OpenMP target task: tasking and target
offloading on heterogeneous systems *

Pedro Valero-Lara![0000-0002—1479—4310] ' Jyypgwon Kim![0000—-0001-6594—6225]

Oscar Hernandez', and Jeffrey Vetter![0000—0002—2449—6720]

Oak Ridge National Laboratory, Oak Ridge TN 37830, USA
{valerolarap, kimj, oscar, vetter}Qornl.gov
https://www.ornl.gov/

Abstract. This work evaluated the use of OpenMP tasking with tar-
get GPU offloading as a potential solution for programming produc-
tivity and performance on heterogeneous systems. Also, it is proposed
a new OpenMP specification to make the implementation of hetero-
geneous codes simpler by using OpenMP target task, which integrates
both OpenMP tasking and target GPU offloading in a single OpenMP
pragma. As a test case, the authors used one of the most popular and
widely used Basic Linear Algebra Subprogram Level-3 routines: trian-
gular solver (TRSM). To benefit from the heterogeneity of the current
high-performance computing systems, the authors propose a different
parallelization of the algorithm by using a nonuniform decomposition of
the problem. This work used target GPU offloading inside OpenMP tasks
to address the heterogeneity found in the hardware. This new approach
can outperform the state-of-the-art algorithms, which use a uniform de-
composition of the data, on both the CPU-only and hybrid CPU-GPU
systems, reaching speedups of up to one order of magnitude. The per-
formance that this approach achieves is faster than the IBM ESSL math
library on CPU and competitive relative to a highly optimized hetero-
geneous CUDA version. One node of Oak Ridge National Laboratory’s
supercomputer, Summit, was used for performance analysis.

Keywords: Tasking - Heterogeneity - OpenMP - CUDA - Linear Alge-
bra - TRSM - BLAS

1 Introduction

The motivation of this work was to analyze the OpenMP 4.5 specification for
programming productivity and performance on heterogeneous systems via the

* Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-000R22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to
do so, for US government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).


https://www.ornl.gov/

2 P. Valero-Lara et al.

integration of tasking and target GPU offloading. Triangular solve (TRSM) was
used as a motivating example because it is one of the most popular Basic Lin-
ear Algebra Subprograms (BLAS) routines. The authors also included a highly
optimized Compute Unified Device Architecture (CUDA) code in their analysis
to compare not only the performance but also the programming productivity.

Many other studies efficiently used task-based programming models for linear
algebra computations. Examples include CPU-only math libraries, such as Par-
allel Linear Algebra Software for Multicore Architectures (PLASMA) [7], which
is based on OpenMP and Quark [I0]; Chamaleon, which is based on StarPU [2];
and Linear Algebra routines on OmpSs (LASs) [18], which is based on OmpSs [g].

Tasking [19120] is an efficient tool for addressing irregular problems, such
as sparse [43] and dense [I7/I8] linear algebra kernels. Unlike conventional
directive-based clauses used for a uniform work sharing (i.e., decomposition) of
loops, tasking provides the flexibility, transparency, and programming produc-
tivity necessary for handling irregular and nonbalanced applications in which
each task has a different computational cost. Tasking is also well positioned to
address the heterogeneity of the current and upcoming high-performance com-
puting systems [I62]. Since OpenMP 4.0, it is possible to use target GPU of-
floading in OpenMP codes. Using GPU offloading in OpenMP tasking could
be a transparent and simple way to implement heterogeneous codes without
compromising performance. Multiple implementations of the OpenMP 4.5 spec-
ification are found in multiple vendor compilers, such as Intel [12], NVIDIA [I5],
AMD [1], Cray [0], and IBM [I1], as well as in open-source compilers [9/I3], which
would make OpenMP a portable specification among many different heteroge-
neous CPU+GPU systems. However, this study should be extended by using
other architectures, such as AMD and Intel GPUs, to verify the portability of
OpenMP 4.5.

