑗), and average requested processors (𝑟𝑒𝑠 𝑗).
To be generic, we include both synthetic (Lublin in the bottom part)
and real-world (others in the top part) traces. We select these job

1https://github.com/DIR-LAB/SchedInspector

Table 3: List of base batch job scheduling policies.

Abbr. Full Name Priority Setting

FCFS First Come First Served max(𝑤𝑎𝑖𝑡 𝑗)
LCFS Last Come First Served min(𝑤𝑎𝑖𝑡 𝑗)
SJF Shortest Job First min(𝑒𝑠𝑡 𝑗)
SAF Smallest estimated Area First min(𝑒𝑠𝑡 𝑗 ∗ 𝑟𝑒𝑠 𝑗)
SRF Smallest estimated Ratio First min(𝑒𝑠𝑡 𝑗 /𝑟𝑒𝑠 𝑗)

F1 Carastan-Santos et. al [9] min(𝑙𝑜𝑔10 (𝑒𝑠𝑡 𝑗) ∗ 𝑟𝑒𝑠 𝑗
+870 ∗ 𝑙𝑜𝑔10 (𝑠 𝑗))

traces for two reasons. First, they are commonly used in relevant
research [9, 39], hence popular for evaluating schedulers. Second,
from their key features reported in Table 2, we can observe these
job traces are diverse. We expect SchedInspector works well with
various job traces.

In addition to job traces, we also evaluated SchedInspector on
different job scheduling policies. Table 3 shows these scheduling
policies and their heuristic priority functions. Here, parameter 𝑠 𝑗 is
job submission time;𝑤𝑎𝑖𝑡 𝑗 is job waiting time; 𝑒𝑠𝑡 𝑗 is job estimated
runtime; 𝑟𝑒𝑠 𝑗 is job requested resources; 𝐴𝑡 = 𝑒𝑠𝑡 𝑗 ∗ 𝑟𝑒𝑠 𝑗 indicates
the estimated area, and 𝑅𝑡 = 𝑒𝑠𝑡 𝑗/𝑟𝑒𝑠 𝑗 indicates estimated ratio.
More details about these scheduling policies can be found in [9, 19].
We do cover a wide range of representative scheduling policies
in Table 3. FCFS, LCFS, and SJF are policies that focus on one job
attribute; SAF and SRF are policies built on two job attributes; F1 [9]
is the state-of-the-art heuristic scheduling policy which leverages
machine learning to build the non-linear regression of multiple job
attributes. We will exam how SchedInspector works with all these
base scheduling policies.

4.3 Evaluations on SchedInspector RL Designs
In this set of experiments, we first evaluate 1) whether the RL-based
SchedInspector can successfully learn the inspection and rejection
strategy to gain better job execution performance than the base
scheduling policies; 2) how efficient the learning is; and 3) how our
new RL designs impact the learning efficiency.

To answer these questions, we directly show the training curves
of SchedInspector on four job traces listed in Table 2 using two

https://github.com/DIR-LAB/SchedInspector

Figure 5: The comparison of the training curves of SchedInspector
with different feature building mechanisms. 𝑦-axis shows the im-
provements of SchedInspector over the base scheduling policy on 𝑏𝑠𝑙𝑑 .
Larger is better.

different base scheduling policies: SJF and F1 [9]. Both policies opti-
mize the average bounded job slowdown (𝑏𝑠𝑙𝑑). F1 actually achieves
the state-of-the-art performance in 𝑏𝑠𝑙𝑑 . Hence, we used 𝑏𝑠𝑙𝑑 as
the performance metric and evaluated whether SchedInspector can
further improve it. Figure 4 presents the results. We discuss how
SchedInspector performs with other job scheduling policies and
job execution performance metrics in details in §4.4.

The results in Figure 4 show SchedInspector starts from per-
forming worse (larger 𝑏𝑠𝑙𝑑) than the base scheduling policies, but
improves quickly and finally achieves better 𝑏𝑠𝑙𝑑 than the base
policies do (both SJF and F1) on all tested job traces (converged to
a value larger than 0). It is interesting to see that SchedInspector
can further reduce 𝑏𝑠𝑙𝑑 value of F1 in such a significant way (e.g.,
40% better in SDSC-SP2 trace and 95% better in Lublin trace) since
F1 is already highly optimized for minimizing 𝑏𝑠𝑙𝑑 [9]. This result
shows the effectiveness of SchedInspector during training.

In addition, from these results we observed SchedInspector de-
livers an efficient learning process (mostly converged within the
first 40 epoch). We believe that the Feature Building mechanism
and Reward Function contribute to the efficiency. To prove it, we
further conducted micro-benchmark evaluations towards the two
new designs in the next two subsections.

