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1. Introduction

Program verification in scientific computing encompasses the applica-
tion of formal and mathematical techniques to a scientific computa-
tional code for its credibility, accuracy, and validity. There is little to no
doubt about the importance of Code Verification among the code devel-
opment community, as Code Verification identifies bugs and perfor-
mance issues in the software, which is generally considered the respon-
sibility of code developer(s). On the other hand, Solution Verification
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assesses the applicability of the code and the accuracy of the solution to
problems of interest. The responsibility of Solution Verification falls on
the shoulders of either code developers or code users.

Myriad Code Verification application cases are discussed in numer-
ous publications in any field involving scientific computing codes.
There are even more code validation publications, consisting of a large
body of application cases. However, the practice of merely growing the
number of application cases for a code does not guarantee stronger or
more comprehensive credibility. Furthermore, this practice reveals a
common confusion on the correlation between Code Verification and
Solution Verification. We believe that the value of Solution Verification
extends beyond a verification tool in the hands of analysts. It is also a
valuable tool in the code development process, which is not well appre-
ciated and published.

In this work, we establish a verification framework that involves
both Code Verification and Solution Verification. The values of each
and the correlation between both are discussed and demonstrated suc-
cessfully using our pin-resolved neutron transport code MPACT, or
Michigan PArallel Characteristics Transport code (Kochunas et al.,
2013). It is demonstrated that a well-designed suite of just enough rep-
resentative categories of verification cases can provide a more convinc-
ing and comprehensive body of evidence to establish credibility for a
code. This framework can be adapted broadly to other fields involving
scientific computing codes.

2. Verification framework and its application in MPACT

Computational programs are expected to converge to the correct an-
swer for the intended application (Pilch, 2019). Traditional code testing
activities, such as unit testing, regression testing, and acceptance test-
ing, have clear value in supporting robust code development, but there
remains a substantial leap of faith that the code will converge to the
correct answer for the intended application.

Code Verification tests the ability of the code to converge to the cor-
rect answer where the correct answer can be a benchmark with a known
analytical or manufactured solution. Solution Verification, on the other
hand, tests the ability of the code to converge for the intended application.
Code Verification and Solution Verification each have gaps relative to
the overarching goal; but this goal can be reasonably inferred from a
verification framework that involves both.

In this framework, error is an essential metric that can be quantified.
Code Verification evaluates computational error by comparing the com-
puted solution with an analytical solution, from which rate of conver-
gence can be obtained via a grid refinement process. Solution Verifica-
tion estimates the computational error by analyzing the convergence be-
havior (e.g., Richardson extrapolation). Furthermore, the observed or-
der of convergence in Solution Verification can be an indicator of code
errors or algorithm deficiencies if it differs significantly from expecta-
tions established by theory or Code Verification activities. Note that for
large application models, Solution Verification can be computationally
challenging and often prohibitively impractical. In this situation, this
framework recommends a building block approach where convergence
behavior and numerical errors of large system models can be informed
by a body of evidence established through Code Verification and then
Solution Verification on a practical hierarchy of simpler application
models of increasing complexity. This will be detailed and demon-
strated using our neutron transport code MPACT.

The MPACT code (Kochunas et al., 2013) is part of the suite of codes
developed under the Consortium for Advanced Simulation of Light Wa-
ter Reactors (CASL) Program funded by the U.S. Department of Energy
(DOE) to bring the benefits of high-performance computing to issues of
importance to the U.S. nuclear power industry. To ensure that MPACT
converges to the correct answer for the intended application, a verifica-
tion framework supported by a suite of test problems is developed.

The framework emphasizes the Code and Solution Verification ac-
tivities that quantify numerical errors and convergence behavior for a set of
grids. The ensemble of Code and Solution Verification activities can be
given context by considering the terms that are candidates for grid re-
finement. First, we do not consider energy as a candidate for grid re-
finement. The discretization of neutron energy into energy groups is not
amenable to normal discretization methods. Further, the numerical er-
rors associated with the discretization of energy into the default 51
group structure has already been studied by Palmtag (Palmtag, 2017) —
by comparing the computational results from MPACT with those ob-
tained from a continuous energy Monte Carlo code. Moreover, the
above study showed that the 51-group library was adequate for the
Pressurized Water Reactor (PWR) applications studied here.

Grid refinements for the neutron transport equation, as solved by
the Method of Characteristics (MOC) code MPACT, can be particularly
challenging because there are still six parameters that may be refined,
and the convergence behavior for most of these terms is not well under-
stood from theory or from Code Verification studies. The six terms that
are candidates for refinement are.

(1). axial spatial division (z),

(2). radial spatial division (r),
(3). azimuthal spatial division (a)
(4). ray spacing (rs),

(5). polar angle (6), and

(6). azimuthal angle (¢).

This paper is organized such that Section 3 focuses on Code Verifica-
tion activities, including the common unit tests, regression tests etc.,
the Method of Exact Solutions (MES), and the state-of-the-art Method of
Manufactured Solutions (MMS). Section 4 discusses Solution Verifica-
tion activities in assembly geometry (global convergence) and in pin
geometry (global and term-by-term convergence), respectively. Given
that there were no expectations for convergence rates of all the six grid
refinement terms listed above, a general approach to quantify numeri-
cal errors and global and term-by-term convergence rates is used. Last,
Section 5 provides concluding remarks for this work.

3. Code Verification
3.1. Unit tests, regression tests, and testing suite

Source Code Verification during code development in MPACT has
been directed toward identifying mistakes in the source code by estab-
lishing comprehensive software testing practices (Kochunas et al.,
2013). The two principal components of source code testing in MPACT
are unit testing and regression testing. Unit testing is a software testing
method by which individual units of source code are tested in isolation
to determine whether they are functioning as intended. In contrast, re-
gression testing seeks to uncover new software bugs or regressions in ex-
isting functional and non-functional areas of the code after changes
have been made. Regression tests also work as integration tests, in
which individual units are tested as a group to show they work to-
gether. The following subsections will cover unit testing and regression
testing practices in MPACT.

3.1.1. Unit testing

The overall goal of unit testing is to isolate each part of the program
and show that the individual parts are correct. The unit testing in
MPACT was designed to verify the smallest testable part of a program,
and each test case was designed to be independent of the rest. This in-
volves creating unit tests for all functions and methods. When the tests
pass, the code development phase of the associated unit is considered
complete. However, if a unit test fails, there is likely to be a bug in ei-
ther the code unit or the tests, and the development phase of the unit
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and its associated tests are reexamined until all its associated tests pass.
The unit tests accelerate the process of correcting the bug by allowing
the location of the fault or failure to be easily traced. During MPACT de-
velopment, unit testing has served the important role of finding prob-
lems early in the development cycle. All unit tests in MPACT are run re-
peatedly via an automated process. This has simplified the process of lo-
cating a fault or failure because the automated process alerts the devel-
opment team of the problem before the code is handed off to testers or
users.

