
SANDIA REPORT
SAND2022-11725
Unclassified Unlimited Release
Printed September 1, 2022

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Sierra/SolidMechanics 5.10
Theory Manual
SIERRA Solid Mechanics Team
Computational Solid Mechanics and Structural Dynamics Department
Engineering Sciences Center

SAND2022-11725



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



ABSTRACT

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM
code. This manuscript serves as an ideal starting point for understanding the theoretical
foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged
to explore the many references to scientific articles and textbooks contained in this manual. It is
important to point out that some capabilities are still in development and may not be presented in
this document. Further updates to this manuscript will be made as these capabilities come closer
to production level.
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1. NONLINEAR BEHAVIOR

1.1. Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by surveying some
frequently encountered sources of nonlinearity in engineering mechanics. This will be done in a
rather elementary way, by discussing perhaps the simplest structural idealization, the truss
member, which is assumed to transmit loads in the axial direction only. By introducing various
nonlinearities into this system one at a time, we will motivate the more general discussion of
nonlinear continuum mechanics, constitutive modeling, and numerical treatments to follow. This
model system will serve as a template throughout the text as new continuum mechanical and
computational ideas are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary value
problems in solid mechanics. This introduction will be provided by discussing a completely linear
system, namely linear elastic behavior in a continuum subject to infinitesimal displacements. This
treatment will include presentation of the relevant field equations, boundary conditions, and initial
conditions, encompassing both dynamic and quasistatic problems in the discussion. Also featured
is a brief discussion of the weak or integral form of the governing equations, providing a starting
point for application of the finite element method. Examination of these aspects of problem
formulation in the comparatively simple setting of linear elasticity allows one to concentrate on
the ideas and concepts involved in problem description without the need for an overly
burdensome notational structure.

In anticipation of nonlinear solid mechanics applications, however, we will find it necessary to
expand this notational framework so that large deformation of solids can be accommodated.
Fortunately, provided certain interpretations are kept in mind, the form of the governing equations
is largely unchanged by the generalization of the linear elastic system. This chapter therefore
provides an introduction to how this generalization can be made. However, it will be seen that the
continuum description and constitutive modeling of solids undergoing large deformations are
complex topics that should be understood in detail before formulating and implementing
numerical strategies. The closely related topics of nonlinear continuum mechanics and
constitutive modeling will therefore be the subjects of subsequent chapters, followed by
significant discussions of numerical strategies.

We conclude with a short list of references the reader may find useful as background material.
Throughout the text, we assume little or no familiarity with either the finite element method or
nonlinear solid mechanics, but we do assume a basic level of familiarity with the mechanics of
materials, linear continuum mechanics, and linear elasticity. The last section of this chapter
provides some basic references in these areas for those wishing to fill gaps in knowledge.
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1.2. Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematically in
Figure 1-1. We can think of this member as a straight bar of material, whose transverse
dimensions are small compared to its overall length, and which can only transmit loads in the
axial direction. Real-world examples include taut cables in tension, truss members, and similar
rod-like objects.

Figure 1-1. Axial model problem: schematic and local coordinate system

We index the material with coordinates x with values between 0 and L0. Assuming that all
displacement of the rod occurs in the axial direction, we write this displacement as u(x, t), with t
signifying time. The infinitesimal strain or engineering strain at any point x ∈ (0,L0) is given
by

εE(x, t) =
∂

∂x
u(x, t). (1.1)

The true stress σT at any point in the bar and at any instant is described via

σT (x, t) =
P(x, t)
A(x, t)

, (1.2)

where P is the total axial force acting at location x and A is the current cross-sectional area at that
location. If the cross-sectional area does not change very much as a result of the deformation, it is
appropriate to define the nominal stress or engineering stress as

σE =
P(x, t)
A0(x)

, (1.3)

where A0(x) is the initial cross-sectional area at point x. If the material behaves in a linear elastic
manner then σE and εE are related via

σE = EεE , (1.4)
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where E is the elastic modulus, or Young’s modulus, for the material.

To begin we consider the case of static equilibrium where inertial effects are either negligible or
nonexistent and the response is therefore independent of time. One can in this case suppress the
time argument in Equation (1.2) and Equation (1.4). The balance of linear momentum for the
static case is expressed at each point x by

d
dx

(A0(x)σE(x)) = f (x), (1.5)

where f is the applied external body loading, assumed to be axial, with units of force per unit
length. Substitution of Equation (1.4) into Equation (1.5) gives the following ordinary differential
equation for u(x) on the domain (0,L0):

d
dx

(
EA0

d
dx

(u)
)

= f (x). (1.6)

If we assume that the cross-section is uniform so that A0 does not vary with x, and that the
material is homogeneous so that E does not vary throughout the rod, then

EA0
d2

dx2 u(x) = f (x), (1.7)

We note that Equation (1.7) is a linear, second order differential equation for the unknown
displacement field u. In order to pose a mathematical problem that can be uniquely solved it is
necessary to pose two boundary conditions on the unknown u. We will be interested primarily in
two types, corresponding to prescribed displacement and prescribed force (or stress) boundary
conditions. An example of a displacement boundary condition would be

u(0) = ū, (1.8)

while an example of a force boundary condition is

σE(L0) = E
du
dx

(L0) = σ̄, (1.9)

where ū and σ̄ are prescribed values for the displacement and axial stress at the left and right bar
ends, respectively. In mathematics parlance, the boundary condition in Equation (1.8) is called a
Dirichlet boundary condition while the boundary condition represented by Equation (1.9) is a
Neumann boundary condition. Dirichlet boundary conditions involve the unknown independent
variable itself, while Neumann boundary conditions are expressed in terms of its derivatives.

Virtually any combination of such boundary conditions can be applied to our problem, but only
one boundary condition (either a Neumann or Dirichlet condition) can be applied at each
endpoint. In the case where Neumann (stress) conditions are applied at both ends of the bar, the
solution u(x) is only determinable up to an arbitrary constant (this fact can be verified by applying
separation of variables to Equation (1.7)).

We now consider a particular case of this linear problem that will be useful in considering some
of the various nonlinearities to be discussed below. In particular, suppose f = 0 on the domain
(0,L0), and furthermore consider the boundary conditions

u = 0 at x = 0, (1.10)

15



and

σE =
Fext

A0
at x = L, (1.11)

where Fext is an applied force on the right end of the rod.

In this case, examination of Equation (1.5) yields

A0
d
dx

(σE(x)) = 0, (1.12)

meaning that σE does not vary along the length of the rod. Since σE is proportional to εE (see
Equation (1.4)), the strain must also be a constant value along the rod length.

Finally, in view of Equation (1.1) we conclude that u(x) must vary linearly with x. In other words,
we know that the solution u(x) must take the form

u(x) = u(0) +δ
( x

L

)
= δ
( x

L

)
, (1.13)

where δ is the elongation, or difference between the left and right end displacement. The problem
therefore reduces to finding the elongation produced by the applied force Fext. This problem is
trivially solved and leads to the familiar linear relationship between Fext and δ:

EA0

L0
δ = Fext; (1.14)

in other words, we have a simple linear spring with stiffness EA0/L0. After solving for δ one may
merely substitute Equation (1.13) to obtain the desired expression for u(x).
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1.3. Material Nonlinearity

We examine the case of a material nonlinearity by replacing Equation (1.4) with generic
relationship between σE and εE ,

σE = σ̂(εE), (1.15)

where σ̂ is a smooth and generally nonlinear function, see Figure (1-2).