The parallel algorithm of the TRSM routine comprises two main components:
TRSM and general matrix-matrix multiplication (GEMM). Although GEMM
can reach a very high—mnearly peak—performance on GPU, TRSM is a more
complex routine, reaching a lower performance on GPUs. In terms of the per-
centage of the peak performance reached, TRSM works better on CPUs than
on GPUs, reaching about 75-80% of the CPU peak performance but only about
50% of the GPU peak performance. To achieve high performance on GPU and
CPU, the authors propose to use CPU to compute the TRSM blocks while us-
ing GPU for the GEMM blocks. The use of heterogeneous (i.e., CPU+GPU)
systems for linear algebra solvers is not new. For example, the MAGMA li-
brary [14] has different linear algebra factorizations (i.e., LAPACK routines),
such as LU factorization/solve and Cholesky factorization/solve. These routines
are distributed and computed on CPU and GPU by using vendor programming
models, such as CUDA or HIP on NVIDIA and AMD GPUs and math libraries,
such as cuBLAS/hipBLAS on NVIDIA/AMD GPUs or MKL on Intel CPUs.

Unlike MAGMA, which uses CUDA or HIP, the authors propose to use
OpenMP tasking with target GPU offloading as the orchestrator of the blocks
and tasks. Unfortunately, there is not a heterogeneous TRSM implementation in



OpenMP target task: tasking and target offloading on heterogeneous systems 3

MAGMA that can be compared with this. Thus, the authors included a highly
optimized asynchronous and heterogeneous CUDA implementation of TRSM in
their analysis, following the same programming approach used by MAGMA. Like
MAGMA and many other math linear algebra libraries, the authors used vendor
libraries—IBM ESSL on CPU and NVIDIA cuBLAS on GPU—to compute the
different components or blocks of the algorithms. To the best of the authors’
knowledge, this is the first time that target GPU offloading within OpenMP
tasking has been used for heterogeneous linear algebra operations on heteroge-
neous systems.

The remainder of the paper is structured as follows. Section [2| describes
the main characteristics of TRSM. Section [3| explains the main details of the
OpenMP and CUDA implementations. Section [4 evaluates these implementa-
tions and Section] presents the proposal for a novel OpenMP construct which
integrates OpenMP tasking and target offloading in a single OpenMP pragma.
Finally, Section [f] summarizes the conclusions and future directions.

2 DMotivating Example: TRSM BLAS Level-3 Routine

The TRSM BLAS Level-3 routine is one of the most popular and widely used
BLAS routines. It is used in multiple applications and in some of the most
important LAPACK operations, such as LU and Cholesky solve. It solves a
triangular system, which can be defined as:

op(A)- X = ALPHA - B,orX -op(A) = ALPHA - B. (1)

TRSM has a triangular matrix as input and a regular dense matrix as output.
Matrix A is a triangular matrix, which can be “lower” or “upper,” depending
on the locations of the nonzero elements within it. The result of this operation
is stored in matrix X. This matrix can be positioned on the left or right of
matrix A, which affects the order of the operations to be computed. Matrix B
is a dense matrix, and ALPHA is a scalar matrix. Op(4) can be a transposed
(i.e., AT) or nontransposed matrix. For clarity and simplicity, the remainder
of this document will focus only on one of the possible cases of this operation,
which consists of computing a triangular system in which matrix A is a lower
triangular matrix, is not transposed, and is positioned to the left of matrix X.
More information about this operation and other BLAS Level-3 operations can
be found in Dongarra et al. [6] or on the BLAS WebsiteE

3 Task-Based Implementation of TRSM

One of the most common ways to parallelize this type of operation is to decom-
pose the matrix into tiles of the same size, defining the dependencies between
the tiles and operations to be computed on each tile. This can be efficiently
implemented via tasking [I8IT7U7].

! http://www.netlib.org/blas/


http://www.netlib.org/blas/

4 P. Valero-Lara et al.

TRSM-Tasks GEMM-Tasks
@ %
TRSM-Tasks GEMM-Tasks

Fig. 1. Uniform (top) and nonuniform (bottom) tiled TRSM decomposition.