4.3.1 Impacts of Feature Building. To show the impacts of new Fea-
ture Building mechanism, we compare the features built in SchedIn-
spector with two naive ways to build features: native features and
compacted features. The native features directly use the whole envi-
ronmental state as the inputs. Such a strategy is commonly used
in other RL-based system optimization work [21, 39] as they ex-
pect the deep neural network to learn the useful features out of
raw inputs automatically. The compacted features downselects the
features. It includes only the current job and the cluster state, and
ignores the queue delay and backfilling contributions. We use this
mechanism to show how SchedInspector would perform if it misses
the important aggregated features.

We compared the training curves of these three cases in Figure 5.
To save the space, we only report the result of running SJF base
scheduling on SDSC-SP2 trace usingmetrics𝑏𝑠𝑙𝑑 . Other evaluations
show similar trends. From the figure we observed that across three
feature mechanisms, the manually built features outperform the
others clearly. The improvements over base SJF converge to 8.7
using compacted feature. While at the same time, SchedInspector

Figure 6: The comparison of the training curves of SchedInspector
with different reward functions.

Feature converges to 25.1, which is 2.9x better. The native feature
performs the worst and can not converge to a positive value. After
checking its decisions in more details, we found that the RL agent
learns simply not to reject any scheduling at all. We believe this
is because the raw state often leads to subtle and unstable corner
cases and confuses the RL agent. Such a result confirms that our
Feature Building mechanism prevents SchedInspector from chasing
corner cases and assures its high training accuracy.

4.3.2 Impacts of Reward Function. We further compare the perfor-
mance of SchedInspector using different 𝑅𝑒𝑤𝑎𝑟𝑑 functions. Specif-
ically, we compared the native reward, win/loss reward, and the
percentage reward in the same scheduling scenario as discussed
earlier (i.e., running SJF base scheduling on SDSC-SP2 trace using
metrics 𝑏𝑠𝑙𝑑). The results are shown in Figure 6.

Here, the 𝑦-axis is the direct difference between 𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔 and
𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡 . Intuitively, such a 𝑦-axis should favor the native reward,
because it is exactly what native reward optimizes for. However,
the results are counter-intuitive: among the three reward functions,
the percentage reward actually performs the best. This reflects the
benefits of percentage reward as it stabilizes the highly variant
reward values as well as captures the big gains. While the highly
variant reward values cause problems in the native reward function.

4.4 Evaluation on SchedInspector Generality
This section discusses how SchedInspector works with different
base scheduling policies on different job traces and optimize to-
wards different job executionmetrics.We also show its performance
with backfilling enabled and disabled cases. Beyond the training
curves, we further report the performance of SchedInspector when
tested in scheduling the actual job sequences sampled from job
traces. To avoid over-fitting, for each trace we use the first 20% for
training and the remaining 80% of the data for testing.

4.4.1 Working with Various Scheduling Policies. To understand how
SchedInspector works with various base job scheduling policies, we
trained SchedInspector based on the scheduling heuristics listed in
Table 3 and checked their performance. To save spaces, we reported
the results of using SDSC-SP2 as job trace and 𝑏𝑠𝑙𝑑 as job execution
performance metrics. Results on other job traces show similar trend.

The training of SchedInspector with different job scheduling
policies are shown in Figure 7. We do not include the results on SJF
and F1 since they were already reported in Figure 4. This time, in
addition to show how the training converges on the performance

FCFS LCFS

SRF SAF

Re
je
ct
io
n
Ra
tio

Re
je
ct
io
n
Ra
tio

Re
je
ct
io
n
Ra
tio

Re
je
ct
io
n
Ra
tio

Figure 7: SchedInspector training with different base job scheduling
policies. Blue curve is the 𝑏𝑠𝑙𝑑 improvements using the left 𝑦-axis;
orange curve is the rejection ratio using the right 𝑦-axis.

metrics, we show another important indicator about the training:
how the Rejection Ratio changes. Rejection Ratio is how many times
the rejections are made v.s how many times the inspection happens.
The right 𝑦-axis measures the ratio, ranging from 0 to 1.

From these results, we can observe that among these job sched-
ulers, FCFS is the only one did not converge to positive improve-
ment, which indicates SchedInspector introduces no benefits to it.
When taking a closer look into its Rejection Ratio, we can notice
its value slowly reduces to 5% starting from around 50%. Compar-
atively, on other scheduling policies (LCFS, SRF, SAF), SchedIn-
spector can converge to 144.9, 52.9, and 34.5 metrics improvements
(𝑏𝑠𝑙𝑑); and their Rejection Ratios converge to 39.1%, 41.0%, and
48.2% respectively. These results show although SchedInspector
works well with many scheduling policies, not all of them benefit
from SchedInspector.