Figure 1-2. Schematic of a nonlinear one-dimensional stress-strain relation

We make few restrictions on the specific form of σ̂, other than to assume that d
dεE
σ̂ > 0 for all

values of εE . If we retain the assumption that f = 0 and impose boundary conditions
Equation (1.10) and Equation (1.11) then Equation (1.12) is still valid, i.e.,

σE =
Fext

A0
(1.16)

throughout the rod. Furthermore, since we assume that a one-to-one relation exists between σE
and εE , we conclude that, just as in the linear material case, the strain is a constant value in the rod
given by

εE =
δ

L0
. (1.17)

We can solve the problem by finding δ as before, but now we must solve the nonlinear equation

A0σ̂

(
δ

L0

)
= Fext. (1.18)

We can express Equation (1.18) as an equation for the displacement at the right end which we
denote as dL = u(L). We can write

N (d0) = Fext, (1.19)

17



where N (d0) is a nonlinear function of the unknown dL defined in this case as

N (d0) = A0σ̂

(
dL

L0

)
. (1.20)

In general, Equation (1.20) will not have a closed-form solution and some sort of iterative
procedure is necessary. Nonlinear equation solving is discussed at length in Chapter 13. Here we
resort to one of the more recognized and widely-used procedures, Newton-Raphson iteration. In
this method one introduces a set of indices k corresponding to the iterations, and given a current
iterate dk

L, a first-order Taylor series expansion of Equation (1.20) is utilized to generate the next
iterate dk+1

L via

0 = Fext −N
(
dk+1

L
)
≈ Fext −

(
N
(
dk

L
)

+
d

ddL
N
(
dk

L
)

∆dL

)
, (1.21)

where
dk+1

L = dk
L +∆dL. (1.22)

Equation (1.21) can be expressed more compactly as

K
(
dk

L
)

∆dL = R
(
dk

L
)
, (1.23)

where R
(
dk

L
)
, the residual or out-of-balance force, is given by

R
(
dk

L
)

:= Fext −N
(
dk

L
)
, (1.24)

and K
(
dk

L
)
, the incremental or tangent stiffness, is written as

K
(
dk

L
)

:=
d

ddL
N
(
dk

L
)
. (1.25)

The Newton-Raphson procedure is then carried out by recursively solving Equation (1.23) and
Equation (1.22).
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1.4. Geometric Nonlinearity

Geometric nonlinearities are induced by nonlinearities in the kinematic description of the
system at hand. We will identify and work with several nonlinearities of this general type in great
detail in Chapters (4), 5, and 6, but to begin we consider two particular cases in the context of our
simple model problem.

The first type of nonlinearity we consider is introduced by the use of nonlinear strain and stress
measures in definition of the stress-strain relation. As an example, let us consider alternatives to
Equation (1.1) and Equation (1.3), which defined the engineering stain εE and engineering stress
σE that we have utilized to this point. When used in our model problem with f = 0 and boundary
conditions Equation (1.10) and Equation (1.11), we have seen that the engineering strain does not
vary over the rod’s length, having a constant value δ/L0. For this strain measure to be appropriate,
the deformation δ should be infinitesimal. In the presence of larger deformations, the true strain
or logarithmic strain is often used,

εT =

∫ L

L0

dγ
γ

= log
(

L
L0

)
= log(1 + εE) . (1.26)

Similarly, if the cross-sectional area A changes appreciably during the process, it is likely that the
engineering stress σE should be replaced by the true stress σT defined in Equation (1.2). In the
case of our model problem, this would imply

σT =
Fext

A
, (1.27)

where A is to be interpreted as the cross-sectional area in the final (deformed) configuration.

Relating this area to the elongation δ requires a constitutive assumption to be made. For example,
if we assume the rod consists of an elastic material, we could approximate this variation by
considering the area to vary according to Poisson’s effect. This would require that for each
differential increment dεT in the axial true strain, each lateral dimension should change by a factor
of (1− νdεT ), where ν is Poisson’s ratio for the material.

At a given instant of the loading process, therefore, an incremental change in the area A can be
approximated via

A + dA = (1− νdεT )2 A
≈ (1−2νdεT ) A. (1.28)

Equation (1.28) implies that

1
A

dA = −2νdεT

= −2ν
dεT

dL
dL

= −2ν
(

1
L

)
dL. (1.29)
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Integrating Equation (1.29) between the initial and the final configurations gives

A = A0

(
L0

L

)2ν

= A0

(
L0

L0 +δ

)2ν

. (1.30)

If we assume Hooke’s Law,
σT = EεT , (1.31)

we can use Equation (1.26), Equation (1.27), and Equation (1.30) to conclude that

EA0 log
(

L0 +δ

L0

)(
L0

L0 +δ

)2ν

= Fext, (1.32)

which is a nonlinear equation governing the elongation δ. Note that this nonlinearity is not caused
by any sort of nonlinear stress-strain relation, but instead results from the observation that the
amount of deformation may not be small, necessitating more general representations of stress and
strain.

The second sort of nonlinearity we wish to consider is that caused by large superimposed rigid
body rotations and translations that introduce nonlinearities into many problems even when the
strains in the material are well-approximated by infinitesimal measures. Toward this end we refer
to Figure 1-3, in which we embed our one-dimensional truss element in a two-dimensional frame.
We locate one end of the rod at the origin and consider this end to be pinned so that it is free to
rotate but not translate. The other end of the rod, initially located at coordinates

(
x0

1, x0
2
)
, is

subjected to a (vector valued) force Fext, which need not be directed along the axis of the rod.

Figure 1-3. Model problem with infinitesimal motions superposed on large rigid
body motions.

We note that under the restriction of small motions this problem is ill-posed because the rod is
incapable of transmitting anything but axial force (Fext would need to act in the axial direction).
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However, in the current context we allow unlimited rotation with the result that the rod will rotate
until it aligns with Fext in its equilibrium condition. In fact this observation allows us to guess the
solution to the problem. Since we assume that the axial response of the rod is completely linear,
we may deduce that the final elongation is given by

δ =
L0‖Fext‖

EA0
, (1.33)

where ‖Fext‖ denotes the Euclidean length of the vector Fext. The final orientation of the rod must
coincide with the direction Fext, so we can write the final position of the end of the rod, using the
coordinates

(
x f

1 , x
f
2

)
, as [

x f
1

x f
2

]
=

L0

‖Fext‖

(
1 +
‖Fext‖

EA0

)[
Fext

1
Fext

2

]
, (1.34)

or, writing the solution in terms of the rod end displacements d1 and d2,[
d1
d2

]
=

L0

‖Fext‖

(
1 +
‖Fext‖

EA0

)[
Fext

1
Fext

2

]
−

[
x0

1
x0

2

]
. (1.35)

It is instructive to proceed as though we do not know the solution summarized in Equation (1.35)
and formulate the equilibrium equations governing d1 and d2.

If we observe that the elongation δ of the rod can be written as

δ =

√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2
− L0, (1.36)

then Equation (1.33) gives the relationship between ‖Fext‖ and the unknown displacements.
Furthermore, as noted above, the direction of Fext is given by

Fext

‖Fext‖
=

1√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2

[
d1 + x0

1
d2 + x0

2

]
. (1.37)

Combining these facts gives the equation that governs d1 and d2,

[
Fext

1
Fext

2

]
= EA0

√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2
−L0

L0

√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2

[
d1 + x0

1
d2 + x0

2

]
. (1.38)

The reader may wish to verify this equation by substituting the solution Equation (1.35) into
Equation (1.38).

Equation (1.38) is a nonlinear, vector-valued equation for the unknowns d1 and d2. Recalling the
generic form for nonlinear equations we introduced in the one dimensional case in
Equation (1.19), we could write this generically as

N(d) = Fext, (1.39)
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where

d =

[
d1
d2

]
(1.40)

and

N(d) := EA0

√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2
−L0

L0

√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2

[
d1 + x0

1
d2 + x0

2

]
. (1.41)

Just as was done in the last section for the one degree of freedom case, we could introduce a
Newton-Raphson strategy to solve Equation (1.39) via

K(dk)∆d = R(dk) = Fext −N(dk), (1.42)

and
dk+1 = dk +∆d, (1.43)

where

K(dk) :=
∂N
∂d

(dk) =


∂N1
∂d1

∂N1
∂d2

∂N2
∂d1

∂N2
∂d2


d=dk

(1.44)

Carrying out the calculation of K(dk) for the specific N(d) at hand gives

K(dk) = Kdirect(dk) + Kgeom(dk). (1.45)

Kdirect(dk) is given by

Kdirect(dk) :=
EA0√(

d1 + x0
1
)2

+
(
d2 + x0

2
)2

[ (
dk

1 + x0
1
)2 (

dk
1 + x0

1
)(

dk
2 + x0

2
)(

dk
1 + x0

1
)(

dk
2 + x0

2
) (

dk
2 + x0

2
)2

]
(1.46)

and Kgeom(dk) by

Kgeom(dk) := EA0

 1
L0
−

1√(
d1 + x0

1
)2

+
(
d2 + x0

2
)2

[1 0
0 1

]
. (1.47)

As the notation suggests, Kdirect is sometimes referred to as the direct stiffness, or that part of the
stiffness emanating directly from the material stiffness of the system at hand. Kgeom, on the other
hand, is sometimes called the geometric stiffness, and arises not from inherent stiffness of the
material but by virtue of the large motions in the problem.

