Characterizing Machine Learning I/0 Workloads on Leadership Scale HPC Systems

Arnab K. Paul’, Ahmad Maroof Karimif, Feiyi Wang
Oak Ridge National Laboratory, USA
{paula, karimiahmad, fwang2}@ornl.gov

Abstract—High performance computing (HPC) is no longer
solely limited to traditional workloads such as simulation and
modeling. With the increase in the popularity of machine learn-
ing (ML) and deep learning (DL) technologies, we are observing
that an increasing number of HPC users are incorporating ML
methods into their workflow and scientific discovery processes,
across a wide spectrum of science domains such as biology,
earth science, and physics. This gives rise to a diverse set
of I/O patterns than the traditional checkpoint/restart-based
HPC I/O behavior. The details of the I/O characteristics of
such ML I/O workloads have not been studied extensively
for large-scale leadership HPC systems. This paper aims to
fill that gap by providing an in-depth analysis to gain an
understanding of the I/0 behavior of ML I/0 workloads using
darshan - an I/O characterization tool designed for lightweight
tracing and profiling. We study the darshan logs of more than
23,000 HPC ML I/O jobs over a time period of one year
running on Summit - the second-fastest supercomputer in the
world. This paper provides a systematic I/O characterization of
ML I/O jobs running on a leadership scale supercomputer to
understand how the I/O behavior differs across science domains
and the scale of workloads, and analyze the usage of parallel
file system and burst buffer by ML I/O workloads.

Keywords-Burst Buffer, Darshan, High Performance Com-
puting, HPC Storage, IBM Spectrum Scale, I/O Characteriza-
tion, Machine Learning, Parallel File System

I. INTRODUCTION

The I/O needs of high performance computing (HPC)
workloads have been historically dominated by write-
intensive modeling and simulation workflows. However, the
increasing popularity of machine learning (ML) methods to
solve complex problems in various areas, such as biology,
astrophysics, and chemistry, has given rise to varied I/O
patterns in large-scale data analysis and ML/deep learn-
ing (DL) workloads [1]. This diversity of I/O needs by HPC
workloads warrants the need to characterize the requirements
of I/O in modern HPC centers.

There has been a multitude of studies [2]-[5] dedicated to
the characterization of write-heavy checkpoint/restart simu-

This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-000R22725 with the US Department of Energy (DOE). The
US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclu-
sive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

1 Made equal contribution to this work.

lation workloads. Recent studies [6]-[9] have also focused
on analyzing the I/O requirements of popular ML methods,
like deep learning. It has been typically seen that ML work-
loads have small read and write access patterns. However,
there lacks a holistic understanding of the I/O characteristics
of typical ML workloads based on different domain sciences
and the scale of ML jobs on leadership scale HPC systems.

Application users typically use various I/O profiling tools
to characterize their I/O workloads. These tools are valuable
to provide insights into potential performance-tuning efforts
and enable evaluation of I/O trends for the entire HPC clus-
ter. Darshan [10]-[12] is one of the most popular HPC I/O
characterization tools. It is designed to capture an accurate
picture of application I/O behavior, including properties such
as patterns of access within files, with minimum overhead.
Darshan logs have been used in many studies to characterize
the I/O needs of HPC workloads. However, darshan does
not annotate the logs into ML and non-ML workloads.
Therefore, it is a non-trivial task to classify the two kinds
of HPC workloads (ML and non-ML), which would help in
characterizing the different HPC I/O behavior.

Most ML jobs are perceived to be read-intensive with a
lot of small reads while a few ML jobs also perform small
writes. This kind of I/O behavior suggests that an in-system
storage, like a burst buffer [13] will provide better I/O per-
formance for ML workloads than a parallel file system, like
IBM Spectrum Scale (GPFS) [14], where the performance is
limited by a large number of metadata requests. On the other
hand, a burst buffer is a fast and intermediate storage layer
between the non-persistent memory of the compute nodes
and persistent storage — the parallel file system. The burst
buffer layer is configured to take a burst of read or write
I/O at a very high rate. However, there has been no prior
study on the usage of burst buffer and parallel file system
by large-scale ML I/O workloads.