In fact, it is expected that SchedInspector does not benefit all
scheduling policies. The key is whether rejecting current job can
lead to a different job being scheduled in the future. If nothing
changes after some idle time, then the rejection becomes a pure
waste. Since FCFS always prioritizes the oldest job, any future job
will not impact its decision. Inspecting and rejecting FCFS then
is a pure waste of time and resources. From Figure 7, we can ob-
serve SchedInspector converges to a very low rejection rate (5%) in
FCFS. The converged rejection rate is not exactly 0 because of the
explorations in the reinforcement learning as well as the low cost
of certain rejections. For example, rejecting a job that needs to wait
for resources does not impact the performance. Comparatively, F1
and SJF try to prioritize jobs for the minimal 𝑏𝑠𝑙𝑑 . The future jobs
added may fit better to that goal and hence change the next schedul-
ing decision. So, SchedInspector has the chance to improve F1 and
SJF. Interestingly, we did not embed such knowledge into SchedIn-
spector design. But it learns that automatically. A low converged
Rejection Ratio (less than 10%) is a strong signal for SchedInspector
to disable any delaying attempts for that scheduling policy.

4.4.2 Working with Different Job Traces. Figure 4 already presents
the good training convergence of SchedInspector toward the perfor-
mance metric 𝑏𝑠𝑙𝑑 on various job traces. In this section, we further

(a
)

SJ
F

(b
) F

1

SDSC-SP2 CTC-SP2 Lublin HPC2N

SDSC-SP2 CTC-SP2 Lublin HPC2N

160.2 135.6 19.5 13.6 344.8 25.3 19.2 5.9

220.5 149.8 17.7 15.3 324.2 38.7 14.2 5.9

Original Inspected Inspected Inspected

Inspected Inspected

Inspected

Inspected

Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected Original Inspected

Original Inspected

Figure 8: The scheduling performance of SchedInspector and base
scheduling policies on four different job traces. 𝑦-axis is the 𝑏𝑠𝑙𝑑
value. The averages are shown on the top of each bar. Smaller is better.

Table 4: The performance of SchedInspector (𝑏𝑠𝑙𝑑 as the met-
rics) on different job trace.

Base→Y ‘SDSC-SP2’→Y Y→Y
SDSC-SP2 149.5 130.75 130.75
CTC-SP2 13.36 10.79 10.1
Lublin 333.19 320.39 27.97
HPC2N 8.26 4.39 3.27

evaluated how the trained SchedInspector model performs when ap-
plied to schedule actual job sequences.We focus on the performance
based on SJF and F1 base scheduling policies and 𝑏𝑠𝑙𝑑 job execution
performance metrics due to space limitation. We will discuss other
job execution performance metrics in later sub-sections.

The results are reported in Figure 8. In these experiments, for
each trace, we randomly sampled 50 different job sequences (each
contains continuous 256 jobs) from the testing dataset. We sched-
uled them using both the base schedulers (SJF, F1) and SchedInspec-
tor enabled counterparts, and calculated their metrics (𝑏𝑠𝑙𝑑). We
plot all of the 50 results and their box-and-whisker with the aver-
ages in Figure 8. From these results, we can observe SchedInspector
indeed improves the base scheduling policies across different job
traces: the metrics 𝑏𝑠𝑙𝑑 is becoming better (smaller) from 13.6% (F1
running on CTC-SP2 case) to 91.6% (SJF running on Lublin case).

The previous results (Figure 8) show the performance of SchedIn-
spector when trained from and applied to the same job trace (using
separate training and testing datasets). The results suggest the
SchedInspector model is stable across training and testing datasets.
Next, we further evaluated the stability of SchedInspector when
trained on a trace-X but applied to a totally different trace-Y. Due
to space limit, we only report the results of using SDSC-SP2 as the
trace-X, SJF as the base scheduling policy, and 𝑏𝑠𝑙𝑑 as the metrics.
Other scheduling policies share the similar trends.

(a) wait
SJF F1

(b) mbsld

SJF F1

Figure 9: SchedInspector training with different job execution per-
formance metrics. Blue curve is the relative improvement using the
left y-axis; orange curve is the rejection ratio using the right y-axis.

Table 4 summarizes the results. Each row represents a job trace-
Y being scheduled under one of the three scheduling scenarios
(columns). In particular, the first column (Base→Y) shows the per-
formance of using base scheduling policy (SJF) to schedule each
job trace Y. The second column (‘SDSC-SP2’→Y) shows the perfor-
mance of applying SchedInspector trained using SDSC-SP2 (trace-
X) to each job trace Y. The third column (Y→Y) shows the results
of applying SchedInspector trained using each job trace Y to the
same trace Y. Each time, we scheduled the same 50 randomly sam-
pled job sequences from each job trace and report their average
𝑏𝑠𝑙𝑑 for comparison. From the table we can observe that, although
‘SDSC-SP2’→Y performs not as good as Y→Y does, it still outper-
forms the base scheduler, suggesting a stable and positive impact
of SchedInspector across workloads.