To gain insight into these issues in the current context, consider the case where ‖dk‖ � ‖x0‖, the
case where the motions are small in comparison to the rod’s length. In this case we find

Kgeom(dk)→ 0, (1.48)

and

Kdirect(dk)→
EA0

L0

[
cosθcosθ cosθ sinθ
cosθ sinθ cosθcosθ

]
, (1.49)
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where θ = arctan
(

x0
2

x0
1

)
is the angle between the original axis of the rod and the positive x-axis. In

other words, when the motions become small, the geometric stiffness vanishes and the direct
stiffness reduces to the familiar stiffness matrix associated with a two-dimensional truss
member.
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1.5. Contact Nonlinearity

A final type of nonlinearity we wish to consider is that created due to contact with another
deformable or rigid body. As a simple model problem for this case we refer to Figure 1-4, where
we consider a prescribed motion d̄ of the left end of our one-dimensional rod and solve for the
static equilibrium of the unknown displacement d of the right end, subject to the constraint

g(d) = d−g0 ≤ 0, (1.50)

where g0 is the initial separation, or gap, between the right end of the rod and the rigid obstacle.

Figure 1-4. Schematic of the rigid obstacle problem.

Even if we assume that the motions are small and the material response of the rod is elastic, the
equations governing the response of our rod are nonlinear. To see this, let us choose d as our
unknown and construct the following residual R(d) for our system:

R(d) =
EA0

L0
(d− d̄) + Fc, (1.51)

Here Fc, the contact force between the obstacle and the rod (assumed positive in compression), is
subject to the constraints

Fc ≥ 0; g(d) ≤ 0 and Fcg(d) = 0 . (1.52)

Equations (1.52) are called Kuhn-Tucker complementary conditions in mathematical parlance
and physically require that the contact force be compressive, that the rod end not penetrate the
obstacle, and that the contact force only be nonzero when g = 0, i.e. when contact between the rod
and obstacle occurs. In fact Fc is a Lagrange multiplier in this problem, enforcing the kinematic
constraint Equation (1.50). We see that the condition operating on the right end of the bar is
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neither a Dirichlet nor a Neumann boundary condition; in fact, both the stress and the
displacement at this point are unknown but are related to each other through the constraints
expressed in Equations (1.52).

Plots of the residual defined by Equations (1.51) and (1.52) are given in Figure 1-5 for the two
distinct cases of interest: where contact does not occur (when d̄ < g0) and where contact does
occur (when d̄ ≥ g0). The solutions (i.e. the zeros of R) are readily apparent. When no contact
occurs d = d̄, while in the case of contact d = g0. The internal stresses generated in the bar are
then readily deduced.

One may note from Figure 1-5 some important practical features of this problem. First, in both
cases the admissible region for d is restricted to be less than g0. Second, at the value d = g0, each
diagram shows the residual be multiple valued, which is a direct consequence of the fact that in
this condition (i.e., where g = 0), Fc can be any positive number.

Figure 1-5. Plots of residuals verses displacement for the rigid obstacle problem:
(a) the case where d̄ < g0 (no contact); (b) the case where d̄ ≥ g0.

Finally, although the solution to our simple model problem is readily guessed, we can see from
both cases that the plot of R versus d is only piecewise linear; the kink in each diagram indicates
the fact that a finite tangent stiffness operates when contact is not active, changing to an infinite
effective stiffness imposed by Equations (1.52) when contact between the rod and obstacle is
detected. This contact detection therefore becomes an important feature in general strategies for
contact problems, and introduces both nonlinearities and non smoothness into the global
equations as this rather simple example demonstrates.

The books [1, 2, 3, 4, 5, 6, 7] are suggested for those readers wishing to reinforce their knowledge
of linear elasticity, elementary continuum mechanics, and/or fundamentals of solid mechanics.
They are presented in alphabetical order, with no other significance to be attached to the order of
presentation.
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2. LINEAR ELASTIC INITIAL/BOUNDARY VALUE PROBLEM

2.1. Basic Equations of Linear Elasticity

Having reviewed some relevant nonlinearities in the context of a simple structural element in
Chapter 1, let us begin to generalize our problem description to encompass a larger group of
continuous bodies. We begin this development by first reviewing the basic equations of linear
elasticity, where we assume small motions and linear material behavior. This discussion will
provide the basis for a more general notational framework in the next section, where we will
remove the kinematic restriction to small motions and also allow the material to behave in an
inelastic manner.

The notation we will use in this section is summarized in Figure 2-1, where we have depicted a
solid body positioned in the three dimensional Euclidean space, or R3. The set of spatial points x
defining the body is denoted by Ω, and we consider the boundary ∂Ω to be subdivided into two
regions Γu and Γσ, where Dirichlet and Neumann boundary conditions will be specified as
discussed below. We assume that these regions obey the following:

Γu∪Γσ = ∂Ω

Γu∩Γσ = ∅.
(2.1)

The unknown, or independent, variable in this problem is u, the vector-valued displacement
which in general depends upon x ∈Ω and time t.
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Figure 2-1. Notation for the linear elastic initial/boundary value problem
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2.2. Equations of Motion

At any point Ω the following statement of local linear momentum balance must hold:

∇ ·T + f = ρ
∂2u
∂t2

. (2.2)

Note that ∇ ·T denotes the divergence operator applied to T, the Cauchy stress tensor. The vector
f denotes the distributed body force in Ω, with units of force per volume, and ρ denotes the mass
density, which need not be uniform. Equation (2.2) represents the balance of linear momentum in
direct notation. Balance of angular momentum is enforced within the domain by requiring that
the Cauchy stress tensor is symmetric. We will frequently employ index notation in the work that
follows. Toward that end, Equation (2.2) can be expressed as

Ti j, j + fi = ρ
∂2ui

∂t2
, (2.3)

where indices i and j run between 1 and 3 (the spatial directions), and unless otherwise indicated,
repeated indices within a term of an expression imply a summation over that index. For
example,

Ti j, j =

3∑
j=1

∂Ti j

∂x j
. (2.4)

The notation β, j indicates partial differentiation with respect to x j.

As indicated above the independent variables are ui, so it is necessary to specify the relation
between the displacements and the Cauchy stress. In linear elasticity this is accomplished by two
additional equations. The first is the linear strain-displacement relation

εi j = u(i, j) =
1
2

(ui, j + u j,i), (2.5)

where εi j is the infinitesimal strain equal to the symmetric part of the displacement gradient
denoted by u(i, j). The second equation is the linear constitutive relation between Ti j and εi j,
which is normally written

Ti j = Ci jklεkl. (2.6)

Note that Ci jkl is the fourth-order elasticity tensor, to be discussed further below.