The top image in Figure |1} illustrates the dependencies among the tiles and
operations to be computed on the tiles. The algorithm computes TRSM on the
diagonal tiles of the input and triangular tiled matrix A and the tiles of the first
row of the output and regular dense tiled matrix B. Once complete, a set of
GEMM operations must be run by using the output (i.e., tiles) of the previous
TRSM operations and the tiles of the column below the diagonal tile as input.
The output corresponds to the tiles located in the second row through the last
row of the output tiled matrix. This process is repeated until the last diagonal
tile of the input matrix is computed.

3.1 OpenMP

Figure [2] shows a pseudocode for the tiled TRSM decomposition, which is il-
lustrated in the top image in Figure [l on a CPU-GPU heterogeneous system.
The algorithm used in this implementation is identical to the one used by the
PLASMA, Chameleon, and LLASs math libraries. As mentioned previously, the
goal is to compute TRSM blocks on CPU and GEMM blocks on GPU. The
data and task dependencies are defined by using the #pragma omp task depend
clause. A few more lines of code must be provided to compute GEMM on GPU
and encapsulate target GPU offloading into OpenMP tasking. These new lines
consist of (1) describing the data moving from CPU and GPU via #pragma omp
target enter data map, (2) specifying that the pointers used in the GEMM
call are GPU pointers via #pragma omp target data use._device_ptr, and (3)
identifying which data must be copied back to CPU via #pragma omp target
exit data map.

Unlike the previous OpenMP code (Figure [2|) in which the matrices are de-
composed into square tiles of the same size, the authors propose a different and
irregular decomposition and/or parallelization, as shown in the bottom image
of Figure [I} in which matrix A is decomposed into square tiles, but matrix B
is decomposed into rectangular matrices. This different decomposition, which is
illustrated in Figure [I] and implemented in the code shown in Figure [2] allows



o B I N A N

e
N AW N~ O ©

18
19
20
21
22
23
24
25
26
27
28
29

0w N oA W N e

N
ck W N R O ©

16
17
18
19
20
21
22
23
24
25
26

OpenMP target task: tasking and target offloading on heterogeneous systems

aSIZE = TILE_SIZE+TILE_SIZE;
for(d = 0; d < dt; d++) {
for(c = 0; ¢ < ct; c++) {
#pragma omp task depend(in:TILE_A[d][d]) \
depend (inout:TILE_B[d] [c])
CPU-TRSM(L, L, N, N,
TILE_SIZE, TILE_SIZE,
ALPHA, TILE_A[d][d], TILE_SIZE,
TILE_B[d] [c], TILE_SIZE);
}//End for c
for(r = d+1; r < rt; r++) {
for(c = 0; ¢ < ct; c++) {
#pragma omp task depend(in:TILE_A[r][d]) \
depend (in:TILE_B[d] [c]) \
depend (inout:TILE_B[r][c]) {
TILE_A=TILE_A[r] [d];TILE_B=TILE_B[d] [c];TILE_C=TILE_B[r] [c];
#pragma omp target enter data map
— (to:TILE_A[0:aSIZE],TILE_B[0:aSIZE],TILE_C[0:aSIZE])
#pragma omp target data use_device_ptr(TILE_A,TILE_B,TILE_C) {
GPU-GEMM(N, N,
TILE_SIZE, TILE_SIZE, TILE_SIZE,
-1.0, TILE_A, TILE_SIZE,
TILE_B, TILE_SIZE,
ALPHA, TILE_C, TILE_SIZE);
}//End pragma target
#pragma omp target exzit data map (from:TILE_C[aSIZE])
}//End pragma task
}//End for c
}//End for r
}//End for d

Fig. 2. CPU-GPU OpenMP code of the tiled TRSM decomposition.