In this paper, we aim to fill the gap in the literature by
characterizing the I/O behavior of ML workloads based on
different science domains, the scale of ML I/O job runs,
and temporal trends over one year. We also analyze the
usage of the parallel file system and burst buffer by ML
I/0 workloads. To this end, we study the darshan logs of
23,389 HPC ML I/O jobs spanning over one year (January
2020 - December 2020) on Summit [15] - the second-fastest
supercomputer in the world according to the latest top-
500 list [16]. IBM Spectrum Scale (previously known as

List of ML Keywords
keras training solr_keras candle_keras tensorflow interpolate Large_Batch_Training
train tf_cnn stemdl randomForest pytorch network_FCDenseNet_custom STEMDL-Benchmark
imagenet .tfrecord ppi-cnn-gpu ppi-3d-cnn tensorboardX train_tfrecord cosmoFlow_cnnl
DeepBench epoch regression prediction batch_size federated-learning splvfast3d_regression_ibm
nt_train FC-DenseNet iRF tensorflow genomicPredictionRF genomicPredictioniRF pytorch_synthetic_benchmark
sklearn horovod cnn.pickle convolutional.py spDNN_data DNN tf_cnn_benchmarks

Table I: List of 42 ML keywords used to annotate ML jobs from darshan logs.

GPFS) [14] forms the parallel file system in Summit. In
the remainder of the paper, we use the term ‘GPFS’ for the
parallel file system and ‘BB’ for burst buffer.

Specifically, we make the following contributions with
regards to the I/O behavior of ML workloads on a leadership
scale HPC systems.

o Develop a technique to annotate ML workloads from

darshan logs.

« Analyze the I/O behavior of large-scale ML workloads
classified by different science domains and the scale of
job runs.

o Study the usage of the parallel file system and burst
buffer by ML I/O jobs and understand the scope of
improvement in I/O performance.

From our study, we observe that ML workloads generate

a large number of small file reads and writes, which is
ideal for burst buffer. However only few science domains
use burst buffer, and out of those, only some use the burst
buffer efficiently. The temporal trend of ML workloads on
Summit also indicates an exponential increase in the I/O
activity from ML workloads by different science domains
which is indicative of the future which will be dominated
by ML.

II. BACKGROUND

A. Summit Supercomputer

The Summit supercomputer is based upon IBM AC922
system and deployed at the Oak Ridge Leadership Comput-
ing Facility (OLCF). It consists of 4,608 compute nodes.
Each node is equipped with 2 IBM POWERY (P9) proces-
sors and 6 NVIDIA Tesla V100 (Volta) GPUs. Also, each
node has 512 GB of DDR4 CPU memory, and each GPU
has 16 GB of HBM2 memory. An NVLink 2.0 bus connects
each P9 CPU to 3 V100 GPUs. An InfiniBand EDR network
with a fat-tree topology connects the nodes. A 1.6 TB NVMe
device is present on each compute node to be used as node-
local storage — burst buffer (BB). Summit is connected to
Alpine, a 250 PB IBM Spectrum Scale (GPFES) file system.
Summit can access Alpine at 2.5 TB/s in aggregate under
a large, and sequential write I/O access pattern. Alpine is
a center-wide file system and directly accessed by all other
OLCEF resources.

B. Darshan - HPC I/O Characterization Tool

Figure 1 provides an overview of the darshan architecture.
As an application executes, the darshan instrumentation

module for MPI, POSIX, and STDIO generates data records
characterizing the application’s I/O workload within dif-
ferent components of the I/O stack. The instrumentation
modules for the various components are registered with
the darshan core library. During application shutdown, each
module organizes its records, compresses it and writes those
collectively to the log file. MPI-IO is recorded for every
MPI_File_read() and M PI_File_write() calls. POSIX
module records each read() and write() call. Many appli-
cations rely on text-based I/O in leadership class computing
facilities. Therefore, the STDIO module characterizes the
stdio.h family of functions, such as fopen(), fprintf(),
and fscanf().

- Darshan Core Library

compress/
write

Application l reduce/

wmpI-l0 [
‘ POSIX I/O STDIO
. 4 s/
v

name MPHO POSIX STDIO
record rd record

Figure 1: High-level overview of darshan’s architecture.

C. Annotating ML jobs

Darshan provides darshan — util, a collection of tools
for parsing and summarizing log files produced by the
darshan instrumentation module. We use one of its tools —
darshan — parser, to parse the raw darshan logs of
one year (January to December 2020) and get the file-
wise I/O statistics in each module (MPI-IO, POSIX, or
STDIO) accessed by the application. The metadata of each
parsed darshan log consists of jobid, userid, start_time,
end_time, executable, no_of_processes, and runtime.
These parsed logs are used to annotate ML jobs and study
their I/O behavior.

To identify ML I/O workloads from the parsed darshan
logs, we created a list of ML keywords from the most com-
mon ML libraries used on leadership scale HPC systems. By
browsing through the executable and file names present in
the darshan logs from the first two months, we find that most
HPC ML workloads use libraries from either R or Python.
Combining the knowledge of ML terminologies found in the
darshan logs of the first two months and searching for the
top ML/DL libraries used in R and Python, a list containing
42 ML keywords is created, which is shown in Table I.
The list of keywords may not be comprehensive, but it is

sufficient to provide enough samples representing the ML
jobs on Summit.