Equation (2.5) and Equation (2.6) can also be written in direct notation as

εεε = ∇su =
1
2
(
∇u +∇uT) , (2.7)

where ∇s denotes the symmetric gradient operator defined by ∇s� = 1/2
(
∇�+∇�T

)
, and

T = C : εεε, (2.8)

where the colon indicates double contraction of the fourth-order tensor C with the second-order
tensor εεε.
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The fourth-order elasticity tensor C is ordinarily assumed to possess a number of symmetries,
which greatly reduces the number of independent components that describe it. It possesses major
symmetry, which means Ci jkl = Ckli j, and it also possesses minor symmetries, meaning for
example that Ci jkl = C jikl = C jilk = Ci jlk. Another important property of the elasticity tensor is
positive definiteness, implying in this context that

Ai jCi jklAkl > 0 for all symmetric tensors A (2.9)
and Ai jCi jklAkl = 0 iff A = 0. (2.10)

In the most general case, assuming the aforementioned symmetries and no others, the elasticity
tensor has 21 independent components. Various material symmetries reduce the number greatly,
the most specific case being an isotropic material possessing rotational symmetry in all
directions. In this case only two independent elastic constants are required to specify C, which
under these circumstances can be written as

Ci jkl = λδi jδkl +µ
[
δikδ jl +δilδ jk

]
, (2.11)

where δi j, the Kronecker delta, satisfies

δi j =

{
1 if i = j
0 otherwise,

(2.12)

and λ and µ denote the Lamé parameters for the material. These can be written in terms of the
more familiar Young’s (i.e., elastic) modulus and Poisson’s ratio via

λ =
Eν

(1 + ν)(1−2ν)
(2.13)

µ =
E

2(1 + ν)
. (2.14)

The quantity µ is also known as the shear modulus for the material.

Substitution of Equation (2.7) and Equation (2.8) into Equation (2.2) gives a partial differential
equation for the vector-valued unknown displacement field u. Full specification of the problem
with suitable boundary and initial conditions is discussed next.
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2.3. Boundary and Initial Conditions

Paralleling earlier discussion of the one-dimensional example, we will consider the possibility of
two types of boundary conditions, Dirichlet and Neumann. Dirichlet boundary conditions will be
imposed on the region Γu in Figure 2-1 as

u(x, t) = ū(x, t) ∀x ∈ Γu, t ∈ (0,T ). (2.15)

Note that ū(x, t) denotes a prescribed displacement vector depending on spatial position and time.
The simplest and perhaps most common example of such a boundary condition would be a fixed
condition, which if imposed throughout the time interval of interest (0,T ) and for all of Γu would
imply ū(x, t) = 0.

The other type of boundary condition is a Neumann, or traction, boundary condition. To write
such a condition we must first define the concept of traction on a surface. If we use n to denote
the outward normal to the surface Γσ at a point x ∈ Γσ, the traction vector t at x is defined via

t = T ·n, (2.16)

or, in index notation,
ti = Ti jn j. (2.17)

Physically this vector represents a force per unit area acting on the external surface at x. A
Neumann boundary condition is then written in the current notation as

T(x, t) ·n(x) = t̄(x, t) ∀x ∈ Γσ, t ∈ (0,T ). (2.18)

Note that t̄(x, t) is the prescribed traction vector field on Γσ throughout the time interval of interest
(0,T ). One could identify several examples of such a boundary condition. An unfixed surface free
of any external force would be described by t̄ = 0. A surface subject to a uniform pressure
loading, p, on the other hand, could be described by setting t̄(x, t) = −pn(x), where we assume a
compressive pressure to be positive.

With these definitions in hand, we recall the restrictions in Equation (2.1) on Γu and Γσ and
physically interpret them as follows: 1) one must specify either a traction or a displacement
boundary condition at every point of ∂Ω; and 2) at each point of ∂Ω one may not specify both the
traction and the displacement but must specify one or the other.

In fact these conditions are slightly more stringent than required. The problem remains
well-posed if, for each component direction i, we specify either the traction component t̄i or the
displacement component ūi at each point x ∈ ∂Ω, as long as for a given spatial direction we do not
attempt to specify both. In other words, we may specify a displacement boundary condition in
one direction at a point while specifying a traction boundary condition in the other. An example
of such a case would be the common “roller” boundary condition, where a point is free to move in
a traction-free manner to an interface (i.e., a traction boundary condition) while being constrained
from movement in a direction normal to an interface (i.e., a displacement boundary condition). Of
course a multitude of other boundary condition permutations could be identified. Thus, while we
choose a rather simple boundary condition restriction (summarized by Equation (2.1)) for
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notational simplicity, it is important to realize that many other possibilities exist and require only
minor alterations of the methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the specification of
initial conditions. One may note that our partial differential equation (Equation (2.2)) is second
order in time; accordingly, two initial conditions are required. In the current context these are the
initial conditions on the displacement u and the velocity u̇ and can be rather straightforwardly
specified as

u(x,0) = u0(x) on Ω (2.19)
∂u
∂t

(x,0) = v0(x) on Ω, (2.20)

where u0 and v0 are the prescribed initial displacement and velocity fields, respectively.
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2.4. Problem Specification

We now collect the equations and conditions of the past two sections into a single problem
statement for the linear elastic system shown in Figure 2-1. For the elastodynamic case, this
problem falls into the category of an initial/boundary value problem, since both types of
conditions are included in its definition. Our problem is formally stated as follows:

Given the boundary conditions t̄ on Γσ× (0,T ) and ū on Γu× (0,T ), the initial conditions u0 and
v0 on Ω, and the distributed body force f on Ω× (0,T ), find the displacement field u on Ω× (0,T )
such that

∇ ·T + f = ρ
∂2u
∂t2

on Ω× (0,T ), (2.21)

u(x, t) = ū(x, t) on Γu× (0,T ), (2.22)
t(x, t) = t̄(x, t) on Γσ× (0,T ), (2.23)

u(x,0) = u0(x) on Ω, (2.24)
∂u
∂t

(x,0) = v0(x) on Ω, (2.25)

where the Cauchy stress, T, is given by

T = C : (∇su). (2.26)

Equations (2.21) through (2.26) constitute a linear hyperbolic initial/boundary value problem for
the independent variable u.
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2.5. The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem specification will
change if inertial effects are negligible in the equilibrium equations. This special case is often
referred to as the quasistatic assumption and considerably simplifies specification of the
problem.

Simply stated, the quasistatic assumption removes the second temporal derivative of u, i.e.,
acceleration, from Equation (2.21), thereby also eliminating the need for initial conditions
(Equations (2.24) and (2.25)). Such an approximation is appropriate when the loadings do not
vary with time or when they vary over time scales much longer than the periods associated with
the fundamental structural modes of Ω.

It is convenient, however, to maintain time in our description of the problem for two reasons: 1)
the loadings t̄ and f and the displacement condition ū may still vary with time; and 2) when we
consider more general classes of constitutive equations, we may wish to allow time dependence in
the stress/strain response, e.g., in creep plasticity. Accordingly, we state below a boundary value
problem appropriate for quasistatic response of a linear elastic system.

Given the boundary conditions t̄ on Γσ× (0,T ), ū on Γu× (0,T ), and the distributed body force f
on Ω× (0,T ), find the displacement field u on Ω× (0,T ) such that

∇ ·T + f = 0 on Ω× (0,T ), (2.27)
u(x, t) = ū(x, t) on Γu× (0,T ), (2.28)
t(x, t) = t̄(x, t) on Γσ× (0,T ), (2.29)

where the Cauchy stress, T, is given by

T = C : (∇su). (2.30)

We note in that given a time t ∈ (0,T ), Equations (2.27) through (2.30) constitute a linear elliptic
boundary value problem governing the independent variable u.
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3. WEAK FORMS

3.1. Introduction

A key feature of the finite element method is the form of the boundary value problem (or
initial/boundary value problem in the case of dynamics) that is discretized. More specifically, the
finite element method is one of a large number of variational methods that rely on the
approximation of integral forms of the governing equations. In this chapter we briefly examine
how such integral (alternatively, weak or variational) forms are constructed for the linear elastic
system we introduced in Chapter 2.
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3.2. Quasistatic Case

Consider the quasistatic case first, we recall Equations (2.27) – (2.30) and explore an alternative
manner in which the conditions can be stated. We consider a collection of vector-valued functions
w, which we call weighting functions for reasons that will soon be clear. We require that these
functions w : Ω̄→ R3 satisfy

w = 0 on Γu. (3.1)

Furthermore it is assumed that these functions are sufficiently smooth that all necessary partial
derivatives can be computed. Suppose we have the solution u of Equations (2.27) and (2.28). We
can then take any smooth function w satisfying Equation (3.1) and compute its dot product with
Equation (2.27), which must produce

w · (∇ ·T + f) = 0 on Ω (3.2)

at each time t ∈ (0,T ). We can then integrate Equation (3.2) over Ω to obtain∫
Ω

w · (∇ ·T + f)dΩ = 0. (3.3)