4.4.3 Working with Different Job Execution Metrics. In the previous
evaluations, we mainly used 𝑏𝑠𝑙𝑑 (average bounded job slowdown)
as the job execution performance metric. In this section, we further
examine how SchedInspector performs towards different job execu-
tion metrics. In particular, we conducted evaluations towards two
additional job execution performance metrics, each addressing an
aspect of the system:

• averagewaiting time (wait): the average duration between
the job’s submission and its start time. It does not consider
job length in its calculation.

• maximal bounded job slowdown (𝑚𝑏𝑠𝑙𝑑): the maximal
𝑏𝑠𝑙𝑑 of a job sequence instead of the average. It emphasizes
on the fairness and effectively avoids starving long jobs.

Figure 9 reports the training curves of SchedInspector towards
these two performance metrics. Due to the space limitation, we only
present the results on job trace SDSC-SP2 with SJF and F1 serving
as the base scheduling policies due to their representativeness. The
results in Figure 9 show that, for both 𝑤𝑎𝑖𝑡 and 𝑚𝑏𝑠𝑙𝑑 , SchedIn-
spector starts performing not as well as the base scheduling policy
does. However, it learns fast and converges stably, and achieve 25%
to 50% better performance than the base scheduler does at the end.
These results show SchedInspector does perform well and stably
across different job execution metrics, such as𝑤𝑎𝑖𝑡 and𝑚𝑏𝑠𝑙𝑑 .

160.2 135.6

Original Inspected

59.64% 59.37%

19.5 13.6 51.35% 49.92%

344.8 25.3 61.49%61.06%

19.2 5.9 23.72% 23.47%

4200.6 4652.2

767.9 689.6

4498.3 4401.6

787.3 699.5

Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected

(a) SJF
utilbsld mbsld

220.5 149.8

17.7 15.3

324.2 38.7

14.2 5.9

60.18% 60.59%

54.40% 54.23%

67.37% 63.04%

24.00% 23.79%

8263.5 8188.5

843.3 834.5

4785.9 4793.1

975.9 792.3

Original Inspected Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected

Original Inspected Original Inspected Original Inspected

(b) F1
utilbsld mbsld

SDSC-SP2

CTC-SP2

Lublin

HPC2N

Figure 10: The performance of SchedInspector on different metrics
using SJF and F1 as base scheduling policy on different job traces.
lower are better for 𝑏𝑠𝑙𝑑 and𝑚𝑏𝑠𝑙𝑑 ; higher are better for 𝑢𝑡𝑖𝑙 .

4.4.4 Trade-off Among Different Metrics. In real world, more per-
formance metrics in addition to job execution metrics may be im-
portant to end users. They may further care about the trade-off
among different metrics when a scheduling policy is applied. In
this section, we show how SchedInspector performs if gets trained
toward one job execution performance metric but evaluated on
other metrics. Specifically, we trained SchedInspector towards 𝑏𝑠𝑙𝑑
and evaluated it towards 𝑢𝑡𝑖𝑙 and 𝑚𝑏𝑠𝑙𝑑 . Here 𝑢𝑡𝑖𝑙 indicates the
system resource utilization, calculated as the resources used for
executing jobs v.s all resources available. We examine 𝑢𝑡𝑖𝑙 to show
whether SchedInspector will significantly affect the resource utiliza-
tion because of its actively rejecting and delaying scheduled jobs.
We also show the performance of maximal bounded job slowdown
(𝑚𝑏𝑠𝑙𝑑) to examine whether SchedInspector will blindly push back
long jobs and starve them to get better 𝑏𝑠𝑙𝑑 .

Figure 10 presents the results. In these experiments, for each
trace, we randomly sampled 50 different job sequences (each con-
tains continuous 256 jobs) only from the testing dataset. We sched-
uled them using both the base schedulers (SJF, F1) and SchedIn-
spector enabled counterparts. Each time, we calculated all three
performance metrics: 𝑏𝑠𝑙𝑑 , 𝑢𝑡𝑖𝑙 , and𝑚𝑏𝑠𝑙𝑑 and plot all of the 50
results and their box-and-whisker with the averages in Figure 10.
From these results, we can observe that the SchedInspector trained
on 𝑏𝑠𝑙𝑑 still performs well towards𝑚𝑏𝑠𝑙𝑑 , indicating that SchedIn-
spector does not blindly push back long jobs to gain better 𝑏𝑠𝑙𝑑 .
We also observe SchedInspector does introduce slight overhead

(b) wait
SJF F1

(a) bsld
SJF F1

Figure 11: The training curves of SchedInspector with backfilling.
y-axis shows the relative improvement and rejection ratio.

on system utilization (less than 1% in most of the cases), show-
ing the rejections introduced by SchedInspector do not break the
system utilization. We will more systematically discuss SchedIn-
spector’s impacts on system utilization with backfilling counted in
Section 4.4.6.