aSIZE = TILE_SIZE+TILE_SIZE;
bSIZE = TILE_SIZE*MATRIX_SIZE;
for(d = 0; d < dt; d++) {
#pragma omp task depend(in:TILE_A[d][d]) \
depend (inout:TILE_B[d])
CPU-TRSM(L, L, N, N,
TILE_SIZE, MATRIX_SIZE,
ALPHA, TILE_A[d][d], TILE_SIZE,
TILE_B[d], TILE_SIZE);
for(r = d+1; r < rt; r++) {
#pragma omp task depend(in:TILE_A[d][r]) \
depend (in:TILE_B[d]) \
depend (inout:TILE_B[r]) {
TILE_A=TILE_A[r] [d];TILE_B=TILE_B[d];TILE_C=TILE_B[r];
#pragma omp target enter data map
< (to:TILE_A[0:aSIZE],TILE B[0:bSIZE],TILE C[0:bSIZE])
#pragma omp target data use_device_ptr(TILE_A,TILE_B,TILE_C) {
GPU-GEMM(N, N,
TILE_SIZE, MATRIX_SIZE, TILE_SIZE,
-1.0, TILE_A, TILE_SIZE,
TILE_B, TILE_SIZE,
ALPHA, TILE_C, TILE_SIZE);
}//End pragma target
#pragma omp target exit data map (from:TILE_C[bSIZE])
}//End pragma task
}//End for r
}//End for d

Fig. 3. CPU-GPU OpenMP code of the optimized tiled TRSM decomposition.




6 P. Valero-Lara et al.

the occupancy of the CPU and GPU to be maximized, as well as helps overlap
more of the CPU-GPU communication and computation. Also, a lower number
of tasks is necessary, which minimizes the scheduler overhead. These modifica-
tions in the code (Figure [3)) consists of (1) removing those for loops related to
the columns of matrix B, (2) using a unidimensional array for the tiles of matrix
B, and (3) changing the input of the BLAS calls in which a whole block of rows
of matrix B is computed instead of a square tile. These modifications also reduce
the number of lines of code relative to the previous approach.

3.2 CUDA

The CUDA code uses the same matrix decomposition used in the optimized
OpenMP code shown in Figure[3] To overlap communication with computation—
as well as CPU computation with GPU computation, when possible—the asyn-
chronous application programming interface of the cuBLAS library and CUDA
streams must be used. Also, CUDA events must be used to guarantee the data
dependencies among those blocks of the algorithm computed on the CPU and
on GPU. The use of async memory transfers between CPU and GPU requires
the use of pinned memory. This is done by using cudaHostAlloc to allocate
host CPU memory. Finally, a stream must be associated with the CUDA han-
dle before running GEMM via cublasSetStream. To achieve fully overlapping
computation and communication, the authors used a different stream in each
consecutive GEMM block.

Figure[d]shows a pseudocode corresponding to the first iteration of the CUDA
CPU-GPU asynchronous TRSM code. The authors implemented this code to
minimize the overhead of CPU-GPU communication as much as possible, as
well as to maximize CPU and GPU use. During the first iteration of the code,
all rectangular tiles of matrix B must be transferred from CPU to GPU. Once
these tiles are in GPU memory, only these must be copied back to the CPU after
the computation of the first GEMM block of each iteration because TRSM must
compute them on the CPU at the beginning of the following iteration (Figure|4)).

4 Evaluation

The authors conducted the performance evaluation by using one node of Oak
Ridge National Laboratory’s heterogeneous supercomputer, Summit, which is
currently listed on the TOP500 list as the second fastest supercomputer in the
world. Summit features 2x IBM Power9 8335-GTH at 2.4 GHz, 32 GB RAM
memory, and 6x NVIDIA V100 (Volta) GPU with 16 GB HBM2 and NVLink2
for high-bandwidth communication between CPU and GPU. In this study, the
authors used one IBM Power9 CPU (21 cores) and one NVIDIA GPU (V100);
all computations were done in double precision. The math libraries IBM ESSL
(6.1.0-2) and NVIDIA cuBLAS (CUDA version 10.1.243) were used to compute
the different components of the algorithm (i.e., CPU-TRSM and GPU-GEMM



OpenMP target task: tasking and target offloading on heterogeneous systems 7

cuStream_t streamO, streaml;
cuEvent_t event;
cuHandle_t handle;
//First iteration
cblas_dtrsm(L, L, N, N,