Summit’s scheduler logs are merged with the darshan logs
to get the science domain (Physics, Chemistry, Computer
Science, or others) and the number of nodes on which the
ML jobs ran. A total of 845, 036 jobs ran on Summit in 2020.
Out of this, darshan logs were generated for 279,642 jobs.
The executable and filenames present in darshan logs for
the entire year are checked against the list of ML keywords
shown in Table I, and the final dataset of darshan logs for
23,389 ML jobs running on Summit in 2020 is obtained,
which is used for the analysis in this paper.

III. ANALYSIS OF ML I/0O WORKLOADS

A. Classification Based on Science Domains

1) Distribution of ML I/O Jobs: ML 1/O jobs are analyzed
to identify the science domains that make the most use of
ML techniques in their HPC applications. Figure 2 shows the
distribution of ML jobs in different science domains along
with the number of users and unique applications which
make use of ML techniques in their HPC jobs. As explained
in Section II-C, a total of 23,389 ML jobs were analyzed.

Mach. Learn. [#users:7,#apps:3]
Materials [#users:25,#apps:14]

A% Comp. Sc. [#users:60,#apps:41]
Physics [#Uusers:34,#apps:22] 10.8%
22.1%

Engineering [#users:10,#apps:8] 2.6% 1.7% Fusion [#users:4,#apps:5]

Wson Earth Sc. [#users:13,#apps:7]

37.8% Chemistry [#users:13,#apps:7]

Biology[#users:47,#apps:41]

Figure 2: Classification of 23,389 ML jobs by science
domains. (Note: #users specifies the number of unique users sub-
mitting ML jobs, and #apps is the number of unique applications
in each science domain).

Observation: Biology constitutes the maximum propor-
tion of ML jobs on Summit over a year. However, Computer
Science has the maximum number of users that use ML
approaches in their jobs.

2) Jobs using GPFS and BB: Figure 3 shows the number
of ML jobs in each science domain that either has at least
one file access on BB or all file accesses exclusively on
GPFS.

Observation: Computer Science has the most number of
jobs that use BB compared to the other science domains.
Only four science domains (Biology, Computer Science,
Materials, and Chemistry) use BB for their ML workloads.
Contrary to the common viewpoint, the plot shows the usage
of BB is limited to users only from selected domain sciences
and may reflect a limited understanding of the BB techniques
to improve I/O performance by various science domains.

B Burst Buffer
I GPFS

Job Count

Biology
Comp. Sc.
Materials
Chemistry
Earth Sc. 7
Physics 7
Engineering
Fusion

Mach. Learn.

Science Domain

Figure 3: The number of ML jobs using burst buffer and
GPFES classified by different science domains on Summit.
(Note: BB jobs access at least one file from the BB. GPFS jobs
access all the files exclusively from GPES).

3) Types of ML I/O Jobs: For every science domain
that uses BB, we classify each job into one of the three
categories: Read-Intensive (RI), Write-Intensive (WI), and
Read-Write (RW).

Equation 1 gives the job type based on the following
conditions, where result is the answer from Equation 1.

ReadBytes — WriteBytes
ReadBytes + WriteBytes
o -1 > result < -0.5: Write-Intensive (WI)
o 0.5 > result < 1: Read-Intensive (RI)
o -0.5 > result < 0.5: Read-Write (RW)
Table II shows the percentage of ML jobs classified into
the job type (RI, WI, RW) that either use exclusively GPFS
or at least one of the file is in BB.

(e))

GPFS Burst Buffer
Job Size RI WI RW RI WI RW
Comp. Sc. 82.21 9.41 8.38 3147 67.41 1.12
Biology 4329 2459 3212 | 97.28 1.36 1.36
Materials | 21.15 18.82 60.03 | 100.0 0 0
Chemistry | 7678 9.72 13.50 0 100.0 0

Table II: Comparison of the percentage of read-intensive
(RI) vs write-intensive (WI) vs read-write (RW) ML jobs
using GPFS or Burst Buffer classified by the four science
domains that use BB.

Observation: Computer Science and Chemistry have a
high percentage of RI ML jobs which have all files in
GPFS. Therefore, a large percentage of read-heavy files from
Computer Science and Chemistry can be migrated from
GPFS to BB to improve the I/O performance of the ML
workloads.