4.4.5 Working with Backfilling. Previously, we have shown SchedIn-
spector improves various base job scheduling policies with backfill-
ing disabled. It is interesting to see whether SchedInspector can still
improve the performance of job scheduling policies with backfilling
enabled. Figure 11 reports the training curves of SchedInspector
with backfilling enabled using 𝑏𝑠𝑙𝑑 and𝑤𝑎𝑖𝑡 as the job execution
performance metrics. Due to the space limitation, we only present
the results of SDSC-SP2 trace on SJF and F1 scheduling policies.
Other cases share the similar patterns. Similar to the backfilling-
disabled cases, SchedInspector can effectively learn and achieve
better performance than the base scheduler. But we do notice that
the converged metrics improvements are smaller. This is expected
as backfilling has improved the schedulers significantly, leaving
limited optimization space for SchedInspector. Even though, we can
still see that SchedInspector converges to about 10% improvements.

4.4.6 Impacts on System Utilization. This subsection addresses the
concerns about whether SchedInspector and its rejection decisions
hurt system utilization after introducing idles. In this experiment,
we randomly sampled 50 job sequences (each contains continuous
256 jobs) from different job traces, scheduled them using the base
SJF and F1 schedulers (BASE) and their SchedInspector enabled
counterparts (INSP), then calculate their system utilization. We
consider both with and without backfilling cases. The results are
in Table 5. We can observe that, in all these cases, SchedInspector
introduces barely noticeable reduction (Δ ≈ 1%) on system utiliza-
tion except for (Lublin, F1) case, which has a 4.3% difference. But,
relative to Figure 8, we know for this exact case, SchedInspector
also brings 88% improvement on average bounded job slowdown,
overshadowing its utilization reduction.

4.5 SchedInspector in Realistic Settings
So far, we have examined the effectiveness and generality of SchedIn-
spector based on various heuristic scheduling policies. But, real-
world batch job schedulers are more complicated and need to con-
sider fair sharing among users, project quotas, and queue priorities

Table 5: System utilization with/without SchedInspector.
SJF F1

BASE INSP Δ BASE INSP Δ
Scheduling without Backfilling

SDSC-SP2 59.64% 59.37% -0.27% 60.18% 60.59% +0.41%
CTC-SP2 51.35% 49.92% -1.43% 54.40% 54.23% -0.17%
Lublin 61.49% 61.06% -0.43% 67.37% 63.04% -4.33%
HPC2N 23.72% 23.47% -0.25% 24.00% 23.79% -0.21%

Scheduling with Backfilling
SDSC-SP2 78.45% 78.37% -0.08% 76.71% 76.93% +0.22%
CTC-SP2 74.98% 74.89% -0.09% 75.47% 76.05% +0.58%
Lublin 79.38% 77.71% -1.67% 80.38% 78.08% -2.30%
HPC2N 56.81% 57.10% +0.29% 57.11% 56.57% -0.54%

82.9 62.4 79.31% 78.82%

Performance Utilization
Original Inspected Original Inspected

Figure 12: The performance of SchedInspector working with Slurm.
𝑦-axis on the right two charts are 𝑏𝑠𝑙𝑑 and util percentage.

in their policy. It is then interesting to see whether SchedInspector
still works with them. In this evaluation, we used Slurm multifactor
priority scheduler with backfilling as the base scheduling policy.
The job priority is calculated as follow [37]:

𝐽 𝑜𝑏_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =(𝑤𝑒𝑖𝑔ℎ𝑡𝑎𝑔𝑒) ∗ (𝑎𝑔𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟)+
(𝑤𝑒𝑖𝑔ℎ𝑡𝑓 𝑎𝑖𝑟𝑠ℎ𝑎𝑟𝑒) ∗ (𝑓 𝑎𝑖𝑟𝑠ℎ𝑎𝑟𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟)+
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑗𝑎𝑡𝑡𝑟) ∗ (𝑗𝑜𝑏_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟)+
(𝑤𝑒𝑖𝑔ℎ𝑡𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛) ∗ (𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟) + ...

Here, 𝑎𝑔𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 is job waiting time (normalized using 7 days).
The 𝑓 𝑎𝑖𝑟𝑠ℎ𝑎𝑟𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 calculates the offset between a user’s actual
CPU usage and her assigned share. We used the normal model
to do the calculation [7] and use a user’s actual CPU usage as
her assigned shares. We used job requested execution time as
𝑗𝑜𝑏_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 . The 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟 is the priority of each
queue in the system and is not given in our job trace file. We cal-
culated it by counting the CPU usages of each queue across the
whole trace and used such an actual share to estimate the queue
priority. Although a real system may consider more factors, such as
𝑄𝑜𝑆_𝑓 𝑎𝑐𝑡𝑜𝑟 . We eliminated them as existing data traces do not cap-
ture such information. For the weights, we assigned all𝑤𝑒𝑖𝑔ℎ𝑡 (∗)
as 1000 to consider all of these factors equally. We used SDSC-SP2
to conduct this experiment because it contains the needed user and
queue information. We used 𝑏𝑠𝑙𝑑 as the job execution performance
metric to optimize.