Equation (3.3) can be manipulated further by noting that

w · (∇ ·T) = ∇ · (Tw)− (∇w) : T (3.4)

(product rule of differentiation), and by also taking advantage of the divergence theorem from
multivariate calculus: ∫

Ω

∇ · (Tw)dΩ =

∫
∂Ω

(n ·Tw)dΓ. (3.5)

Note that n is the outward normal directed normal on ∂Ω and dΓ is a differential area of this
surface. Use of Equation (3.4) and Equation (3.5) in Equation (3.3) and rearranging gives∫

Ω

(∇w) : TdΩ =

∫
Ω

w · f dΩ+

∫
∂Ω

(n ·Tw)dΓ. (3.6)

Now, taking advantage of the symmetry of T and noting, from Equation (2.16), that the surface
traction t equals Tn, we can write∫

∂Ω

(n ·Tw)dΓ =

∫
∂Ω

(w ·Tn)dΓ =

∫
∂Ω

w · tdΓ. (3.7)

We now recall the restrictions in Equation (2.1), which tell us that ∂Ω is the union of Γu and Γσ.
Since by definition w = 0 on Γu, we can write∫

∂Ω

w · tdΓ =

∫
Γu

w · tdΓ+

∫
Γσ

w · tdΓ =

∫
Γσ

w · t̄dΓ (3.8)

where the last equality incorporates the boundary condition t = t̄ on Γσ. We collect these
calculations to conclude that∫

Ω

(∇w) : TdΩ =

∫
Ω

w · f dΩ+

∫
Γσ

w · t̄dΓ, (3.9)
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which must hold for the solution u of Equations (2.27) – (2.30) for any w satisfying condition
Equation (3.1).

To complete our alternative statement of the boundary value problem, the concepts of solution
and variational spaces need to be introduced. We define the solution space St corresponding to
time t via

St = {u |u = ū(t) onΓu, u is smooth} (3.10)

and the weighting spaceW as

W = {w |w = 0 onΓu, w is smooth} . (3.11)

With these two collections of functions in hand, we consider the following alternative statement
of the boundary value problem summarized by Equations (2.27) – (2.30):

Given the boundary conditions t̄ on Γσ× (0,T ), ū on Γu× (0,T ) and the distributed body force f
on Ω× (0,T ), find the u ∈ St for each time t ∈ (0,T ) such that∫

Ω

(∇w) : TdΩ =

∫
Ω

w · f dΩ+

∫
Γσ

w · t̄dΓ (3.12)

for all w ∈W, where St is as defined in Equation (3.10),W is as defined in Equation (3.11), and
the Cauchy stress, T, is given by

T = C : (∇su). (3.13)

This statement of the boundary value problem is often referred to as a weak formulation, since it
explicitly requires only a weighted integral of the governing partial differential equations to be
zero, rather than the differential equation itself.

It should be clear, based upon the above derivation of the weak form, that the solution u of
Equations (2.27) – (2.30), sometimes referred to as the strong form, will satisfy our alternative
statement summarized by Equations (3.12) and (3.13). Less clear is the fact that solutions of the
weak form will satisfy the strong form whenever this formulation admits a solution. Since the
continuity requirements for existence of a strong solution are more stringent than for the
analogous weak formulation (hence the adjective “strong”), equivalence between these two forms
is restricted to the case when both exist, i.e., whenever a solution of the strong form of the
boundary value problem exists, then a weak solution also exists, and these solutions are
identical.

It is important to note that the existence of a solution to the weak form of the boundary value
problem does not necessarily imply existence of a solution to the strong form. The strong form’s
constraints upon solution smoothness imply that for some problems (e.g., point sources that
induce jumps in derivative terms), a weak form might exist, but no strong form can be constructed
without substantially revising some basic principles of differential calculus. So the existence of a
weak solution does not necessarily imply that an identical strong solution exists: only that if a
strong solution can be found, it will be identical to the weak solution.

In practice, the existence of a weak solution in these cases turns out to be one of the most
important advantages of finite element techniques, because the integral formulations that form the
mathematical foundation of finite element approximations permit accurate simulation of
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important problems that are not readily solved via competing differential techniques derived from
strong formulations. Many of the most important problems of computational mechanics (e.g.,
contact, material discontinuity, structural failure) often admit only weak solutions, and that is one
of the main reasons why weak formulations are important in practice.

So the equivalence between strong and weak forms is restricted to those cases where strong
solutions exist, and in that case, the strong solution is identical to the analogous weak solution.
Although not shown here this equivalence can be rigorously established; the interested reader
should consult Reference [1] at the end of this chapter for details. We simply remark in the
present discussion that the equivalent argument depends crucially on the satisfaction of
Equation (3.12) for all w ∈W, with the arbitrariness of w rendering the two statements equivalent
whenever the strong solution exists.

Given the requirement of efficient numerical implementation, we can also remark that
approximate methods will in effect narrow our definitions of the solution and weighting spaces to
finite-dimensional subspaces. Simply stated, this means that rather than including an infinite
number of smooth u and w satisfying the requisite boundary conditions in our problem definition,
we will restrict our attention to some finite number of functions comprising subsets of St and
W.

In so doing we introduce a difference between the solution of our (now approximate) weak form
and the strong form, where the degree of approximation is directly related to the difference
between the full solution and weighting spaces and the subsets of them used in the numerical
procedure. In fact it is this difference that is at the heart of solution verification, an important
activity to ensure that an appropriate subset of spaces (i.e., discretization or mesh refinement) is
chosen. Solution verification as part of the broader question of verification is discussed in the
Solid Mechanics Verification Manual.

Finally, it is worthwhile at this point to make a connection to so-called virtual work methods
which may be more familiar to those versed in linear structural mechanics. In this derivation we
will work in index notation so that the meaning of the direction notation used above can be
reinforced. Accordingly, for a possible solution ui of the governing equations, we write the
expression for the total potential energy of the system,

P(ui) =
1
2

∫
Ω

u(i, j)Ci jklu(k,l)dΩ−

[∫
Ω

ui fi dΩ−

∫
Γσ

uit̄i dΓ

]
. (3.14)

Note that the first term on the right hand side represents the total strain energy associated with ui
and the last two terms represent the potential energy of the applied loadings fi and t̄i. A virtual
work principle for this system simply states that the potential energy defined in Equation (3.14)
should be minimized by the equilibrium solution. Accordingly, let ui now represent the actual
equilibrium solution. We can represent any other kinematically admissible displacement field via
ui + εwi, where ε is a scalar parameter (not necessarily small) and wi is a so-called virtual
displacement, which we assume to obey the boundary conditions outlined in Equation (3.1). This
restriction on the wi causes ui + εwi to satisfy the Dirichlet boundary conditions (hence the term
kinematically admissible) because the solution ui does. We can write the total energy associated
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with any of these possible solutions via

P(ui + εwi) =
1
2

∫
Ω

(
u(i, j) + εw(i, j)

)
Ci jkl

(
u(k,l) + εw(k,l)

)
dΩ

−

∫
Ω

(ui + εwi) fi dΩ−

∫
Γσ

(ui + εwi) t̄i dΓ. (3.15)

Note that if the potential energy associated with ui is to be lower that that of any other possible
solution ui + εwi, then the derivative of P(ui + εwi) with respect to ε at ε = 0 (i.e., at the solution
ui) should be zero for any wi satisfying the conditions in Equation (3.1), since ui is an extremum
point of the function P. Computing this derivative of Equation (3.15), and setting the result equal
to zero, yields

d
dε

∣∣∣∣
ε=0

P(ui + εwi) =

∫
Ω

w(i, j)Ci jklu(k,l)dΩ−

∫
Ω

wi fi dΩ−

∫
Γσ

wit̄i dΓ = 0 (3.16)

which must hold for all wi satisfying the boundary condition on Γu. Equation (3.16) can be
manipulated further by noting that

w(i, j)Ci jklu(k,l) = w(i, j)Ci jklEkl = w(i, j)Ti j = wi, jTi j. (3.17)