Because unit testing tests only the functionality of the units them-
selves, unit testing will not catch every error in the program. Specifi-
cally, unit testing will not identify integration errors or broader system-
level errors (such as functions performed across multiple units or non-
functional areas such as performance). Therefore, unit testing is per-
formed in conjunction with regression testing as described in the next
subsection.

3.1.2. Regression testing

Regression testing serves an important role to ensure that changes in
one part of the code do not introduce faults in other parts. The primary
measure is to provide a series of functional tests that are repeatedly per-
formed during code development so that the code output can be com-
pared against previously recorded outputs of these tests to ensure that
new features and enhancements do not alter the reproducibility of ex-
isting features. These regression tests are more comprehensive than unit
tests and are designed to exercise significant sections of the program
with various inputs. The MPACT regression testing targets key features
that the user will need when applying the code to practical Light Water
Reactor (LWR) problems. In addition, new regression tests in MPACT
are sometimes added after software fixes. When a bug is located and
fixed, a test is recorded that exposes the bug, and the test is rerun regu-
larly after subsequent changes to the program. Previously completed
unit and regression tests are rerun regularly to identify the re-
emergence of previously fixed faults. During the code development
process, the MPACT developer can also systematically select the appro-
priate minimum set of tests needed to adequately cover a particular
change. After completion of the developer’s change, all tests are then
performed as part of the regression testing.

The regression tests in MPACT comprise a scripted series of program
inputs with a driver layer that links to the code without altering the
code being tested. An automated system is in place to rerun all regres-
sion tests nightly and generate a report of any failures. These tests are
compared with previous solutions from MPACT to ensure consistent an-
swers. The acceptance criteria for regression test problems in MPACT
are currently set to be =10 pem for the eigenvalue k.5, 0.1 % for pin
power absolute root-mean-square (RMS), and +1 ppm for the boron
concentration.

3.1.3. MPACT regression test suite

As part of the ¢, a comprehensive regression test matrix was devel-
oped (Collins et al., 2016) to identify the key features of the code re-
quiring coverage and to provide the roadmap for the development of re-
gression testing in MPACT.

3.2. Code Verification using the method of exact solutions

3.2.1. Method of exact solutions

MES seeks problems with analytic solutions, which usually involves
consulting the literature for published solutions. The exact solution is a
closed-form mathematical expression that gives values of the solution
at all locations in space and time. The problem with an exact solution
can be modeled using the code, from which the numerical solutions can
be compared against the exact solution. If the error is smaller than a
prescribed acceptance criterion (e.g., round-off error), the code is veri-
fied. Furthermore, one can perform a grid refinement analysis using the

same problem and observe the convergence rate, which can be com-
pared against mathematical expectations if they exist or can be used to
establish expectations otherwise.

3.2.2. Example: Ganapol benchmark

Benchmark problem 3.4 of Ganapol’s analytical benchmark book
(Ganapol, 2009) is an excellent Code Verification test problem that can
be modeled using MPACT without special coding. Therefore, it can be
included in the MPACT regression suite.

3.2.2.1. Ganapol benchmark description. The Ganapol benchmark prob-
lem is an analytic, or “semi-analytic,” benchmark based on the exact
solution of the singular integral equation that describes the single-
group cylindrical transport problem. This solution methodology is a
complex sequence of steps described in detail in (Ganapol, 2009).

The configuration is a homogeneous right circular cylinder that is
infinite in height:

The homogeneous cylinder as depicted in Fig. 1 has radius » = R and
height 4 — o with a total cross section Z; and ¢ secondary neutrons per
collision, where ¢ = (Z, + vEf) /%,; Z; and Z; represent scattering and
fission cross section, respectively. The radius 7 is given in terms of mean
free paths (mfp), so the physical radius is 7/Z,. Benchmark results are
given for several cases:

(a) Uniform isotropic source—the scalar flux ¢(r) is tabulated for
selected values of ¢<1

(b) Critical rod—the critical radius is tabulated as a function of ¢>1

(c) Critical rod—the scalar flux ¢(r) is depicted for critical rods as a
function of ¢>1

3.2.2.2. MPACT benchmark problem. For MPACT, critical rod problems
(b) and (c) described in Section 3.2.2.1 are chosen as benchmark cases
because they exercise both the 2D MOC solver and the eigenvalue
solver.

Table 1 shows a table from Ganapol (Ganapol, 2009); it is the
benchmark results for the critical rod problem and gives the critical rod
radius as a function of c. The tabulated results are correct up to the last
digit known to +1 unit, hence within 8 decimal points. This table shows
the agreement with previously tabulated benchmark results (i.e., Ref.
(Palmtag, 2017) and Ref. (Yamamoto et al., 2007)), where the shaded
results indicate the digit that Ganapol (Ganapol, 2009) disagrees with.

Fig. 1. Finite homogeneous cylinder.
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Critical radii comparisons from Table 3.4.3 (a) of Ganapol (2009).

c

R (Ref. (Palmtag, 2017))

R (Ref. (Yamamoto et al., 2007))

1.01E+00 1.312551649E + 01 1.312551647E+01
1.02E+00 9.04325485E + 00 ==
1.05E+00 5.41128829E + 00 ===
1.10E+00 3.57739130E + 00 3.57739129E + 00
1.20E+00 2.28720926E+00 meeeeeeeee
1.30E+00 1.72500292E + 00 1.72500292E + 00
1.40E+00 1.39697859E+00 seeeeeee-
1.50E+00 1.17834085E + 00 1.17834085E + 00
1.60E+00 1.02083901E+00 -eeeeeeeeee-
1.80E+00 8.07426618E-01 e
2.00E+00 6.68612867E-01 6.6861287E-01

3.2.2.3. MPACT results. Because MPACT is used for LWR lattices, spe-

Variation of critical flux distribution with ¢

cial input processing would be needed to model the isolated cylinder.
To avoid this, the cylinder is modeled as a fuel pin inside a non-
scattering square bounding box (i.e., a void or a pure absorber) with
vacuum boundaries. The angular flux along the rays starting at the
bounding box boundaries will remain zero until the ray intersects the
rod, where the scattering and fission sources within the rod begin to
contribute to the solution.