TILE_SIZE, MATRIX_SIZE,

ALPHA, TILE_A[0][0], TILE_SIZE,

TILE_BO, TILE_SIZE);

cudaEventRecord(event) ;
cudaEventSynchronize (event) ;
cublasSetMatrixAsync (TILE_SIZE,MATRIX_SIZE,sizeof (precision),
12 TILE_B[0], TILE_SIZE,
13 TILE_BGPUO, TILE_SIZE, streams[0]);
14 //First GEMM block
15 cublasSetMatrixAsync (TILE_SIZE, TILE_SIZE, sizeof(precision),

e
O © W N oA W N R

16 TILE_A[1][0], TILE_SIZE,

17 TILE_AGPU1, TILE_SIZE, streams[0]);

18 cublasSetMatrixAsync (TILE_SIZE,MATRIX_SIZE,sizeof (precision),
19 TILE_B[1], TILE_SIZE,

20 TILE_GPUB1, TILE_SIZE, streams[0]);

21 cublasSetStream(handle, streams[0]);

22 GPU-GEMM(N, N,

23 TILE_SIZE, MATRIX_SIZE, TILE_SIZE,

24 -1.0, TILE_GPUA1, TILE_SIZE,

25 TILE_GPUBO, TILE_SIZE,

26 ALPHA, TILE_GPUB1, TILE_SIZE);

27 cublasGetMatrixAsync (TILE_SIZE,MATRIX_SIZE,sizeof (precision),
28 TILE_GPUB1, TILE_SIZE,

29 TILE_B[1], TILE_SIZE, streams[0]);

30 //Second GEMM block
31 cublasSetMatrixAsync (TILE_SIZE, TILE_SIZE, sizeof(precision),

32 TILE_A[2] [0], TILE_SIZE,

33 TILE_AGPU2, TILE_SIZE, streams[1]);
34 cublasSetMatrixAsync (TILE_SIZE,MATRIX_SIZE,sizeof (precision),
35 TILE_B[2], TILE_SIZE,

36 TILE_GPUB2, TILE_SIZE, streams[1]);
37 cublasSetStream(handle, streams[1]);

38 cublasDgemm (N, N,

39 TILE_SIZE,MATRIX_SIZE,TILE_SIZE,

40 -1.0, TILE_GPUA2, TILE_SIZE,

41 TILE_GPUBO, TILE_SIZE,

42 ALPHA, TILE_GPUB2, TILE_SIZE);

43

Fig. 4. CUDA code of the optimized tiled TRSM decomposition.

in the codes illustrated in Figures [2] and [3).
also used.

The IBM compiler x1 16.1.1-5 was

The performance analysis corresponds to a set of runs by using different
square matrix sizes ranging from 512 to 16,384. In every run, the authors used
a tile size that was 1/8 the size of the matrix. For example, for a matrix size of
5122, a tile size of 64 was used for matrices A and B in the OpenMP version
(Figures |2 and [5)) in which the matrices are uniformly decomposed (top image
in Figure [1)). Additionally, a tile size of 64 x 512 was used for matrix B in the
other OpenMP implementation (Figures [3|and [5)) and CUDA code (Figure .
Thus, depending on the matrix decomposition used, the authors used the same
number of tasks and blocks. For comparison and completeness, two different
CUDA implementations were included: one synchronous and one asynchronous.



8 P. Valero-Lara et al.

IBM Power9

GFLOPS

un
=
a

1024 2048 4056 Bl

DTRSM size (M=N)

i)
=]

16384

—4—ESSL —&—CPU OpenMP (uniform) —de— CPU OpenMP (non-unorm)

IBM Power9 + NVIDIA V100

GFLOPS

512 1024 2048 4096 8192 16384
DTRSM size (M=N)
—@— CPU-GPU OpenMP {uniform) —i— CPU-GPU OpenMP [non-uniorm)

CUDA-sync —— CUDA-async

Fig. 5. Performance in terms of giga-floating point operations per second of the differ-
ent implementations on CPU (top) and CPU+GPU (bottom).

These are shown as CUDA-sync and CUDA-async in Figure [5| This helps show
the impact of using asynchronous CPU-GPU communication and computation.