4) I/0 Activity of ML I/0 Jobs in GPFS and BB: Figure 4
shows the density distribution of I/O behavior (x-axis: bytes
written, y-axis: bytes read) by ML jobs in both GPFS and BB
classified by the four science domains that use BB. Based
on the job types (RI, WI, RW) discussed above, the plot
suggests that jobs which are nearer to the x-axis and further
away from zero are WI, the jobs which are close to y-axis
and far away from zero are RI, and the jobs in the middle are
RW. Therefore, Figure 4 is consistent with Table II which

Se. D Number of Read Calls Number of Write Calls
<M IM - 10M 10M - 100M 100M - 1G >1G <IM IM - 10M 10M - 100M 100M - 1G >1G
Biology 2.92e +7 922.12 678.61 70.07 2.48 5.4le + 7 79.57 11.62 0.29 0.03
Chemistry 8.63e + 5 1135.22 21.2 0 0.02 1.77e + 7 117.08 305.52 0 0
Comp. Sc. 5.14e + 6 421151.22 69558.12 1.45 4.91 1.98¢ + 6 406.57 5883.53 0.26 0.01
Earth Sc. 5.57e + 5 24435.34 382.81 0 0 6.93e + 4 48.97 7.49 0.10 0
Engineering 4.67e + 5 12.99 104971.99 0.74 0.24 5.49¢ + 5 1192.63 241313.12 0 0
Fusion 3.05e + 7 80.81 87.57 83.66 0 2.05e + 3 325.89 959.40 239.85 0.17
Mach. Learn. 3.90e 4+ 5 28126.52 6484.93 0.59 0 1.62e + 3 89.91 1.48 0 0
Materials 5.33e + 6 7037.46 103.03 0.29 0.16 4.49¢ + 6 2.34 17.58 0.26 0.23
Physics 1.5e +7 1004.92 6644.35 25.76 31.34 3.59¢ + 6 959.99 44.69 1.50 0

Table III: The mean number of read and write calls per job made in each group of file access sizes classified by science
domains. The file access sizes are grouped into < 1MB, IMB - 10MB, 10MB - 100MB, 100MB - 1GB, and > 1GB bins.

shows that Computer Science and Chemistry ML jobs which
use BB are mostly WI, while the ML jobs using BB from
Materials and Biology are mostly RI.

GPFS Burst Buffer

1016
10" Materials

1012 <
2 100 o (s
Ea;; 108 .
- -
2 10
=
a ot

10

1 - Bio

-

1 10% 10* 10° 10% 10" 10 10" 10
Bytes Write

1 10% 10* 10° 10% 10" 10 10" 10'6
Bytes Write

Figure 4: Density distribution plots of I/O activity from ML
jobs using either GPFS or BB classified by science domains.

Observation 1: ML jobs that use BB can either be
classified as read-intensive or write-intensive, while a large
majority of jobs use exclusively GPFS being read-write.
This warrants further investigation into the read and write
access sizes of the ML workloads, which is discussed in
Section III-AS.

Observation 2: A large number of ML jobs performing
fewer reads and writes (closer to zero along the y-axis)
exclusively use GPFS. This shows that many ML users
believe jobs performing less /O will incur a much higher
overhead in copying files from GPFS to BB than the gain
in I/O performance by doing I/O on BB.

5) Read and Write Access Sizes: Table III shows the
mean number of read and write calls used per ML job in
different access sizes classified by different science domains.
The various file access sizes are grouped into five bins:
< IMB, IMB - 10MB, 10MB - 100MB, 100MB - 1GB, and
> IGB. This analysis is important because large sequential
read and write (higher sized bins) gives a higher performance
from GPFS, while small reads and writes (lower sized bins)
are more efficient in BB.

Observation: Almost 99% of the read and write calls for
ML workloads are less than 10MB. This implies that burst
buffer is an excellent candidate to improve I/O performance
as a large number of small read and write requests overloads
the parallel file system. There is a massive scope in I/O
performance improvement, especially in the Physics domain,
which comprises a healthy portion of ML I/O jobs on

Summit as shown in Figure 2. Physics has a large number
of small file accesses but does not utilize burst buffer as
previously seen in Figure 3.

B. Classification Based on Scale of Jobs

1) Distribution of ML I/O Jobs: Based on Summit’s
scheduling policy [17], the ML jobs are classified into three
categories: small, medium, and flagship. The description for
each category is shown in Table IV.

Category | Number of Nodes | Max Walltime (hours)
Flagship 922 - 4608 24

Medium 46 - 921 6 or 12

Small 1-45 2

Table IV: Summit scheduling groups by job node count.

Figure 5 shows the classification of small, medium and
flagship scale ML jobs by science domains.

Observation: More than 78% of ML jobs run on less than
45 nodes with Biology and Computer Science having the
maximum proportion of jobs. Biology has more than two-
third share of the medium-scale ML jobs while Computer
Science and Physics have the maximum share among the 77
ML jobs which run on flagship scale.

2) Jobs using GPFS and BB: Figure 6 shows the number
of ML jobs that either has at least one file access on BB or
all file accesses on GPFS.