The critical rod cases provide the critical rod size as a function of c.
To avoid adding special coding in MPACT, which will involve an outer
iteration to converge on the critical rod radius, MPACT solved for the
eigenvalue & using the critical rod radii in Table 1 and cross sections
that yield the tabulated c. For each of these cases, MPACT is expected to
yield k£ = 1 to some precision.

All cases were run with the following phase space discretization:

Bounding box side length = 30 cm

Ray spacing = 0.0005 cm

Number of radial rings = 160

Number of azimuthal slices = 32

Quadrature set = CHEBYSHEV-GAUSS 32 24
Convergence criterion = 1le-7 for both k and ¢

Table 2 gives the MPACT eigenvalues for all values of ¢ in Table 1.
The resulting £’s are all within a few pcm from criticality, demonstrat-
ing excellent agreement with the benchmark results. This is a stringent
Code Verification problem because an actual transport solution, not a
manufactured solution, is being computed by MPACT. These cases, or a
subset of them, make convenient and effective additions to the MPACT
regression test suite.

The computed cell-averaged scalar fluxes are plotted against the rel-
ative radial location. The fluxes were normalized such that the inner-
most ring has a common cell-averaged scalar flux of 1. Both the normal-
ized and unnormalized scalar flux shapes are shown in Fig. 2.

For ¢ = 1.05, we plot the computed cell-averaged critical flux to-
gether with the reference solution in the same plot as in Fig. 3(a). The

Table 2
MPACT calculated ks versus critical rod radius.

c R(mfp) vZ/(/mfp) k Error (pcm)
1.01 13.125516490 0.41 0.9999757 —2.43
1.02 9.043254850 0.42 0.9999783 -2.17
1.05 5.411288290 0.45 0.9999837 -1.63
1.1 3.577391300 0.5 0.9999895 -1.05
1.2 2.287209260 0.6 0.9999968 -0.32
1.3 1.725002920 0.7 1.0000006 0.06
1.4 1.396978590 0.8 1.000002 0.2
1.5 1.178340850 0.9 1.0000004 0.04
1.6 1.020839010 1 0.9999968 -0.32
1.8 0.807426618 1.2 0.9999864 -1.36
2 0.668612867 1.4 0.9999621 -3.79
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Fig. 2. Computed cell-averaged critical flux for variable c.

error is plotted separately in Fig. 3(b). The cell-averaged flux agrees
well with the Ganapol benchmark results, with a relative error of less
than 1 % at any radial location.

3.2.2.4. Mesh convergence analysis. Next, mesh convergence analysis
is conducted for three discretization parameters: radial discretization,
ray spacing, and polar angular discretization. Case ¢ = 1.01 is se-
lected as an example. The same set of phase space discretization para-
meters is used as the basis for the convergence analysis. The radial con-
vergence curve is plotted in Fig. 4.

Fig. 4 shows good agreement with second order radial convergence
(up to 160 rings) for ¢ = 1.01, which is consistent with the spatial rate
of convergence for flat-source MOC (Wang et al., 2017). The conver-
gence curve for the eigenvalue k vs ray spacing and polar angular dis-
cretization are plotted in Figs. 5 and 6, respectively. The errors associ-
ated with both converge to zero. Fig. 5 indicates a linear convergence in
error over a modest range of ray spacings, approaching a second-order
convergence as the grid is refined, whereas Fig. 6 shows the error flat-
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Fig. 3. Cell-averaged critical flux (¢ = 1.05).
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Fig. 6. Convergence with respect to the number of polar angles.

tens out at ~ 15 polar angles. The convergence rates for these grid re-
finement terms have not been studied theoretically.

3.2.3. Summary

Benchmark problem 3.4 in Ganapol (Ganapol, 2009) has been used
as an example of MES for a Code Verification test for MPACT. The bare
rod configuration of problem 3.4 was modified to mimic a square lattice
by surrounding the rod with a bounding box with a non-scattering ma-
terial. Vacuum boundary conditions were imposed on the surface of the
bounding box, and several critical rod cases were analyzed with MPACT
using the tabulated critical rod radii as a function of ¢, the mean num-
ber of secondaries per collision. MPACT k. eigenvalues agreed with
the reference result (k,y = 1) for all cases to within a few pcm. The
cell-averaged flux agreed very well with the benchmark results, with a
relative error of less than 1 % at any radial location. Additionally, Ex-
cellent convergence behavior has been observed using MPACT in this
study. The radial rate of convergence is shown to be second order,
which is consistent with the expected convergence rate for the flat-
source approximation (Wang et al., 2017). The convergence curves
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with respect to ray spacing and polar angle quadrature set order were
obtained — both of which converge to the analytic solution.

3.3. Code Verification using the Method of manufactured solutions

3.3.1. Method of manufactured solutions

MMS has been an effective Code Verification method for verifying
the correctness of numerical algorithms and software implementation
in a wide range of engineering applications. The essential idea of MMS
is that instead of solving a problem with prescribed boundary and ini-
tial conditions, one can assume a solution beforehand and substitute it
into the governing equation that the software intends to solve. The
equation is then balanced by evaluating the resultant manufactured
source. The boundary and initial conditions can be obtained by evaluat-
ing the manufactured solution at the boundary and at the initial time.
The software is then used to solve the system with the manufactured
source and boundary and initial conditions; the computed solution
should equal the assumed solution to within some error associated with
the discretization method used in the software.

Similar to MES, the code is considered verified if the error is smaller
than a prescribed acceptance criterion (e.g., round-off error). Further-
more, one can perform grid refinements analysis using the same prob-
lem and observe the convergence rate, which can be compared against
mathematical expectations. If mathematical expectations have not been
established, the observed convergence behavior from MMS runs can
help reveal the rate of convergence of the applied methods. MMS has
more flexibility compared with MES in verifying computational func-
tionalities of a computer code and has been used for a radiation trans-
port code in planar geometry (Wang et al., 2018), but there have been
limited applications of MMS to problems with realistic configurations
(e.g., heterogeneous materials and complex geometry). The following
section describes a technique developed to apply MMS to problems
with realistic geometry and cross sections.

3.3.2. Example: Application of MMS using the C5G7 configuration

For demonstration purposes, the OECD/NEA C5G7 benchmark
problem (Smith et al., 2003) was selected for its close resemblance to
PWR mixed-oxide (MOX) fuel assemblies. The two-dimensional config-
uration is shown in Fig. 7(a) and 7(b). Each fuel assembly is made up of
a 17 x 17 lattice of square fuel-pin cells with a pitch size of 1.26 cm.
The MOX assembly contains fuel pins with three different plutonium
enrichments (4.3 %, 7.0 %, and 8.7 %). The UO, rods are made of
3.7 % enriched U-235. For more details about the problem geometry,
material, and the seven-group cross section library, refer to the C5G7
benchmark report (Smith et al., 2003).