First, the results were evaluated on CPU only, as shown in the top image
of Figure |5l The OpenMP uniform code is based on the implementations of the
CPU-only math libraries, including PLASMA [7] and LASs [I§] libraries. As
shown in Figure [4] the use of a nonuniform decomposition can outperform the
OpenMP uniform code, achieving a speedup of up to one order of magnitude in
some cases (23x for a matrix size of 1,024 and 15x for a matrix size of 2,048).
An irregular distribution of the workload can achieve a high performance, even
on relatively small matrix sizes. Finally, as expected, both variants achieved the
best performance on the biggest matrix tested, being the OpenMP nonuniform
code about 1.2x faster. Also, this code is faster than the multithreading IBM
ESSL library in most cases, performing up to a 1.2x speedup.

Except for the smallest matrix size computed, all heterogeneous versions are
faster than using CPU only. As in the CPU case, using OpenMP tasking with
OpenMP target via a nonuniform decomposition of the matrices, as shown in the



(<3S N SR U

10
11
12
13

15
16
17
18
19
20
21
22
23
24
25

OpenMP target task: tasking and target offloading on heterogeneous systems 9

bottom image of Figure 5] achieves a better result than using a uniform matrix
decomposition. As in the CPU case, the OpenMP nonuniform code can achieve
better results, even on small and medium matrices. The OpenMP nonuniform
code was 4.3x faster on a matrix size of 1,240, 2.3x faster on a matrix size of
4,096, and 1.1x faster on a matrix size of 16,384. Also, the OpenMP nonuniform
code surpasses the CUDA synchronous implementation in most experiments be-
cause it is about 2x faster. Finally, although the asynchronous version of the
CUDA implementation, as shown in the bottom image of Figure[5] is faster than
the heterogeneous OpenMP nonuniform code, the performance of the OpenMP
code is competitive with respect to the performance reached by the CUDA code
because OpenMP tasking with the target offloading code achieved about 85-95%
of the asynchronous CUDA code performance.

5 A proposal for OpenMP target tasking

Given the good results shown in the previous section by using target offloading
in OpenMP tasks, we propose the integration of both OpenMP tasking and
target offloading by using a new OpenMP construct: OpenMP target task. An
example of this new construct with respect to the current OpenMP specification
can be seen in Figure [6] As shown, the use of OpenMP target tasking would
simplify the implementation of heterogeneous codes considerably. Additionally,
a better CPU-GPU communication could be performed by keeping the data in
GPU memory when other GPU tasks need to access to the same data.

//Current specification
#pragma omp task depend(in:TILE_A[d][r]) \
depend (in:TILE_B[d]) \
depend (inout:TILE_B[r]) {
TILE_A=TILE_A[r] [d];TILE_B=TILE_B[d];TILE_C=TILE_B[r];
#pragma omp target enter data map
< (to:TILE_A[0:aSIZE],TILE_ B[0:bSIZE],TILE C[0:bSIZE])
#pragma omp target data use_device_ptr(TILE_A,TILE_B,TILE_C) {
GPU-GEMM(N, N,
TILE_SIZE, MATRIX_SIZE, TILE_SIZE,
-1.0, TILE_A, TILE_SIZE,
TILE_B, TILE_SIZE,
ALPHA, TILE_C, TILE_SIZE);
}//End pragma target
#pragma omp target exit data map(from:TILE_C[bSIZE])
}//End pragma task
//Proposed specification
#pragma omp target task depend(in:TILE_A[d][r]) \
depend (in:TILE_B[d]) \
depend (inout:TILE_B[r]) {
GPU-GEMM(N, N,
TILE_SIZE, MATRIX_SIZE, TILE_SIZE,
-1.0, TILE_A[d][r], TILE_SIZE,
TILE_B[d], TILE_SIZE,
ALPHA, TILE_B[r], TILE_SIZE);
}//End pragma target task

Fig. 6. Proposal for OpenMP target task.