Observation 1: Only ML users from Computer Science
use BB for flagship jobs, while the ML users from other
domains using BB; Biology, Materials, and Chemistry use
it for jobs running on less than 922 nodes. The reason might
be the multiple legacy codebases from the three science
domains are in the process of being scaled up to include
BB and improve I/O performance.

Observation 2: Typically, the number of jobs having at
least one file on BB is lesser than the number of jobs using
GPFS exclusively. Contrary to the pattern, the number of
Computer Science jobs at the flagship scale, which uses BB,
surpasses the number of jobs only using GPFS.

3) I/O Activity for Different Types of Jobs in GPFS and
BB: The different job types: RI, WI, and RW, are described
above in Section III-A3. Table V shows how the different

Mach. Learn. [#users:7, #apps:3]

Materials [#users:23,#apps:13]
A Comp. Sc. [#users:S8, #apps:31]

12.5%
7 4,5.%

Engineering [#users:10,#apps:8]

Physics [#users:29,#appsi19]
Fusion [#users:4, #apps:5)

Earth Sc. [#users:13,#apps:7]

Chenistry [#users:13,#apps:6]

Biology{#users:46,#apps:35]

(a) Small-scale ML jobs.

Materials apps:7]
arth Sc. [appsid]
Comp. Sc. [#users:24,#apps:20]
Fusion [#users:3,#apps:3]
Chemistry [#users:6,#apps:4]
Biology [#users:15,#apps:21]

(b) Medium-scale ML jobs.

Engineering [#users:5, #apps:5]

Physics [#users:

Comp. Sc. [#users:7, #apps:5]

Physics [#users:d, #apps:4]
Engineering [#users:2, #apps:2]

Materials [#users:4, #apps:4]

Ch try [#1 23, #: 3]
Biology [#users:4,#apps:3] emistry [#users appsi3]

(c) Flagship-scale ML jobs.

Figure 5: Classification of Small-Scale (18, 269), Medium-Scale (5,043), and Flagship-Scale (77) ML jobs. (Note: #users is
the number of unique users submitting ML jobs, and #apps specifies the number of unique applications in each science domain).

Flagship Jobs
NN BurstBuffer WSS GPFS

Medium jobs Small Jobs

" "
10*
10°
10
10%
10!
100 - 10!
R g 5 8 5 2 E & 8
H H £ é
2 £ 5 &

102

Job Count

Comp. Sc.

H
8 = S g
&

Science Domain

Science Domain

Science Domain

Figure 6: Number of ML jobs which either access at least
one file on BB or all files exclusively on GPFS classified on
the basis of the scale of jobs and science domains.

types of jobs use GPFS and BB based on the scale of the
ML jobs.

GPFS Burst Buffer
Job Size RI WI RW RI WI RW
Flagship | 7857 2143 0 8880 1111 0
Medium | 55.94 1429 29.77 | 37.04 62.50 0.46
Small 56.43 30.71 12.86 | 5224 46.76 0.99

Table V: Comparison of percentage of read-intensive (RI),
write-intensive (WI), and read-write (RW) jobs for GPFS
and Burst Buffer classified by the scale of job runs.

Observation 1: Flagship jobs which use exclusively GPFS
are more read-intensive. Therefore, there is a scope of
improvement in I/O performance if these RI ML jobs can
migrate the read-heavy files from GPFS to BB.

Observation 2: Medium scale jobs which have at least
one of their files on BB, use it more for WI jobs. This
implies that ML users might not be confident of using BB
for improved read performance and still prefer to use BB
in a traditional manner, that is, for capturing periodic write
bursts.

C. Temporal Trend of ML 1/0O Jobs

1) High-Level I/O Trend: The evolution of the I/O char-
acteristics of ML jobs over a period of one year is shown by
Cumulative distribution function (CDF) plots for read and
write bytes in Figure 7.

Observation: More than 50% of the I/O happened in the
later part of the year (starting mid-August). This suggests
an exponential growth in the use of ML technologies in the

Read Write

CDF
(% of Bytes)

Feb. Apr. Jun. Aug. Ot Dec. Feb. Apr. Jun. Aug. Ot Dec.

Figure 7: Cumulative distribution function (CDF) plots for
read bytes and write bytes for one year.

HPC workloads and the importance of such a study to build
better technologies to meet the future I/O needs of such ML
applications.

2) ML I/O Behavior Trend of Different Science Domains:
Figures 8a and 8b show the temporal trend of the percentage
of bytes read and written by ML jobs on GPFS and BB over
a period of one year classified by the four science domains
that use BB.