Reflected B.C
uo, MOX
] &1
i 4]
h =]
£| wmox uo, g
o
m
5 4
Moderator
Vacuum B.C.

(a) Core configuration

The following section describes the application of MMS to verify a
2D MOC solver using the C5G7 problem. The test framework hereby de-
veloped involves two useful tests, the first of which is a consistency test
where the converged solution of an eigenvalue problem is used to for-
mulate a standalone fixed-source problem. The second is an MMS test
where an analytical solution is assumed, and the corresponding MMS
source is used to verify the fixed source solver. This could be extended
to the more challenging eigenvalue problem, where one assumes both
the neutron flux distribution and eigenvalue for verifying the eigen-
value solver.

3.3.2.1. Consistency test. For the consistency test, an eigenvalue prob-
lem is solved first. Once the eigensolver converges to a solution

pairy conys Keony, the fission source — k F Weonv is constructed and output

to a data file, which is subsequently used in the fixed-source problem
defined using the same geometric and material configurations. This
fixed-source problem is modeled, and it is expected that the fixed
source solver will, upon convergence, return the same solution as that
from the eigensolver.

The consistency test is straightforward but important to perform. It
is also a convenient way to verify the fixed source solver if MMS capa-
bilities (e.g., general fixed source and general boundary condition capa-
bilities) have not been established for a full-scale MMS test.

3.3.2.2. Application of MMS to a 2D multigroup fixed-source problem. For
2D, the multigroup (MG) Boltzmann transport equation with isotropic
scattering and a fixed source takes the following form,

oy o (x.y.10.€) 7 (ry 1:8)
e +Z, )y (nyn,8)
G

6
= o Vo Ty « - by (3) + 4y (5.3,7.),

g=1,.G

Given an MOC solver that is intended to solve the above equation
with prescribed boundary conditions, the steps for applying MMS to
verify the correctness of the fixed source solver are shown below.

First, assume an analytical solution, e.g.,

Ve 6,18 = wpms g 6 m8), g=1,---,G

The corresponding scalar flux is.

Vi-n*y (.1, &
b (x.3) = / dn / i Ricakta Yuisg (18 )y
7 N l-n? =&

Second, substitute the assumed solutions into the MG equation as
defined in Equation. The equation will be balanced by an inhomoge-
neous MMS source, which can be expressed as in Equation (2),
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(b) Pin cell compositions and numbering scheme

Fig. 7. Two-dimensional configuration for the C5G7 benchmark (Smith et al., 2003).
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To get the discrete form of the manufactured source, the analytical

form as defined in Equation is averaged over every fixed source region

(FSR) indexed by region ID ; and evaluated at each discrete angle

(#14-€,) defined in the applied quadrature set,

1
Iumsgim = 3 /V Guapisg (X Vs s E) dxdy

1

For the first two terms (i.e., the leakage terms) of the manufactured
source in Equation, the analytical form can be obtained using external
software or a script, or one can calculate the derivative by hand. How-
ever, it would be a substantial challenge to average the analytical leak-
age terms over every FSR region, unless a simple solution was assumed,
in particular, one with zero derivatives. The discrete form of the third
term, the collision term, can be obtained by first having the code output
the total cross section for all FSR regions as a vector and then perform-
ing an element-wise product of the cross-section vector with the dis-
crete MMS solution vector. The scattering source term is even more
complicated. However, one does not need to expend the effort to com-
pute the scattering term because the MOC code already accumulates
this term in its iterative process to solve the eigenvalue problem. In par-
ticular, the existing code infrastructure can be used to calculate the
scattering source. To use this existing infrastructure, the discrete MMS
solution should be used to initialize the first iteration of the fixed source
solver. This is a “one-off” iteration because it will have to halt after one
iteration, and once the in-scattering source and self-scattering source
are accumulated, they are output to a data file, which can be processed
to generate a discrete MMS source.

The third step is to obtain the boundary conditions for the manufac-
tured problem. This is achieved by a straightforward evaluation of the
assumed solution at the problem boundaries, which is carried out for all
energy groups,

Ve (X, 9,1, €) = Wmms.g (G 1:8) ('17+ 57) $1<0

Boundary (xy)ed v’

where 0V is the boundary of the system V, 7 is the surface normal,
and angle (1, &) represents the direction of flight of neutrons.

In MOC, the boundary conditions are defined using the entering
fluxes associated with the sets of characteristic rays that sweep through
the geometry. Each set of those rays is characterized by an angle
(nm, fm) defined in the applied quadrature set. If we use variable /,, to in-
dex each ray characterized by an angle(r]m, ’g’m), the discrete boundary
condition can be expressed as.

L: u .
b
1
I “
w z o £ =
X Py

(a) The scalar flux of group 1

1
Weml, = 5¥MMSg (xl,,,J/lma’Im,fm)

m

where (xlm , y1m> are the coordinates of the entry point for the charac-

teristic ray /,,.

The discrete MMS source and boundary conditions, together with
the geometry and materials configurations, are modeled using the fixed
source solver under verification. If the solver converges to the assumed
MMS solution, the fixed source solver is verified.

3.3.2.3. Demonstration and numerical results. A. Numerical result for the
consistency test.

As stated in the previous subsection, a consistency test starts with an
eigenvalue calculation of the C5G7 problem. An MOC-based surrogate
code MOCC (Young, 2016) is used for this demonstration. The con-
verged eigenvalue was 1.18642. The converged scalar fluxes for the
first energy group (fast) and the last energy group (thermal) are shown
in Fig. 8 (a) and 8 (b).

The fission source distribution is shown in Fig. 9 in a pin-
homogenized form for visualization, showing the strong spatial varia-
tion. This fission source is used for the subsequent fixed-source calcula-
tion.

The relative error of the scalar flux of the first energy group is plot-
ted in Fig. 10, where the error has an order of magnitude of 1E-7. The
relative error of the scalar flux of the thermal energy group can be close
to 1E-5. The close-to-zero error indicates that the scalar flux from the
fixed-source problem converges to the same solution as that from the
eigenvalue calculation. Thus, the consistency of the inner workings be-
tween the eigensolver and the fixed source solver is verified.

B. Calculation of the MMS source and boundary conditions for the
C5G7 problem.

A constant manufactured solution is selected to demonstrate the fea-
sibility of applying MMS to a fixed-source solver for realistic applica-
tions. As will be seen later, a constant solution is not as “simple” as it
appears, because it requires a drastic spatially-varying manufactured
source to yield a constant solution.