10 P. Valero-Lara et al.

6 Conclusions and Future Work

This paper proposes a new parallel approach for the BLAS Level-3 routine TRSM
by using a nonuniform data decomposition that better matches the characteris-
tics of heterogeneous systems. This new approach can achieve an important ac-
celeration compared with the reference implementations by using a nonuniform
data decomposition on both CPU and the heterogeneous CPU+GPU implemen-
tations. The authors implemented two different codes using a nonuniform data
decomposition: one based on OpenMP tasking and target GPU offloading and
one based on CUDA. Although slower than the asynchronous CUDA code, the
OpenMP code can achieve about 85-95% of the performance achieved by the
CUDA code with a much lower programming effort, reaching a high program-
ming productivity without compromising much performance. To simplify the
implementation of heterogeneous codes, we propose OpenMP target tasking, a
new OpenMP construct which combines OpenMP tasking and target offloading
in a single OpenMP pragma.

In future work, the authors plan to (1) extend this work to other dense and
sparse linear algebra kernels and other heterogeneous systems and (2) achieve
better problem tuning by using and including algorithm and hardware factors
that are susceptible to tuning in the code and OpenMP specification.

References

1. AMD: Aomp (Jun 2021), https://rocmdocs.amd.com/en/latest/Programming_
Guides/aomp.html

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exp. 23(2), 187-198 (2011). https://doi.org/10.1002/cpe.1631

3. Cataldn, S., Martorell, X., Labarta, J., Usui, T., Diaz, L.A.T., Valero-Lara, P.:
Accelerating conjugate gradient using ompss. In: 20th International Conference
on Parallel and Distributed Computing, Applications and Technologies, PDCAT
2019, Gold Coast, Australia, December 5-7, 2019. pp. 121-126. IEEE (2019).
https://doi.org/10.1109/PDCAT46702.2019.00033

4. Cataldn, S., Usui, T., Toledo, L., Martorell, X., Labarta, J., Valero-Lara, P.: To-
wards an auto-tuned and task-based spmv (lass library). In: Milfeld, K., de Supin-
ski, B.R., Koesterke, L., Klinkenberg, J. (eds.) OpenMP: Portable Multi-Level
Parallelism on Modern Systems - 16th International Workshop on OpenMP,
IWOMP 2020, Austin, TX, USA, September 22-24, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12295, pp. 115-129. Springer (2020).
https://doi.org/10.1007/978-3-030-58144-2_8

5. Cray: Cce openmp (Jun 2021), https://pubs.cray.com/bundle/Cray_Fortran_
Reference_Manual_S-3901_11-0/page/0OpenMP_Overview.html

6. Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.S.: A set of level 3 ba-
sic linear algebra subprograms. ACM Trans. Math. Softw. 16(1), 1-17 (1990).
https://doi.org/10.1145/77626.79170

7. Dongarra, J.J., Gates, M., Haidar, A., Kurzak, J., Luszczek, P., Wu, P., Yamazaki,
I., YarKhan, A., Abalenkovs, M., Bagherpour, N., Hammarling, S., Sistek, J.,


https://rocmdocs.amd.com/en/latest/Programming_Guides/aomp.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/aomp.html
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1109/PDCAT46702.2019.00033
https://doi.org/10.1007/978-3-030-58144-2_8
https://pubs.cray.com/bundle/Cray_Fortran_Reference_Manual_S-3901_11-0/page/OpenMP_Overview.html
https://pubs.cray.com/bundle/Cray_Fortran_Reference_Manual_S-3901_11-0/page/OpenMP_Overview.html
https://doi.org/10.1145/77626.79170

OpenMP target task: tasking and target offloading on heterogeneous systems 11

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Stevens, D., Zounon, M., Relton, S.D.: PLASMA: parallel linear algebra software
for multicore using openmp. ACM Trans. Math. Softw. 45(2), 16:1-16:35 (2019).
https://doi.org/10.1145/3264491

Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Mar-
torell, X., Planas, J.: Ompss: a proposal for programming heteroge-
neous multi-core architectures. Parallel Process. Lett. 21(2), 173-193 (2011).
https://doi.org/10.1142/S0129626411000151