Observation 1: Users from Computer Science started
adopting BB for their ML jobs earlier than the other science
domains. The steep jump in the usage of BB in Chemistry,
Materials, and Biology suggests that only a few users used
BB in a small time period. Figure 8b follows the same trend
as Figure 7, where most of the ML jobs were run in the
last few months of the year. Therefore, domain sciences
outside Computer Science are starting to make use of BB
in a more prevalent manner for their ML workloads, which
will continually be on the rise. This means that better I/O
optimization methods need to be developed to use burst
buffer more efficiently.

Observation 2: The temporal trend for reads and writes is
similar on both GPFS and BB, except for Computer Science
for reads on BB, which suggests that there might have been
benchmark runs from the users in Computer Science to test
the read performance of BB at the start of the year, before
using BB in the ML applications.

D. Usage of Burst Buffer by ML 1/0 Jobs

As seen in Section III-AS5, a large number of small reads
and writes constitute the I/O behavior of ML workloads
which is more suitable for BB than GPFS. Therefore, in

Comp. Sc. Chemistry Materials Biology

(a) GPFS.

Comp. Sc. Chemistry Materials Biology

3 8

(% of Read Bytes)

(b) Burst Buffer.

Figure 8: CDF plots showing the temporal trend of bytes read and written by ML jobs on GPFS and BB over a period of

one year classified by science domains.

this section, we analyze the usage of BB by ML jobs. Out
of a total of 23,389 ML jobs, only 1046 jobs make use of
BB.

1) Jobs having Common Files in BB and GPFS: Write-
intensive ML Jobs typically use BB for temporary writes and
then persist those to GPFS. On the other hand, read-intensive
ML jobs copy files from GPFS to BB, and then the files are
read from BB to improve the overall read performance of
the ML job. Therefore, from all the 1046 ML jobs that use
BB, we analyze only the jobs with common files in both
GPFS and BB and observe the distribution of bytes read
and written by these common files.

Figures 9a and 9b show the percentage of RI, WI, and
RW jobs classified based on the science domains and the
scale of job runs that have common files on both GPFS and
BB. We found a total of 396 jobs that have common files
on GPFS and BB.

Observation 1: Figure 9a shows that ML jobs from Biol-
ogy performed persistent writes while the other types of jobs
do not have any common files. This is completely opposite
to the behavior exhibited by ML jobs from Chemistry, where
the WI jobs do not have any files which are persisted. Jobs
coming from Materials are only RI jobs, some of which use
BB to improve read performance. ML users from Computer
Science try to make optimal use of BB by having all three
categories of jobs; RI, WI, and RW, use BB to either improve
read performance or persist write-heavy files from BB to
GPFS.

Observation 2: Figure 9b shows that the trend of common
files across all the scales of jobs is dominated by Computer
Science shown in Figure 9a. However, as more ML technolo-
gies are adopted by science domains other than Computer
Science, the usage of burst buffer will be skewed towards
the sub-optimal BB usage. Therefore, for an optimal system-
wide I/O performance, ML users need to be well educated
on the benefits of BB as well as novel I/O optimization
techniques similar to [18], [19] should be developed which
can transparently make use of BB without making changes
to legacy code bases.

2) I/O Activity of Files Persisted from BB to GPFS:
Figure 10 shows the I/O distribution of ML jobs which
use BB to gauge the data size which are persisted from
BB to GPES. Total bytes read/written are the total bytes by
the ML jobs which use BB. Burst buffer bytes read/written
are the total bytes read or written from BB. Persisted bytes
read/written shows the size of files which are persisted from
BB to GPFS after they are read or written.

Observation: Files which perform read bytes from BB are
not persisted back to the GPFS. Also, as expected almost all
the write bytes on BB from Computer Science are persisted
to GPFS. However, this behavior does not hold true for
Chemistry which do not persist the write bytes that were
performed on BB. This might imply that ML jobs from
Chemistry might write into a lot of temporary files which
need not be persisted.

E. ML I/O Job Performance on GPFS and Burst Buffer

In this section, we analyze the performance benefit that
can be observed by using the BB more efficiently by ML
1/0 jobs.

1) Read vs Write Performance: Table VI compares the
mean, median and standard deviation of read and write
performance by files in the ML jobs on GPFS and BB.

I/0 Rate GPFS Burst Buffer

(MBps) Mean Median Std. Dev. Mean Median Std. Dev.
Read 721 390 967 3576 2994 2518
Write 782 257 1285 2721 2807 1792

Table VI: Comparison of I/O performance for files in the
ML jobs on GPFS and Burst Buffer.

Observation 1: Both read and write performance on
BB outperforms GPFS. BB gives a better improvement
on read performance (4.95x) when compared to the write
performance (3.48x) than GPFS.