The last equality in Equation (3.17), while perhaps not intuitively obvious, holds because of the
symmetry of Ti j:

w(i, j)Ti j =
1
2

(wi, j + w j,i)Ti j =
1
2

(wi, jTi j + w j,iT ji) = wi, jTi j. (3.18)

Use of Equation (3.17) in Equation (3.16) yields∫
Ω

wi, jTi jdΩ−

∫
Ω

wi fi dΩ−

∫
Γσ

wit̄i dΓ = 0, (3.19)

which is simply the index notation counterpart of Equation (2.27). Summarizing, we see that the
weak or integral form of the governing equations developed previously can be interpreted as a
statement of the principle of minimum potential energy. This alternative viewpoint is the reason
that the weighting functions wi are sometimes called variations or virtual displacements, with the
terminology used often depending upon the mathematical and physical arguments used to develop
the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the presence of an
energy principle is somewhat specific to the case at hand and may be difficult or impossible to
deduce for many of the nonlinear systems to be considered in our later study. For example, many
systems are not conservative, including those featuring inelasticity, so at best our thermodynamic
understanding must be expanded if we insist on formulating such problems in terms of energy
principles. Thus, while the energy interpretation is enlightening for many systems, including
those featuring elastic continuum and/or structural response, insistence on this approach for more
general applications of variational methods can be quite limiting. Conversely, the derivation given
in Equations (3.2) – (3.9) does not depend on the system being conservative, nor even upon the
form of the constitutive equation used. We will exploit the generality of this weighted residual
derivation as we increase the level of nonlinearity and complexity in the chapters to come.
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3.3. Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwardly applied to
dynamic problems. Before examining the dynamic case in detail, whose development parallels
that of quasistatic problems, it is worthwhile to emphasize again the definitions of the weighting
and solution spaces and to highlight the differences between them. Examining the definition of St
in Equation (3.10) and that ofW in Equation (3.11), we see that St depends on t through the
boundary conditions on Γu, whileW is independent of time. We retain these definitions in the
current case and pose the following problem corresponding to the quasistatic system posed
previously:

Given the boundary conditions t̄ on Γσ× (0,T ) and ū on Γu× (0,T ), the initial conditions u0 and
v0 on Ω, and the distributed body force f on Ω× (0,T ), find the u ∈ St for each time t ∈ (0,T ) such
that ∫

Ω

ρw ·
∂2u
∂t2

dΩ+

∫
Ω

(∇w) : TdΩ =

∫
Γ

w · f dΓ+

∫
Γσ

w · t̄dΓ (3.20)

for all w ∈W, where St is as defined in Equation (3.10),W is as defined in Equation (3.11), and
the Cauchy stress, T, is given by

T = C : (∇su). (3.21)

In addition, the solution u is subject to the following conditions at t = 0:∫
Γ

w · (u(0)−u0) dΩ = 0 (3.22)

and ∫
Γ

w ·
(
∂u
∂t

(0)−v0

)
dΩ = 0, (3.23)

both of which must hold for all w ∈W.

The integral form of the dynamic equations given in Equation (3.20) is obtained, just as in the
quasistatic case, by taking the dynamic governing partial differential equation, Equation (2.21),
multiplying it by a weighting function, integrating over the body, and applying integration by
parts to the stress divergence term. The new ingredients in the current specification are the initial
conditions summarized by Equations (3.22) and (3.23), which are simple weighted residual
expressions of the strong form of the initial conditions given in Equation (2.25).

Before leaving this section, we reemphasize the fact that the weighting functions are time
independent while the solution spaces remain time dependent. This fact will have important
consequences later when numerical algorithms are discussed, because we wish to use the same
classes of functions in our discrete representations ofW and St. These discretizations will involve
spatial approximation, which in the case of St will leave the time variable continuous in the
discrete unknowns of the system to be solved.

This semi-discrete approach to transient problems is pervasive in computational mechanics and
has its origin in the difference between the weighting and solution spaces.

The reference for this chapter is [1].
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4. LARGE DEFORMATION FRAMEWORK

4.1. Introduction

In this chapter and the next several chapters we extend our discussion of the linear elastic problem
to accommodate two categories of important nonlinearities: potentially large motions and
deformations, and nonlinear material response. We will do this by introducing a more general
notational framework. While the equations governing large deformation initial/boundary value
problems are similar in form to their counterparts from the small deformation theory just
discussed, a rigorous prescription and understanding of large deformation problems can only be
achieved through a careful examination of the concepts of nonlinear continuum mechanics, which
will be the concern of the next several chapters.

The organization of this material is as follows. This chapter establishes a notational framework
for the generic specification of a nonlinear solid mechanics problem. Chapter 5 and Chapter 6
discuss large deformation kinematics in a general context. Chapter 7 will then discuss the
various measures of stress that are frequently encountered in large deformation analysis. Then,
with these preliminaries in hand, we will be in a position to state relevant balance laws in notation
appropriate for large deformation problems in Chapter 8. Finally, in Chapter 9, we will discuss
the important concept of material frame indifference, which demands that material laws be
unaltered by rigid body motions. We will see that this concept places important restrictions on the
kinematic and stress measures that are suitable for prescription of constitutive laws, providing
important background information for the chapter on material models.
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4.2. Notational Framework

The system we wish to consider is depicted schematically in Figure 4-1. We consider a body,
initially in a location denoted by Ω, undergoing a time dependent motion ϕ that describes its
trajectory through space (assumed here to be R3).

Figure 4-1. Notation for large deformation initial/boundary value problems.

The set Ω is called the reference configuration and can be thought of as consisting of points X
that serve as labels for the material points existing at their respective locations. For this reason,
the coordinates X are often called reference or material coordinates.

We assume, as before, that the surface ∂Ω of Ω can be decomposed into subsets Γσ and Γu
obeying restrictions in Equation (2.1). The general interpretation of these surfaces remains the
same. Traction boundary conditions will be imposed on Γσ and displacement boundary
conditions will be imposed on Γu. Full specification of these boundary conditions must be
deferred, however, until some continuum mechanical preliminaries are discussed.

We have mentioned that the motion ϕ is in general time dependent. In fact, we could write this
fact in mathematical terms as ϕ : Ω̄× (0,T )→ R3. If we fix the time argument of ϕ, we obtain a
configuration mapping ϕt, summarized as ϕt : Ω̄→ R3, which gives us the location of the body
at time t given the reference configuration Ω. Coordinates in the current location ϕ(Ω) of the body
will be denoted by x.

The current location is often called the spatial configuration and the coordinates, x spatial
coordinates. Given a material point X ∈Ω and a configuration mapping ϕt, we may write

x = ϕt(X). (4.1)

A key decision in writing the equations of motion for this system is whether to express the
equations in terms of X ∈Ω or x ∈ ϕt(Ω).
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4.3. Lagrangian and Eulerian Descriptions

The choice of whether to use the reference coordinates X or the spatial coordinates x in the
problem description is generally highly dependent on the physical system to be studied.

For example, suppose we wish to write the equations of motion for a gas flowing through a duct,
or for a fluid flowing through a nozzle. In these cases the physical region of interest (the control
volume bounded by the duct or nozzle) is fixed, and does not depend on the solution or time. It
could also be observed that identification of individual particle trajectories in such problems is
probably not of primary interest, with such quantities as pressure, velocity, and temperature at
particular locations in the flow field being more desirable. In such problems, it is generally most
appropriate to associate field variables and equations with spatial points, or in the current
notation, x. A system described in this manner is said to be utilizing the Eulerian description
and implicitly associates all field variables and equations with spatial points x without specific
regard for the material points X involved in the flow of the problem. Most fluid and gas dynamics
problems are written in this way, as are problems in hydrodynamics and some problems in solid
mechanics involving fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the analogy of
watching an event through a window; the window represents the Eulerian frame and has our
coordinate system attached to it. Particles pass through our field of view, thereby defining a flow,
but we describe this flow from the frame of reference of our window without specific reference to
the particles undergoing the motion we observe.