Figure 12 reports the results. We report the actual training curve
of SchedInspector, 𝑏𝑠𝑙𝑑 performance and 𝑢𝑡𝑖𝑙 performance when
the trained model is applied to schedule 50 randomly sampled
job sequences from testing dataset. Since backfilling is by default

enabled in Slurm, we only report the backfilling results. Here, we
can observe file SchedInspector still learns how to delay Slurm
scheduler in this case. It performs 24.7% better on 𝑏𝑠𝑙𝑑 (62.4 vs. 82.9,
smaller is better) and only introduces 0.49% utilization reduction.

4.6 SchedInspector Computational Cost
The computational cost consists of training and inference cost.
SchedInspector is trained based on the simulated environment,
so it can be trained in an offline environment using the historical
job traces collected from the cluster. Our previous evaluations show
SchedInspector still works well on partially seen or even unseen
job traces. So, it is reasonable to re-train the SchedInspector every
week or month instead of keeping up with the job traces in real
time. This means SchedInspector is not sensitive to the training
time. Based on the current implementation, the training time for
SchedInspector is about 35 minutes, which is far smaller than the
necessary model updating intervals (weeks or months). The infer-
ence cost is more important as each job scheduling decision made
by the scheduler will need to go through SchedInspector. Because
of the feature-building mechanism and the simple 3-Layer MLP
neural networks, we are able to control the inference cost to 0.7ms,
which is negligible in batch job scheduling.

5 WHAT SCHEDINSPECTOR LEARNS
In this section, we discusses what SchedInspector actually learns.
Because SchedInspector takes a statistical approach, we conducted
statistical analysis on the learned model. To do so, we first trained
a model based on the following combination: [SJF, 𝑏𝑠𝑙𝑑 , SDSC-
SP2], then used the trained model to schedule the whole SDSC-
SP2 job trace from beginning to the end. During scheduling, we
recorded each inspection decision (reject or not) and its correspond-
ing input state features. In this experiment, we totally collected
24,044,629 Total Samples, each representing an inspection. Among
them, 7,351,608 samples yield rejection (≈30%), which are called
Rejected Samples. We then analyze how the inputs features impact
rejection decisions to reveal what SchedInspector learns.

Specifically, we plot the cumulative distribution function (CDF)
of rejected samples and total samples for different features. Fig-
ure 13 shows the results. To interpret these figures, we focus on
the gradient of the curves during certain range of 𝑥-axis. For in-
stance, in ‘Waiting Time’ figure, the curve of rejected samples
increases much faster at the beginning of 𝑥-axis ([0, 0.3]), which
means SchedInspector delays more often when jobs have smaller
waiting time. Similarly, in ‘Job Execution Time’ figure, the curve of
rejected samples increases faster in the larger 𝑥-axis, which means
SchedInspector rejects more jobs with longer execution time. Note
that, since this model is trained without backfilling, we ignore the
Backfilling Contributions feature; also we did not plot Runnable as
its value is either 0 or 1.

From these results, we can briefly summarize what SchedInspec-
tor learns. First, SchedInspector tends to delay the jobs with shorter
waiting times, longer execution times, and higher resource require-
ments. This is intuitive as delaying short-waiting jobs costs less
and delaying high-demanding or long-running jobs could lead to
more gains on 𝑏𝑠𝑙𝑑 . Second, when looking into the scheduling envi-
ronment (i.e., free nodes, queue delays), we find both of them have

Waiting Time Job Execution Time

Free Nodes Rejected Times Queue Delays

Requested Nodes

Figure 13: The CDF distribution of input features. Rejected Samples
vs. Total Samples. 𝑥-axis shows the normalized value of the feature.

profound impacts on the rejection decisions. For ‘Free Nodes’, it is
interesting to see ‘having many free nodes’ and ‘having few free
nodes’ both lead to more rejections than moderately loaded case.
This seems counter-intuitive but actually makes sense: when the
cluster is busy, immediately scheduling an unfit job may saturate
the cluster, so rejecting it leads to big gains; when the cluster is
mostly idle, rejecting a job may not lead to big gains, but it means
less cost because the rejection will affect less waiting jobs. This
also means SchedInspector may be more useful in real-world HPC,
as they are often in full or idle states. Also we noticed that the
hard cap for ‘Queue Delays’: it has a maximal value 0.22. When the
queue delays is larger than that, SchedInspector will never delay
job anymore, regardless of the other factors.