Observation 2: Based on the mean and standard deviation
on BB, we can conclude that 66% of the reads and writes on
BB get I/O performance between 1GBps and 6GBps. This is
consistent with the theoretical peak that can be obtained on

. RI LI . RW
BN RlI-common HEE Wl-common BB RW-common
100
810
[=]
-
S
=]
S
Biology Chemistry Comp. Sc. Materials

Science Domain

(a) Classified by Science Domains.

N RI
S RI-common

. Wi RV
EEE Wil-common HEEM RW-common

1004

% of Jobs

Medium Small

Scale of Jobs
(b) Classified by Scale of Jobs.

Flagship

Figure 9: Percentage of read-intensive (RI), write-intensive (WI), and read-write (RW) ML jobs which have common files
across GPFS and burst buffer. (Note: Common for read-intensive jobs means that files were copied from GPFS to burst buffer and
then read from burst buffer. Common for write-intensive jobs means that writes are persisted from burst buffer to GPES).

10% 4

Tota 2
S ad es written
1015 4 Persisted bytes read] B Persisted bytes written
" ﬁ i | H
P
k]
=
a
105 4 1
10° 4 4
0
Biology ~ Comp.Sc. Materials Chemistry Biology ~ Comp.Sc. Materials Chemistry

Science Domain Science Domain

Figure 10: Bytes persisted from burst buffer to GPFS
classified based on reads and writes.

BB from a single node on Summit — 2.1 GBps for writing
and 5.5 GBps for reading [20].

2) I/O Performance by Different Science Domains: Ta-
ble VII shows the read and write performance of ML jobs
classified by science domains when they either exclusively
use GPFS or have at least one file access from BB. ML
jobs from Chemistry do not perform any read on BB, and
the jobs from Materials do not have writes on BB, therefore
the corresponding values are zero.

Observation 1: The performance of both reads and writes
on BB surpass those on GPFS for all the domains. This sug-
gests that there is a huge scope of performance improvement
by using BB more efficiently.

Observation 2: ML jobs from Computer Science have a
better mean performance combining file accesses on both
GPFS and BB, when compared to other science domains.
This implies that Computer Science makes better use of BB
and GPFS, for example, not using BB for ML jobs doing
small overall I/O, copying read-heavy files from GPFS to
BB before doing the reads on BB, capturing burst of writes
for write-heavy files on BB before persisting it on GPFS.
This again suggests that there should be better optimization
technologies that can transparently migrate files between
GPFS and BB for the domain sciences who are less informed

about the advantages of BB.

Read Rate GPFS Burst Buffer
(MBps) Mean Median Mean Median
Biology 658.79 652.38 3319.09 2366.32

Chemistry 365.01 50.90 0 0

Comp. Sc. 724.03 399.09 4617.62 445559

Materials 709.75 38.39 5465.60 5535.77
(a)

Write Rate GPFS Burst Buffer
(MBps) Mean Median Mean Median
Biology 220.71 85.30 3838.12 4560.81

Chemistry 281.58 280.39 2560.34 275397

Comp. Sc. 1216.89 826.57 2844.06 4041.16

Materials 124.30 2.89 0 0

(b)

Table VII: I/O performance comparison for ML jobs using
either exclusively GPFS or at least one file on Burst Buffer
classified by science domains; (a) read rate, (b) write rate.

IV. DISCUSSION

The analysis of I/O behavior of 23, 389 ML jobs provides
valuable insights into the future of HPC storage systems.
This study is focused on Summit — the world’s second-fastest
supercomputer. However, the ML jobs studied in this paper
represent other leadership scale HPC systems.

A. Lessons for domain scientists

e ML workloads from all science domains generate a
large number of small file reads and writes, which
is better suited for BB. However only few science
domains use BB for their ML workloads. Therefore,
domain scientists need to be trained to use BB for their
ML workloads.

« HPC ML users from Computer Science makes use of
BB more efficiently which results in the much better
I/O performance compared to other science domains

which also use BB. It is observed that ML workloads
from Computer Science copies read-intensive files from
GPFS to the BB and performs most reads from BB,
and burst of small writes also happen on BB which
is later persisted to the GPFS. This means that other
domain scientists should also be trained to use BB more
efficiently to yield better I/O performance.

B. Lessons for storage architects

o The temporal trend of ML workloads shows that there
is an exponential increase in the I/O activity from ML
workloads which is indicative of the future which will
be dominated by ML. Therefore better storage solutions
need to be designed that can handle the diverse I/O
patterns from future HPC ML I/O workloads.

o It can sometimes be difficult to modify legacy code
bases from various science domains to include the
usage of burst buffer. Therefore I/O optimization tech-
niques must be developed that can help use the burst
buffer transparently without modifying the application
code.

o This study also provides guidance on the capacity of
future HPC storage systems which will be dominated
by ML workloads.