In most solid mechanics applications, by contrast, the identity of specific material particles is of
central interest in modeling a system. For example, the plastic response of metals is history
dependent, meaning that the current relationship between stress and strain (the material model at
a point in the body depends on the deformation history associated with that material point. To
construct and use such models effectively requires knowledge of the history of individual
particles, or material points, throughout a deformation process. Furthermore, many physical
processes we wish to describe do not lend themselves to an invariant Eulerian frame. In a forging
process, for example, the metal at the end of the procedure occupies a very different region in
space than it did at the outset. In addition, there may be periods of time over which boundary
conditions are applied requiring precise knowledge of the boundary of the region of interest. For
these reasons, as well as others, the predominant approach to solid mechanics systems is to write
all equations in terms of the material coordinates, or to use the Lagrangian frame of reference.

Returning to the notation summarized in Figure 4-1, for a Lagrangian description we associate all
field variables and equations with points X ∈Ω, and keep track of these reference particles
throughout the process. One may note in the last subsection a bias toward this approach already.
We have written the primary unknown in the problem, ϕ, as a function of X ∈Ω and t ∈ (0,T ).
Sierra/SM uses the Lagrangian frame of reference though as we will see next, the spatial frame
is also of great interest to us.
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4.4. Governing Equations in the Spatial Frame

We turn now to the equations governing the motion of a medium. If we adopt for the moment the
spatial frame as our frame of reference, the form of these equations is largely unchanged from the
linear elastic case presented previously (where we explicitly took advantage of the fact that for
linear problems there is no difference between material and spatial descriptions). We fix our
attention on some time t ∈ (0,T ) and consider the current (unknown) location of the body Ω. Over
this region ϕt(Ω), the following conditions must hold:

∇ ·T + f = ρa on ϕt(Ω), (4.2)
ϕt = ϕ̄t on ϕt(Ωu), (4.3)

and
t = t̄ on ϕt(Ωσ), (4.4)

subject to initial conditions at t = 0. Some explanation of these equations is necessary. The
operator ∇ in Equation (4.2) is with respect to spatial coordinates x. The acceleration a is the
acceleration of the particle currently at x written with respect to spatial coordinates, and ϕ̄t is the
prescribed location for the particles on the Dirichlet boundary. We leave the constitutive law
governing T unspecified at this point but remark that in general the stress must depend on ϕt
through appropriate strain/displacement and stress/strain relations.

We see from Equation (4.2) through Equation (4.4) that the equations of motion are easily written
in the form inherited from the kinematically linear case, but that the frame in which this is done,
the spatial frame, is not independent of the unknown field ϕt but relies upon it for its own
definition. Thus, although the equations we now consider are essentially identical in form to those
from linear elasticity, they posses a considerably more complex relationship to the dependent
variable. Rigorous specification of this general boundary value problem requires an in-depth
treatment of the continuum mechanics of large deformation, as will be provided in the next
chapters.

Before leaving this topic, we address an item which frequently causes confusion. Although we
have written the governing equations in Equation (4.2) through Equation (4.4) in terms of the
spatial domain, this does not imply an Eulerian statement of the problem. In fact, if we choose (as
we have done) to consider our dependent variable (in this case ϕt) to be a function of reference
coordinates, the framework we have chosen is inherently Lagrangian. Another way of saying this
is that Equation (4.2) through Equation (4.4) are the Lagrangian equations of motion which have
been converted through a change-of-variables so that they are written in terms of x. In the
remainder of this text, the reader should assume a Lagrangian framework unless otherwise
noted.
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5. DEFORMATION MEASURES

5.1. Deformation Gradient

Furthering our discussion of large deformation solid mechanics, we continue to use the notation
presented in Figure 4-1. We restrict our attention to some time t ∈ (0,T ), and consider the
corresponding configuration mapping ϕt, which can be mathematically represented via
ϕt : Ω̄→ R3. The deformation gradient F is given by the gradient of this transformation,

F =
∂ϕt

∂X
, (5.1)

or in index notation,

FiJ =
∂ϕti

∂XJ
. (5.2)

In Equation (5.2) and throughout this documented unless otherwise noted, lower case indices are
associated with coordinates in the spatial frame and upper case indices with material coordinates.
Repeated indices of either case imply summation.

The deformation gradient is the most basic object used to quantify the local deformation at a point
in a solid. Most kinematic measures and concepts we will discuss rely on it explicitly for their
definition. For example, elementary calculus provides a physical interpretation of the determinant
of F. Consider a cube of material in the reference configuration (see Figure 5-1) whose sides are
assumed to be aligned with the coordinate axes XI , I = 1,2,3. The initial differential volume dV of
this cube is given by

dV = dX1dX2dX3. (5.3)

If we now consider the condition of this cube of material after the deformation ϕt is applied, we
notice that its volume in the current configuration dv is that of the parallelepiped spanned by the
three vectors ϕt(

−−→
dXJ), where the notation

−−→
dXJ is used to indicate a reference vector in coordinate

direction J with magnitude dXJ . This volume can be written in terms of the vector triple
product,

dv = ϕt(
−−→
dX1) ·ϕt(

−−→
dX2) ·ϕt(

−−→
dX3). (5.4)

If we consider any differential vector
−→
dR in the reference configuration, the calculus of

differentials tells us that application of the mapping ϕt will produce a differential vector
−→
dr = ϕt(

−→
dR) whose coordinate are given by

(
−→
dr)i =

∂ϕti

∂XK
(
−→
dR)K . (5.5)
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Figure 5-1. Deformation of a volume element as described by the configuration
mapping ϕt.

Application of this logic to the particular differential vectors
−−→
dRJ leads one to conclude that

(ϕt(
−−→
dXJ))i =


Fi1dX1, J = 1,
Fi2dX2, J = 2,
Fi3dX3, J = 3.

(5.6)

We can write Equation (5.4) in index notation by first noting that the cross product of two vectors
a and b is written as

(a×b)i = ei jka jbk, (5.7)

where ei jk, the permutation symbol, is defined as

ei jk =


1 if (i, j,k) = (1,2,3) or (2,3,1) or (3,1,2),
−1 if (i, j,k) = (3,2,1) or (2,1,3) or (1,3,2),
0 otherwise.

(5.8)

Equation (5.4) can then expressed as

dv = Fi1dX1(ei jkF j2dX2Fk3dX3)
= ei jkFi1F j2Fk3dX1dX2dX3

= det(F)dV,
(5.9)

where we have used Equation (5.3) and the fact that det(F) = ei jkFi1F j2Fk3 (which can be verified
through trial). Introducing the notation J = det(F), we conclude

dv = JdV. (5.10)
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Equation (5.10) tells us that the deformation ϕt converts reference differential volumes dV to
current volumes dv according to the determinant of the deformation gradient. For this mapping to
make physical sense, the current volume dv should be positive which then places a physical
restriction upon the deformation gradient F that must be obeyed point wise throughout the
domain,

J = det(F) = det
(
∂ϕ

∂X

)
> 0. (5.11)

This physical restriction has important mathematical consequences as well. According to the
inverse function theorem of multivariate calculus, a smooth function whose gradient has a
nonzero determinant possesses a smooth and differentiable inverse. Since we have assumed ϕt to
be smooth and physical restrictions demand that J > 0, we can conclude that a function ϕ−1

t exists
and is differentiable; in fact, the gradient of this function is given by

∂ϕ−1
t

∂X
= F−1. (5.12)

We will assume throughout the remainder of our discussion that J > 0, so that such an inverse is
guaranteed to exist.

48



5.2. Polar Decomposition

With the definition of F in hand, we turn our attention to the quantification of local deformation in
a body. For any matrix such as F, whose determinant is positive, the following decomposition can
always be made:

F = RU = VR. (5.13)

In Equation (5.13), R is a proper orthogonal tensor (right-handed rotation), while U and V are
positive-definite, symmetric tensors. One can show that under the conditions stated, the
decompositions in Equation (5.13) can always be made and that they are unique. The interested
reader should consult Reference [1] of Chapter 1 for details. The decompositions RU and VR in
Equation (5.13) are called right and left polar decompositions of F, respectively. R is often
called the rotation tensor, while U and V are sometimes referred to as the right and left
stretches.