Assume a constant angular flux for each group,

1
Yo (6,0.1,8) = wamms g (5. 1,8) = 7. 8= 1,7

The scalar flux can be obtained®mms, (x:3) = 1.
With this, the MMS source can be found,

i

H

H = e % & P

(b) The scalar flux of group 7

Fig. 8. Scalar flux of C5G7 eigenvalue calculation.
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Fig. 9. Fission source distribution from eigenvalue calculation.
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Because the MMS source is independent of angle, it can be treated as
an isotropic external source when the manufactured problem is mod-
eled.

G

Owimts g (63) = Z, g 0 3) = P Z g (1) )
g'=1

The MMS source can be discretized in the following form,

G
Ovms gi = Zrgi = Zzs@«—g’.i
g'=1

where ; is the FSR region index.
Note that the discontinuity in the MMS source from one FSR region
to its neighbor is caused by the discontinuity in materials and is neces-

sary for the solver to converge to a flat solution. The discrete boundary
condition takes the following form,

l/’g,m,lm = Wg,lm (']m’ém’ Mm) = E’

An easy way to implement this boundary condition is to modify the
vacuum boundary condition code by replacing the zero incoming angu-
lar flux with constant 1 /4z.

The discrete MMS source and boundary conditions constitute a well-
defined MMS problem. With the geometry and materials information
from the C5G7 benchmark, the MMS problem can be modeled using the
code under verification. The constant-in-space solution does not trivial-
ize this MMS test case because the complexity in geometry and materi-
als is retained and all routines involved are exercised. On the contrary,
it is quite a challenge for the code to converge to a constant solution.
This complicated manufactured source drives the solver to converge to
a flat solution. This test helps to verify the correctness of the fixed
source solver.

C. Numerical results for the MMS case.

The fuel pins are spatially discretized with five rings in the fuel re-
gion, three rings in the moderator region, and eight azimuthal slices for
all rings. Non-fuel pins in the moderator assemblies are meshed with
3 X 3 square sub-regions.

A “dummy” input with the above spatial discretization is used for
generating the scattering source and the collision term, which are out-
put to a data file. The data file is processed with an external script for
the calculation of the MMS source. The MMS source for the first energy
group is shown in Fig. 11 as an example.

As shown in Fig. 11, with a flat MMS solution, the spatial variation
of the MMS source coincides with material boundaries, which is ex-
pected. When the assumed solution is non-flat in space, the spatial vari-
ation of the MMS source will vary for each FSR. Note the extreme spa-
tial dependence of the MMS source, because about half of the source re-
gions are negative.

In modeling the manufactured problem, Chebyshev-Gauss quadra-
ture is used with eight azimuthal angles and two polar angles in each
quadrant. Ray spacing is taken as 0.05 cm. A maximum of 100 source
iterations is performed, generating an RMS error between the scalar
fluxes of two consecutive iterations being 2.37 x 10-8. This error cor-
responding to the 100 source iterations is small enough to prove the ca-
pability of the code to reproduce the manufactured solution.

G 2
Z;iig g=1 (¢i,g,new - ¢[,g,old)

<237x1078
nreg- G

€100 =

Fig. 12 shows the error in pin flux for energy groups 1 and 7. The er-
rors are close to zero, which is also true for energy groups 2 through 6.
This indicates that the numerical solution converges to the MMS solu-
tions, thus passing the MMS test and verifying the fixed source solver.

Note that the drastic spatial variation in the MMS source, including
negative values in many regions, as seen in Fig. 11, does not affect the
convergence of the scalar flux to the MMS solution. It is this strong spa-
tial variation that drives the fixed source solver to converge to a solu-
tion that is flat in space.

4. Summary

This subsection described the application of MMS to the C5G7
benchmark problem which is a realistic reactor configuration with typi-
cal heterogeneity and complex geometry encountered in actual PWR
nuclear fuel assemblies. The overall test framework included a consis-
tency test and the application of MMS to the C5G7 problem with a fixed
source. The consistency test is straightforward but important because it
verifies that the fixed source solver is consistent with the eigenvalue
solver. The successful application of MMS to the C5G7 problem with an
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Fig. 11. Manufactured source due to a flat manufactured solution.

group: 1
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Fig. 12. Error in pin flux for energy groups 1 (left) and 7 (right).

assumed flat solution demonstrates that the fixed source solver for this
realistic reactor configuration can be verified using MMS. The estab-
lished test framework for a realistic application considerably extends
the range of applicability of MMS.

5. Solution Verification

Solution Verification is used to assess the applicability of the code
and the accuracy of the solution to problems of interest. This is nor-
mally supported by estimating the numerical errors in the simulation
and revealing the convergence behavior of the computed solution.

5.1. Solution Verification with MPACT

To assess the convergence rates within MPACT, Solution Verifica-
tion was performed with two separate analyses. The first was an exer-
cise of a 3D assembly, where a uniform grid refinement was performed
by simultaneously varying the six grid refinement terms given in
Section 2. The second exercise was a convergence analysis with 2D pin
geometry to better understand the convergence behavior of grid refine-
ment terms for a problem of interest but with a manageable size. For
these analyses, the quantity of interest is the multiplication constant

(kejy). Other metrics (e.g., scalar flux vector or fission sources) can be
used if desired.

5.2. 3D assembly problem

5.2.1. Specifications for the 3D assembly

The problem consists of a single Westinghouse 17 X 17-type fuel
assembly at beginning-of-life (BOL) and hot zero power (HZP) isother-
mal conditions. Each fuel assembly is composed of fuel rods, guide and
instrument tubes, spacer grids, and top and bottom nozzles. Fig. 13
shows a radial model with quarter symmetry of a 2D array of fuel rods
(a fuel lattice) typical of the central axial region of PWR fuel assemblies,
and Fig. 14(a) shows the axial assembly geometry. The axial grid spac-
ers were removed from the problem to ensure a uniform mesh. The core
plates and axial end plug regions were also removed. Additionally, the
thicknesses of each axial region were intentionally set to a multiple of
8 cm, leading to an easy mesh refinement. The geometry of the axial
model is shown in Fig. 14(b).