V. CONCLUSION

There is an exponential increase in the use of ML
technologies in HPC I/O workloads by various science
domains. Therefore, understanding the I/O characteristics of
ML workloads is very important for system architects, file
system developers and HPC users. This paper analyzed the
darshan logs of more than 23,000 ML workloads running on
Summit. Our study showed that ML workloads generate a
large number of small file reads and writes which is ideal for
a burst buffer compared to a parallel file system. However
not many science domains use burst buffer efficiently for
their ML I/O workloads. Even the different scale of jobs
affected the I/O usage of ML workloads, where applications
from only Computer Science used burst buffer for running
jobs on more than 921 nodes. This is a lesson for both
domain scientists to use burst buffer more efficiently for
their ML workloads, and also for storage architects to build
better storage solutions for future large-scale HPC storage
systems. In future, we will use this study to build a tool that
can characterize ML workloads from darshan without the
need of ML keywords.

ACKNOWLEDGMENT

We would like to thank Hyogi Sim for his suggestions
and inputs for the paper. This research used resources
of the Oak Ridge Leadership Computing Facility, located
in the National Center for Computational Sciences at the
Oak Ridge National Laboratory, which is supported by the
Office of Science of the DOE under Contract DE-ACO05-
000R22725.

(1]

[2]

(31

(4]

[5]

[6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar,
M. Paun, and S. L. Scott, “Reliability-aware approach: An
incremental checkpoint/restart model in hpc environments,”
in CCGRID, pp. 783-788, IEEE, 2008.

F. Pan, Y. Yue, J. Xiong, and D. Hao, “I/o characterization
of big data workloads in data centers,” in Workshop on Big
Data Benchmarks, Performance Optimization, and Emerging
Hardware, pp. 85-97, Springer, 2014.

P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross, “Understanding and improving
computational science storage access through continuous
characterization,” ACM TOS, vol. 7, no. 3, pp. 1-26, 2011.

B. K. Pasquale and G. C. Polyzos, “Dynamic i/o characteri-
zation of i/o intensive scientific applications,” in SC, pp. 660—
669, IEEE, 1994.

S. Narayan and J. A. Chandy, “l/o characterization on a
parallel file system,” in SPECTS, pp. 133-140, IEEE, 2010.

F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody,
R. Goldstone, K. Mohror, and W. Yu, “I/o characterization
and performance evaluation of beegfs for deep learning,” in
ICPP, pp. 1-10, 2019.

S. W. Chien, A. Podobas, I. B. Peng, and S. Markidis,
“tf-darshan: Understanding fine-grained i/o performance in
machine learning workloads,” in IEEE CLUSTER, pp. 359-
370, IEEE, 2020.

G. K. Lockwood, S. Snyder, S. Byna, P. Carns, and N. J.
Wright, “Understanding data motion in the modern hpc data
center,” in IEEE/ACM PDSW, pp. 74-83, IEEE, 2019.

A. K. Paul, O. Faaland, A. Moody, E. Gonsiorowski,
K. Mohror, and A. R. Butt, “Understanding hpc application
i/o behavior using system level statistics,” in HiPC, pp. 202—
211, IEEE, 2020.

“Darshan - HPC /O Characterization Tool.” https://www.mcs.
anl.gov/research/projects/darshan/. Accessed: July 17 2021.

S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and
N. J. Wright, “Modular hpc i/o characterization with darshan,”
in ESPT, pp. 9-17, IEEE, 2016.

P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 characterization of petascale i/o workloads,” in Cluster
Workshop, pp. 1-10, IEEE, 2009.

T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An
ephemeral burst-buffer file system for scientific applications,”
in SC, pp. 807-818, IEEE, 2016.

“IBM Spectrum Scale (GPFS).”
spectrum-scale. Accessed: July 17 2021.

ibm.com/products/

“Summit.” https://www.olcf.ornl.gov/summit/. Accessed: July
17 2021.

[16] “Top 500 - November 2020.” https://www.top500.org/lists/
top500/2020/11/. Accessed: July 17 2021.

[17] “Summit Scheduling Policy.” https://docs.olcf.ornl.
gov/systems/summit_user_guide.html#scheduling-policy.
Accessed: July 16 2021.

[18] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a
heterogeneous-aware multi-tiered distributed i/o buffering
system,” in HPDC, pp. 219-230, 2018.

[19]

(20]

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/o acceleration
via multi-tiered data buffering and prefetching,” Journal of
Computer Science and Technology, vol. 35, no. 1, pp. 92—
120, 2020.

“Burst Buffer on Summit.” https://docs.olcf.ornl.gov/systems/
summit_user_guide.html#burst-buffer. Accessed: July 16
2021.