GNU: Gee openmp (Jun 2021), https://gcc.gnu.org/wiki/0ffloading

. Haidar, A., Ltaief, H., Dongarra, J.J.: Parallel reduction to condensed forms

for symmetric eigenvalue problems using aggregated fine-grained and memory-
aware kernels. In: Lathrop, S.A., Costa, J., Kramer, W. (eds.) Confer-
ence on High Performance Computing Networking, Storage and Analysis, SC
2011, Seattle, WA, USA, November 12-18, 2011. pp. 8:1-8:11. ACM (2011).
https://doi.org/10.1145/2063384.2063394

IBM: Xle openmp (Jun 2021), https://www.
ibm.com/docs/en/x1-c-and-cpp-linux/13.1.67topic=
gpus-programming-openmp-device-constructs

Intel: Oneapi (Jun 2021), https://software.intel.com/content/www/us/en/
develop/documentation/get-started-with-cpp-fortran-compiler-openmp/
top.html

LLVM: Openmp (Jun 2021), https://1llvm.org/docs/AMDGPUUsage.html#
target-triples

Nath, R., Tomov, S., Dongarra, J.J.: An improved magma gemm for fermi graph-
ics processing units. Int. J. High Perform. Comput. Appl. 24(4), 511-515 (2010).
https://doi.org/10.1177/1094342010385729

NVIDIA: Nvce openmp (Jun 2021), https://docs.nvidia.com/hpc-sdk/
compilers/hpc-compilers-user-guide/index.html#openmp-use

Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Self-adaptive ompss tasks in het-
erogeneous environments. In: 27th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013. pp.
138-149. IEEE Computer Society (2013). https://doi.org/10.1109/IPDPS.2013.53
Valero-Lara, P., Catalan, S., Martorell, X., Labarta, J.: BLAS-3 op-
timized by ompss regions (lass library). In: 27th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing,
PDP 2019, Pavia, Italy, February 13-15, 2019. pp. 25-32. IEEE (2019).
https://doi.org/10.1109/EMPDP.2019.8671545

Valero-Lara, P., Cataldn, S., Martorell, X., Usui, T., Labarta, J.: slass: A fully
automatic auto-tuned linear algebra library based on openmp extensions imple-
mented in ompss (lass library). J. Parallel Distributed Comput. 138, 153-171
(2020). https://doi.org/10.1016/j.jpdc.2019.12.002

Valero-Lara, P., Sirvent, R., Pefia, A.J., Labarta, J.: Mpi4+openmp tasking scala-
bility for multi-morphology simulations of the human brain. Parallel Comput. 84,
50-61 (2019). https://doi.org/10.1016/j.parco.2019.03.006

Valero-Lara, P., Sirvent, R., Pena, A.J., Martorell, X., Labarta, J.: Mpi+openmp
tasking scalability for the simulation of the human brain: Human brain
project. In: Proceedings of the 25th European MPI Users’ Group Meet-
ing, Barcelona, Spain, September 23-26, 2018. pp. 5:1-5:8. ACM (2018).
https://doi.org/10.1145/3236367.3236373


https://doi.org/10.1145/3264491
https://doi.org/10.1142/S0129626411000151
https://gcc.gnu.org/wiki/Offloading
https://doi.org/10.1145/2063384.2063394
https://www.ibm.com/docs/en/xl-c-and-cpp-linux/13.1.6?topic=gpus-programming-openmp-device-constructs
https://www.ibm.com/docs/en/xl-c-and-cpp-linux/13.1.6?topic=gpus-programming-openmp-device-constructs
https://www.ibm.com/docs/en/xl-c-and-cpp-linux/13.1.6?topic=gpus-programming-openmp-device-constructs
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://llvm.org/docs/AMDGPUUsage.html#target-triples
https://llvm.org/docs/AMDGPUUsage.html#target-triples
https://doi.org/10.1177/1094342010385729
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://doi.org/10.1109/IPDPS.2013.53
https://doi.org/10.1109/EMPDP.2019.8671545
https://doi.org/10.1016/j.jpdc.2019.12.002
https://doi.org/10.1016/j.parco.2019.03.006
https://doi.org/10.1145/3236367.3236373

	OpenMP target task: tasking and target offloading on heterogeneous systems 