5.2.2. Numerical results
A 3D uniform refinement assessment is performed by simultane-
ously varying the six grid refinement terms. Note that the default for
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Fig. 13. Problem 2 KENO-VI geometry.

the polar angle uses the Yamamoto quadrature (Yamamoto et al.,
2007), which is considered fully refined for N = 3 and is the maximum
allowed in MPACT; consequently, the polar angle was not refined as
part of this study. Five separate refinements are examined with the

4135937 em
Uppar Come Plate
406 337 em
Top Hozzle
397 51em
393711 em
Plersam EE2em

3777l em

Botiom Hoz=le

Leower Core Plate

(a)

medium grid representing the defaults used by the code. These refine-
ment cases can be seen in Table 3, with the total variation in refinement
parameters spanning five orders of magnitude. The self-shielding calcu-
lation is performed for all of the grid refinement calculations (i.e.,
SS = on).

The results of the uniform grid refinement are shown in Fig. 15. The
extrapolated converged solution, k-extrap, is taken to be 1.17694 by ap-
plying Richardson Extrapolation to the three finest grids. The error on
any specified grid refers to k,; on that grid compared with k-extrap.
With self-shielding activated, the code is monotonically convergent on
the four finest grids. After applying Richardson Extrapolation, the order
of convergence was calculated to be 2.75.

If the “exact” solution is estimated from either super-refinement of
the grid or from Richardson Extrapolation, the solution error on any
other grid can be obtained by referencing the solution on the new grid
to the exact solution. The solution error on the medium refinement grid
above is 20 pcm, which is less than the accepted threshold of 50 pcm.
This is significant because the medium grid corresponds closely to code
defaults. This indicates that the default axial mesh has an acceptable
amount of error. On the assembly scale, monotonic convergence can be
seen with error decreasing from the medium grid case through the
xxfine grid case. This is a significant result because the MPACT software
is intended to be used for assembly-size problems or larger.

5.3. 2D pin-cell problem

The second Solution Verification exercise performed is a conver-
gence analysis with 2D pin geometry (i.e., no grid refinements in the ax-

- Nozzle - 8cm

L Gap - 8em

F Plenum — 16em

~ Fuel = 368cm

Gap — 8cm

Nozzle — 8cm

(b)

Fig. 14. Problem 3 axial geometry (without end plugs).
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Table 3
Grids for uniform refinement in 3D assembly geometry.

Number of Elements

coarse medium fine xfine xxfine
Reflector 4 16 64 256
Reflector 2 X2 4 x4 8x38 16 x 16
Axial 25 50 100 200 400
Division
(Fuel)
Axial Division 16 8 4 2 1
(em)
Radial 3 6 12 24 48
Division (#
rings)
Fuel 2 4 8 16 32
Gap 1 1 1 1
Clad 1 1 1 1 1
Moderator 1 2 4 16
Azimuthal 4 8 16 32 64
Division
Rays 6 12 24 48 96
Ray Spacing 0.1 0.05 0.025 0.0125 0.00625
(cm)
Polar Angle 3 3 3 3 3
Azimuthal 8 16 32 64 128
Angle
Ntotal* 5.76E + 02 9.22E + 03 1.47E + 05 2.36E + 06 3.77E + 07

* Only the radial and azimuthal division, rays, and azimuthal angle are ac-
counted for, because the rest are either fully converged or present no sensitivity
to the results.

1.17720

1.17700

1.17680

1.17660

k-eff

1.17640
1.17620
1.17600

1.17580
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Fig. 15. The keff and error for uniform grid refinement in 3D assembly geome-
try.

ial direction). The purpose of this study is to better understand the con-
vergence behavior of the grid refinement terms.

5.3.1. Specifications for the 2D pin

The 2D pin cell problem uses the first Virtual Environment for Reac-
tor Applications (VERA) core physics benchmark problem that was in-
tended to demonstrate VERA’s capability to solve a simple 2D pin cell

eigenvalue problem typical of PWR analyses, as shown in Fig. 16. The
problem consists of a single Westinghouse 17 x 17-type fuel rod cell at
BOL conditions. The materials are standard for this type of reactor:
UO,, zircaloy-4, and water. The moderator contains soluble boron as a
chemical shim for maintaining criticality. The pellet-clad gap consists
of helium gas, which may be neglected because of its insignificant neu-
tron cross section. This problem represents typical zero power isother-
mal conditions, which are representative of power reactor startup
physics testing.

5.3.2. Numerical results

The calculations include a re-coarsening analysis of five parameters
of interest: radial division, azimuthal division, ray spacing, polar angle,
and azimuthal angle. Additionally, the calculations include a uniform
mesh refinement study akin to the 3D assembly study presented in Sec-
tion 4.2. Besides calculations with self-shielding turned on, calculations
with self-shielding turned off were also added to avoid the slightly up-
dated cross section for each grid. Table 4 shows the number of elements
used for each of the five parameters of interest. The total number of ele-

Fig. 16. Problem 1 KENO-VI geometry.

Table 4
Grids for uniform refinement in 2D pin geometry.

Number of Elements

xcoarse coarse medium fine xfine
Radial 8 16 32 64 128
Division
(rings)
Fuel 4 8 16 32 64
Gap 1 1 1 1 1
Clad 1 1 1 1 1
Moderator 4 8 16 32 64
Azimuthal 4 8 16 32 64
Division
Rays 63 125 250 500 1000
Ray Spacing 0.008 0.004 0.002 0.001 0.0005
(cm)
Polar Angle 2 4 8 16 32
Azimuthal 2 4 8 16 32
Angle
Ntotal 8.00E + 03 2.56E + 05 8.19E + 06 2.62E + 08 8.39E + 09
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ments spans six orders of magnitude from the xcoarse case to the xfine
case.

The results of the uniform mesh refinement study are shown in Fig.
17, with self-shielding both active (SS = On) and turned off
(SS = Off). With self-shielding turned on, Richardson Extrapolation
cannot be applied to the finest three grids because the solution is not
monotonically convergent. This is a major difference from the 3D as-
sembly calculation, where monotonic convergence is observed. It is be-
lieved to be due to a suppressed solution sensitivity to a localized self-
shielding cross section update for a large system. On the other hand,
when self-shielding is turned off, monotonic convergence is observed
for the 2D pin problem.

The error convergence curves are also provided in Fig. 17. Due to
the non-monotonicity, with SS = On, the finest grid result is used as
the “exact” solution, so only four error data points are obtained. With
SS = Off, the Richardson extrapolated result is used as the reference so-
lution, so five data points are included. In this case, Richardson Extrap-
olation shows an order of convergence of 2.29. This can be compared
with the 3D assembly order of converge of 2.75, although self-shielding
was turned on for that case.

The impact of the self-shielding correction is again clearly indicated
in Fig. 18, which shows the re-coarsening analysis of the radial division
term in the fuel and moderator. When self-shielding is turned on, mo-
notonic convergence is not observed. When self-shielding is turned off,
MPACT is monotonically convergent, with an order of convergence of
1.51. This indicates that the number of radial rings has a significant ef-
fect on the multiplication constant. Additional sensitivity studies
clearly demonstrated that the non-monotonicity inserted by self-
shielding is confined entirely to the fuel with no sensitivity due to the
moderator grid.