6 RELATEDWORK
In HPC, batch job scheduling has been a long-standing research
topic. Various batch schedulers have been proposed and studied [3–
5, 9, 16, 23, 32, 35]. In particular, they determine the scheduling
priority by heuristically weighting different job features, from fo-
cusing on one feature to leveraging sophisticated methods such as
linear programming [5, 13], non-linear algorithms [9, 15, 29], neural
networks [3, 4], or even reinforcement learning [22]. Compared
to the previous studies, SchedInspector is fundamentally different.
It inspects and rejects existing job scheduling policies’ decisions
and improves their performance by taking runtime factors into con-
siderations. Recently, there are batch job scheduling policies that
consider both job features and runtime factors together via machine
learning, such as RLScheduler [39], DRAS [10], DSBH [34]. How-
ever, RLScheduler-like policies often change the original scheduling
policy disruptively that system administrators are often reluctant to
do. Even worse, since the scheduling decisions are based on a mix of
job features and runtime factors, the outcomes sometimes become
arbitrary and hard to interpret and explain to end users, further
hindering its application. One key advantage of SchedInspector is
it works with existing scheduling policies without changing them.
Its rejection decisions are also separate from the decisions made by
the base scheduling policies, hence can be provided individually to
end users.

Some non-work-conserving schedulers, sharing the similar prin-
ciples of rejecting or delaying a ready task as SchedInspector does.
They are mostly designed for the environment where contentions
may occur or costs may be higher if a task has to run now, such

as disk scheduling [26, 36], real-time simultaneous multithread-
ing (SMT) processors [11, 14, 27], tasks with locality [38], batch
mode scheduling [35], rent-based cloud with dynamic price [6].
Delaying scheduling becomes intuitive in these cases. Compared to
these studies, the rationale behind delaying the scheduling is quite
different from SchedInspector and accordingly leads to different
solutions and results.

7 CONCLUSION AND FUTUREWORK
This study presents SchedInspector, a new reinforcement learning
based scheduling inspector to incorporate runtime information into
batch job scheduling. Our results show SchedInspector is capable
to learn high-quality inspection and rejection policies towards var-
ious job scheduling policies, including the state-of-the-art one, to
gain better job execution performance, such as minimizing average
bounded job slowdown, job waiting time, and maximal bounded
job slowdown. The performance improvements are generic across
different workloads and scheduling scenarios. We also extensively
show and discuss the impacts of SchedInspector on system uti-
lization and the scheduling policies that SchedInspector does not
work well with. We demonstrate what SchedInspector learns and
explain its intuition using an example. In the future, we plan to
investigate further on more kinds of job workloads, especially the
machine learning workloads; incorporate SchedInspector with intel-
ligent scheduling policies, such as RLScheduler [39]; and integrate
SchedInspector into Slurm [37] in real-world HPC clusters.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their valuable
feedback. This work is supported by NSF grants CCF-1910727 and
CNS-1817094. This work used resources of the Oak Ridge Lead-
ership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, RajatMonga, SherryMoore, Derek GMurray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
Xiaoqiang Zheng, and Google Brain. 2016. TensorFlow: A system for large-scale
machine learning. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16).

[2] Joshua Achiam. 2018. Spinning Up in Deep Reinforcement Learning.
[3] Anurag Agarwal, Selcuk Colak, Varghese S Jacob, and Hasan Pirkul. 2006. Heuris-

tics and augmented neural networks for task scheduling with non-identical
machines. European Journal of Operational Research (EJOR’06).

[4] Derya Eren Akyol and GMirac Bayhan. 2007. A review on evolution of production
scheduling with neural networks. Computers & Industrial Engineering (CAIE’07).

[5] Hadil Al-Daoud, Issam Al-Azzoni, and Douglas G Down. 2012. Power-aware lin-
ear programming based scheduling for heterogeneous computer clusters. Future
Generation Computer Systems (FGCS’12).

[6] Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy. 2020. Waiting
game: optimally provisioning fixed resources for cloud-enabled schedulers. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’20).

[7] David Bigagli. 2014. Slurm Workload Manager Introductory User Training.
https://cug.org/proceedings/cug2014_proceedings/includes/files/tut102.pdf.

[8] Hervé Bourlard and Yves Kamp. 1988. Auto-association bymultilayer perceptrons
and singular value decomposition. Biological cybernetics (Biol. Cybern.’88).

[9] Danilo Carastan-Santos and Raphael Y. de Camargo. 2017. Obtaining dynamic
scheduling policies with simulation and machine learning. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC’17).

[10] Yuping Fan, Zhiling Lan, Taylor Childers, Paul Rich, William Allcock, and
Michael E Papka. 2021. Deep reinforcement agent for scheduling in HPC. In
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS’21).

[11] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. 2006. A non-work-
conserving operating system scheduler for SMT processors. In Proceedings of the
Workshop on the Interaction between Operating Systems and Computer Architecture,
in conjunction with ISCA (WIOSCA’06).