To understand the impact of self-shielding calculation on the con-
vergence behavior, it is noted that generally, a grid refinement study
solves the same problem, defined by geometry, material, sources, and
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Fig. 17. The ks and error for uniform grid refinement 2D pin geometry.
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Fig. 18. The ks and error for isolation of radial division term, 2D pin geome-
try.

boundary condition, but only with different grid resolution. However,
for each grid refinement, the self-shielding calculation produces an up-
dated set of multigroup cross sections to account for the self-shielding
effects. The inclusion of self-shielding calculation results in a slightly
different problem to be solved for each grid. To reveal the rate of con-
vergence concerning each independent discretization parameter via a
consistent grid refinement, self-shielding needs to be turned off. The re-
sults showed that turning self-shielding off provides more monotonic
convergence curves. Self-shielding has attributes analogous to mesh-
dependent sub-grid models that sometimes appear in other disciplines
(e.g., turbulence modeling). However, there has been a move away
from such models in other disciplines because the results are typically
calibrated to a specific grid, and the “model” is neither convergent nor
predictive when you move away from the calibrated grid.

For reasons stated above, only results with self-shielding turned off
are presented in the following. The convergence observed during the re-
coarsening of the azimuthal division term is shown in Fig. 19, exhibit-
ing an order of convergence of 1.26 with self-shielding turned off. For
all cases, the total range in k. from the xfine to the coarse grid is less
than 10 pcm, indicating that this term is not a major driver of error in
results.

The re-coarsening study performed on the ray spacing term is shown
in Fig. 20. The error observed in all cases compared with the most re-
fined cases was below 10 pcm. Unfortunately, the default used by
MPACT is 0.05 cm, which is not in the convergent region, but it results
in a ko that is very close to the converged value and is computationally
more affordable, especially for large problems, where & is not as sen-
sitive to ray spacing.

The azimuthal angle term shows the largest range of k. values for
any of the parameters isolated in this analysis. For eight angles, the er-
ror is approximately 150 pcm, which exceeds the threshold for concern.
It is not until 32 or more angles are used that the error associated with
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Fig. 19. The kosy and error for isolation of the azimuthal spatial division term,
2D pin geometry.

this term decreases to near 10 pcm. Monotonic convergence was ob-
served for this term, and Richardson Extrapolation calculates the order
of convergence to be 1.94 with self-shielding turned off. Of all the grid
refinement terms isolated, the azimuthal angle term is the most domi-
nant, having the largest impact on the overall convergence of the prob-
lem. The results of the MPACT cases for isolating the azimuthal angle
are in Figs. 21 and 22. Fig. 21 shows the isolation when only an even
number of angles are used, and Fig. 22 shows both odd and even num-
bers of angles. A clear difference in the results is observed: when both
odd and even numbers of angles are used, saw-toothed behavior is ob-
served. It is believed that the local oscillation has to do with the angle
modularization and the change in ways that characteristic rays interact
with the FSR mesh when the number of azimuthal angles is changed.
This needs further study.

The final term isolated was the polar angle; results for this with self-
shielding turned off are in Fig. 23. There seems to be a slight non-
monotonic behavior around four polar angles. This could still be out-
side the convergence region. The rate of convergence is assessed with
the last three data points using Richardson Extrapolation.

A summary of the results obtained from these calculations is pro-
vided in Table 5. Convergence rates can be quantified only when mo-
notonic convergence is observed, which limits this discussion to the
case with self-shielding turned off. The order of convergence (p) is the
highest for ray spacing and the lowest for the number of azimuthal divi-
sions. For radial convergence, 1.51 is reasonably close to the mathemat-
ical expectation and Ganapol Code Verification result of second order
(Wang et al., 2017) for flat-source MOC. For other parameters, lacking
guidance from theory or expectations established through Code Verifi-
cation, the convergence rates are reasonable, suggesting that there is no
large code implementation or algorithm concern.

The columns labeled “Error” are intended to estimate the error con-
tribution of each term to the total error on or near the default grid. This
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Fig. 20. The keff and error for isolation of ray spacing term, 2D pin geometry.
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Fig. 21. The Koy and error for isolation of azimuthal angle term with an even
numbers of angles, 2D pin geometry.
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Fig. 23. The keff and error for isolation of polar angle term, 2D pin geometry.

Table 5
Summary of Solution Verification in 2D pin geometry.
k-extrap p Error pcm

Resolved 1.26086
Uniform Refinement 1.26088 2.29
Radial Divisions 1.26087 1.51 30
Azimuthal Divisions 1.26085 1.26 6
Ray Spacing 1.26086 3.26 -8
Azimuthal Angle 1.26089 1.94 -128
Polar Angle 1.26086 1.66 -4

term is defined as k. on the near default grid minus 4.4 on a fully re-
fined grid. There are two differences from the default grid. First, the ray
spacing for a default grid is 0.05 cm, whereas the coarsest grid in this
study that did not crash the code was 0.016 cm. Second, Yamamoto

quadrature with N = 2 is the default for polar angles, whereas tradi-
tional quadrature was used here.

Note that values for the error contributions can be either positive or
negative depending on whether the term is converging from above or
below, respectively; this is a consequence of compensating terms in the
Richardson expansion. These compensating terms can be exploited to
minimize the total error; however, a grid optimized in this manner
might not be optimal for significantly different models.

The azimuthal angle is the dominant term. Of the five grid refine-
ment terms isolated, it is the only one with an error range larger than
100 pcm. This suggests that a N = 8 azimuthal angles/octant should be
increased to 16 angles/octant, at least for pin level calculations. This re-
quirement can be relaxed for larger problems (e.g., assembly problems).
Using 16 angles/octant would reduce the error associated with the az-
imuthal term to about 47 pcm and the total error to about 15 pcm, pri-
marily because of the compensating effect of the radial division term.