[12] Dror G. Feitelson, Dan Tsafrir, and David Krakov. 2014. Experience with using
the Parallel Workloads Archive. Journal of Parallel and Distributed Computing
(JPDC’14).

[13] Christodoulos A Floudas and Xiaoxia Lin. 2005. Mixed integer linear program-
ming in process scheduling: Modeling, algorithms, and applications. Annals of
Operations Research (Ann. Oper. Res.’05).

[14] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. 2008. Work-conserving
optimal real-time scheduling on multiprocessors. In Proceedings of the 2008 Eu-
romicro Conference on Real-Time Systems (ECRTS’08).

[15] Edwin SH Hou, Nirwan Ansari, and Hong Ren. 1994. A genetic algorithm for
multiprocessor scheduling. IEEE Transactions on Parallel and Distributed systems
(TPDS’94).

[16] Alexandru Iosup, Simon Ostermann, M Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. 2011. Performance analysis of cloud computing
services for many-tasks scientific computing. IEEE Transactions on Parallel and
Distributed systems (TPDS’11).

[17] Leslie Pack Kaelbling, Michael L Littman, and AndrewWMoore. 1996. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Research (JAIR’96).

[18] Vijay R Konda and John N Tsitsiklis. 2000. Actor-critic algorithms. In Advances
in neural information processing systems (NeurIPS’99).

[19] Arnaud Legrand, Denis Trustram, and Salah Zrigui. 2019. Adapting batch sched-
uling to workload characteristics: what can we expect from online learning?. In
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS’19).

[20] Yan Li, Kenneth Chang, Oceane Bel, Ethan L Miller, and Darrell DE Long. 2017.
CAPES: unsupervised storage performance tuning using neural network-based
deep reinforcement learning. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC’17).

[21] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource management with deep reinforcement learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (HotNets’16).

[22] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM special interest group on data commu-
nication (SIGCOMM’19).

[23] Ahuva W Mu and Dror G Feitelson. 2001. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2with ling. IEEE Transactions
on Parallel and Distributed Systems (TPDS’01).

[24] Michael L Pinedo. 2012. Scheduling. Springer.
[25] Heyang Qin, Syed Zawad, Yanqi Zhou, Lei Yang, Dongfang Zhao, and Feng

Yan. 2019. Swift machine learning model serving scheduling: a region based
reinforcement learning approach. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC’19).

[26] Pedro Eugênio Rocha and Luis CE Bona. 2012. A QoS aware non-work-conserving
disk scheduler. In Proceedings of the 28th Symposium on Mass Storage Systems and
Technologies (MSST’12).

[27] Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi, and Lawrence W Dowdy. 1995.
Analysis of non-work-conserving processor partitioning policies. In Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP’95).

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv:1707.06347.

[29] Harmel Singh and Abdou Youssef. 1996. Mapping and scheduling heterogeneous
task graphs using genetic algorithms. In Proceedings of the 5th IEEE heterogeneous
computing workshop (HCW’96).

[30] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[31] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems (NeurIPS’00).

[32] Wei Tang, Zhiling Lan, Narayan Desai, and Daniel Buettner. 2009. Fault-aware,
utility-based job scheduling on blue, gene/p systems. In Proceedings of the Inter-
national Conference on Cluster Computing and Workshops (CLUSTER’09).

[33] Jeffrey D. Ullman. 1975. NP-complete scheduling problems. Journal of Computer
and System Sciences (JCSS’75).

[34] Lingfei Wang, Aaron Harwood, and Maria A Rodriguez. 2021. A Deep Reinforce-
ment Learning Scheduler with Back-filling for High Performance Computing.
In Proceedings of the Asia-Pacific Conference on Computer Science and Data Engi-
neering (CSDE’21).

[35] Fatos Xhafa and Ajith Abraham. 2010. Computational models and heuristic
methods for Grid scheduling problems. Future Generation Computer Systems

(FGCS’10).
[36] Yuehai Xu and Song Jiang. 2011. A scheduling framework that makes any

disk schedulers non-work-conserving solely based on request characteristics..
In Proceedings of the 9th USENIX Conference on File and Storage Technologies
(FAST’11).

[37] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP’03).

[38] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems (EuroSys’10).

[39] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. 2020. RLSched-
uler: an automated HPC batch job scheduler using reinforcement learning. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC’20).

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 An Example of SchedInspector
	2.2 Challenges and Opportunities
	2.3 The Basics of Reinforcement Learning

	3 SchedInspector Design
	3.1 RL Agent
	3.2 Simulated Environment
	3.3 Feature Building
	3.4 Reward Function

	4 Evaluation
	4.1 Implementation and Configuration
	4.2 Evaluation Setup
	4.3 Evaluations on SchedInspector RL Designs
	4.4 Evaluation on SchedInspector Generality
	4.5 SchedInspector in Realistic Settings
	4.6 SchedInspector Computational Cost

	5 What SchedInspector Learns
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