6. Conclusions

A verification framework that involves both Code Verification and
Solution Verification is established, in which two aspects work together
such that the overarching goal of “converge to the correct answer for
the intended application” can be reasonably inferred. The application
of such a verification framework is demonstrated using the pin-resolved
neutron transport code MPACT. Standard unit tests and regression tests
prove effective tools in finding problems in the development cycle. The
Ganapol 3.4 benchmark problem is a stringent and excellent analytical
problem for verifying a transport solver. MPACT computed eigenvalues
key agree with references for all cases to within a few pcm. The cell-
averaged flux agrees with the Ganapol benchmark results with a rela-
tive error of less than 1 % at any radial location. The applicability of
MMS is extended to C5G7 problems with practical material and geo-
metric configurations, including two useful tests, the first of which is a
consistency test where the converged solution of an eigenvalue problem
is used to formulate a fixed-source problem. The second is an MMS test
where an analytical solution is assumed, and the corresponding MMS
source is used to verify the fixed source solver. Solution Verification ac-
tivities are demonstrated on a practical hierarchy of application models
of increasing complexity ranging from 2D pin cell problems to 3D as-
sembly problems. The convergence behavior and rate of convergence
with respect to each individual variable are studied and provided. Un-
der this framework, future work including building a theoretical set of
benchmarks can be performed. This framework can be adapted broadly
to other fields involving scientific computing codes.

CRediT authorship contribution statement

Jipu Wang
ware, Formal
ing - original
Conceptualization,

Conceptualization,  Methodology,  Soft-
analysis, Investigation, Data curation, Writ-
draft, Visualization. William R. Martin
Methodology, Software, Validation, For-
mal analysis, Resources, Writing - review & editing, Su-
pervision, Project administration, Funding acquisi-
tion. Thomas J. Downar Software, Validation, Re-
sources, Supervision, Project administration, Funding acqui-
sition. Brendan Kochunas Software, Validation, Investi-
gation, Resources, Writing - review & editing, Supervi-
sion. Nathan C. Andrews Validation, Investiga-
tion. Lindsay Gilkey Validation, Investigation, Visualiza-
tion. Erik D. Walker Software, Validation, Investiga-
tion, Writing - review & editing, Visualization. Benjamin
S. Collins Software, Validation, Supervision. Martin
Pilch Conceptualization, Methodology, Validation, Formal
analysis, Resources, Data curation, Writing - review &



J. Wang et al. / Annals of Nuclear Energy xxx (xxxx) 109365 15

editing, Visualization, Project administra-

tion, Funding acquisition.

Supervision,

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Data availability

Data will be made available on request.
Acknowledgments

This research was supported by the Consortium for Advanced Simu-
lation of Light Water Reactors (https://casl.gov/), an Energy Innova-
tion Hub (http://www.energy.gov/hubs) for Modeling and Simulation

of Nuclear Reactors, under U.S. Department of Energy Contract No. DE-
AC05-000R22725.

References

Collins, B.S., S. Stimpson, Wang, X., Regression Suite Improvements in MPACT, 2016.
CASL-U-2016-1053-000, 2016.

Ganapol, B.D., Analytical Benchmarks for Nuclear Engineering Applications, Case Studies in
Neutron Transport Theory, no. 6292. 2009. SBN 978-92-64-99056-2, NEA/DB/DOC
(2008)1.

Kochunas, B., Collins, B., Jabaay, D., Downar, T.J., W. R. Martin, “Overview of
development and design of MPACT: Michigan parallel characteristics transport
code.”, American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL
60526 (United States); 2013 Jul 1.

Palmtag, S., 2017. MPACT Library Verification by Comparison of Assembly Calculations
to Monte Carlo Results, CASL-U-2015-0281-001.

Pilch, M., Recommendations for Code Verification and Solution Verification for CASL
Codes, CASL-U-2019-4108-000, 2019.

Smith, M.A., Lewis, E.E., Na, B.C., 2003. Benchmark on deterministic transport
calculations without spatial homogenization: A 2-D/3-D MOX fuel assembly 3-D
benchmark, NEA/NSC/DOC (2003) 16. Organisation for Economic Co-operation and
Development, Nuclear Energy Agency.

Wang, J., Martin, W., Collins, B., 2017. Order of Accuracy of spatial discretization of
method of characteristics. M&C 2017 — International Conference on Mathematics &
Computational Methods Applied to Nuclear Science & EnglneerIng.

Wang, J., Martin, W., Collins, B., 2018. The application of method of manufactured
solutions to method of characteristics in planar geometry. Ann. Nucl. Energy 121,
295-304.

Yamamoto, A., Tabuchi, M., Sugimura, N., Ushio, T., Mori, M., 2007. Derivation of
optimum polar angle quadrature set for the method of characteristics based on
approximation error for the Bickley function. J. Nucl. Sci. Technol. 44 (2), 129-136.

Young, M.T.H., 2016. MOCC: A Method of Characteristics based Nuclear Reactor Physics
Simulator. University of Michigan, Ann Arbor. Ph.D. thesis.


https://casl.gov/
http://www.energy.gov/hubs
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0035
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0035
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0035
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0040
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0040
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0040
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0045
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0045
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0045
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0050
http://refhub.elsevier.com/S0306-4549(22)00400-5/h0050

	Code Verification and Solution Verification framework in pin-resolved neutron transport code MPACT
	1. Introduction
	2. Verification framework and its application in MPACT
	3. Code Verification
	3.1. Unit tests, regression tests, and testing suite
	3.1.1. Unit testing
	3.1.2. Regression testing
	3.1.3. MPACT regression test suite

	3.2. Code Verification using the method of exact solutions
	3.2.1. Method of exact solutions
	3.2.2. Example: Ganapol benchmark
	3.2.2.1. Ganapol benchmark description.
	3.2.2.2. MPACT benchmark problem.
	3.2.2.3. MPACT results.
	3.2.2.4. Mesh convergence analysis.

	3.2.3. Summary

	3.3. Code Verification using the Method of manufactured solutions
	3.3.1. Method of manufactured solutions
	3.3.2. Example: Application of MMS using the C5G7 configuration
	3.3.2.1. Consistency test.
	3.3.2.2. Application of MMS to a 2D multigroup fixed-source problem.
	3.3.2.3. Demonstration and numerical results.



	4. Summary
	5. Solution Verification
	5.1. Solution Verification with MPACT
	5.2. 3D assembly problem
	5.2.1. Specifications for the 3D assembly
	5.2.2. Numerical results

	5.3. 2D pin-cell problem
	5.3.1. Specifications for the 2D pin
	5.3.2. Numerical results


	6. Conclusions
	
	Acknowledgments
	References


	fld108: 
	fld109: 
	fld148: 
	fld174: 
	fld186: 
	fld187: 
	fld188: 
	fld189: 
	fld205: 
	fld216: 
	fld230: 
	fld231: 
	fld243: 
	fld244: 
	fld256: 
	fld257: 
	fld267: 
	fld268: 
	fld282: 
	fld283: 
	fld297: 
	fld298: 
	fld299: 
	fld308: 
	fld309: 