The significance of the polar decomposition is made more clear in Figure 5-2, where we consider
the deformation of a neighborhood of material surrounding a point X ∈Ω. Equation (5.5) shows
that the full deformation gradient maps arbitrary reference differentials into their current positions
at time t. By considering the polar decomposition, we see that the deformation of material
neighborhoods of infinitesimal extent can always be conceptualized in two ways. In the right
polar decomposition, U contains all information necessary to describe the distortion of a
neighborhood of material, while R then maps this distorted neighborhood into the current
configuration through pure (right-handed) rotation. On the other hand, in the left polar
decomposition, the rotation R is considered first followed by the distortion V. In developing
measures of local deformation, we can thus focus on either U or V. The choice of which
decomposition to use is typically based on the coordinates in which we wish to write the strains.
The right stretch U most naturally takes reference coordinates as arguments, while the left stretch
V is ordinarily written in terms of spatial coordinates. This can be expressed as

F(X) = R(X)U(X) = V(ϕ(X))R(X). (5.14)

In characterizing large deformations, it is also convenient to define the right and left
Cauchy-Green tensors via

C = FT F (5.15)

and
B = FFT . (5.16)

The right Cauchy-Green tensor is ordinarily considered to be a material object C(X), while the
left Cauchy-Green tensor is a spatial object B(ϕt(X)). Since R is orthogonal, one can write

RT R = RRT = I, (5.17)

where I is the 3×3 identity tensor. Manipulating Equation (5.14) through Equation (5.16) reveals
that

U = C
1
2 (5.18)
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Figure 5-2. Physical interpretation of the polar decomposition. (Dotted outline
indicates infinitesimal neighborhood of point X.)

and
V = B

1
2 . (5.19)

One can see the connection with small strain theory by considering the Green strain tensor E
defined with respect to the reference configuration,

E =
1
2

(C− I). (5.20)

We define the reference configuration displacement field u, such that

u(X) = ϕ(X)−X. (5.21)

Working in index notation, we write E in terms of u

EIJ =
1
2

(CIJ −δIJ) =
1
2

(FiIFiJ −δIJ)

=
1
2

(
∂

∂XI
(ui + Xi)

∂

∂XJ
(ui + Xi)−δIJ

)
=

1
2

((
∂ui

∂XI
+δiI

)(
∂ui

∂XJ
+δiJ

)
−δIJ

)
=

1
2

(
δiI

∂

∂XJ
(ui) +δiJ

∂

∂XI
(ui) +

∂ui

∂XI

∂u j

∂XJ

)
(5.22)

In the case where the displacement gradients are small, i.e., | ∂Ui
∂XJ
| � 1, the quadratic term in

Equation (5.22) will be much smaller that the terms linear in the displacement gradients. If, in
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addition, the displacement components ui are very small when compared with the size of the
body, then the distinction between reference and spatial coordinates becomes unnecessary and
Equation (5.22) simplifies to

EIJ ≈
1
2

(
∂uI

∂XJ
+
∂uJ

∂XI

)
, (5.23)

which is identical to the infinitesimal case (cf. Equation (2.5)).

The references for Chapter 5 are [2, 1, 3].
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6. RATES OF DEFORMATION

The development of the last chapter fixed our attention on an instant t ∈ (0,T ), and proposed some
measurements of material deformation in terms of the configuration mapping ϕt. We now allow
time to vary and consider two questions:

1. How are velocities and accelerations quantified in both the spatial and reference frames?

2. How are time derivatives of deformation measures properly considered in a large
deformation framework?

The former topic is obviously crucial in the formulation of dynamics problems, while the latter is
necessary, for example, in rate-dependent materials where quantities such as strain rate must be
quantified.

6.1. Material and Spatial Velocity and Acceleration

One obtains the material velocity V and the material acceleration A by fixing attention on a
particular material particle (i.e., fixing the reference coordinate X), and then considering
successive (partial) time derivatives of the motion ϕ(X, t). This can be written mathematically
as

V(X, t) =
∂

∂t

(
ϕ(X, t)

)
(6.1)

and

A(X, t) =
∂

∂t

(
V(X, t)

)
=
∂2

∂t2
(
ϕ(X, t)

)
. (6.2)

Note in Equation (6.1) and Equation (6.2) that V and A take X as their first argument, hence their
designation as material quantities. A Lagrangian description of motion, in which reference
coordinates are the independent variables, would most naturally use these measures of velocity
and acceleration.

An Eulerian description, on the other hand, generally requires measures written in terms of spatial
points x without requiring explicit knowledge of material points X. The spatial velocity v and the
spatial acceleration a are obtained from Equation (6.1) and Equation (6.2) through a change in
variables:

v(x, t) = V
(
ϕ−1

t (x), t
)

= Vt ·ϕ
−1
t (x) (6.3)

and
a(x, t) = A

(
ϕ−1

t (x), t
)

= At ·ϕ
−1
t (x). (6.4)

The expression given in Equation (6.4) for the spatial acceleration may be unfamiliar to those
versed in fluid mechanics who may be more accustomed to thinking of acceleration as the total
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time derivative of the spatial velocity v. We reconcile these different viewpoints here through the
introduction of the equivalent concept of the material time derivative, defined, in general, as the
time derivative of any object, spatial or material, taken so that the identity of the material particle
is held fixed. Applying this concept to the spatial velocity gives

a(x, t) = v̇(x, t)|x=ϕ(X,t)

=
d
dt

∣∣∣∣
X fixed

v (ϕ(X, t), t)

=
∂v
∂x

(x, t) ·
∂ϕ

∂t

(
ϕ−1

t (x), t
)

+
∂v
∂t

(
ϕ−1

t (x), t
)

=
∂v
∂t

+∇v ·v.

(6.5)

This may be recognized as the so-called “total time derivative” of the spatial velocity v.
Exercising the concept of a material time derivative a little further, we can see from
Equation (6.1) that the material velocity is the material time derivative of the motion, so that

V = ϕ̇. (6.6)

Comparing Equation (6.2) and Equation (6.5), we conclude that A and a are, in fact, the same
physical entity expressed in different coordinates. The former is most naturally written in terms of
V, while the latter is conveniently expressed in terms of v.

Equation (6.5) uses the superposed dot notation for the time derivative of v. Such superposed dots
will always imply a material time derivative in this document, whether applied to material or
spatial quantities. Furthermore, the gradient ∇v is taken with respect to spatial coordinates and is
called the spatial velocity gradient. It is used often enough to warrant the special symbol L:

L := ∇v. (6.7)
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6.2. Rate of Deformation Tensors

From the spatial velocity gradient L defined in Equation (6.7), we define two spatial tensors D and
W, known respectively as the spatial rate of deformation tensor and the spatial spin tensor:

D := ∇sv =
1
2

[L + LT ], (6.8)

and
W := ∇av =

1
2

[L−LT ]. (6.9)

It is clear that D is merely the symmetric part of the velocity gradient, while W is the
antisymmetric, or skew, portion.

The quantities D and W are called spatial measures of deformation. D is effectively a measure of
strain rate suitable for large deformations, while W provides a local measure of the rate of rotation
of the material. In fact, in small deformations it is readily verified that Equation (6.8) amounts to
nothing more than the time derivative of the infinitesimal strain tensor defined in Equation (2.5).
It is of interest at this point to discuss whether appropriate material counterparts of these objects
exist. Toward this end, we calculate the material time derivative of the deformation gradient F.
If F is an analytic function, the order of partial differentiation can be reversed:

Ḟ =
∂

∂t

[
∂

∂X
ϕ(X, t)

]
=

∂

∂X

[
∂

∂t
ϕ(X, t)

]
=
∂V
∂X

. (6.10)

From Equation (6.10), we conclude that the material time derivative Ḟ is nothing more than the
material velocity gradient. Manipulating this quantity further gives

∂V
∂X

=
∂

∂X
(v◦ϕt) = ∇v (ϕt(X))

∂

∂X
(ϕt(X)) = L (ϕt(X))F(X). (6.11)

Examination of Equation (6.10) and Equation (6.11) reveals that

L =
(
Ḟ ·ϕ−1

t
)

F−1. (6.12)

Recalling the definition for the right Cauchy-Green strain tensor C in Equation (5.15) Chapter 5,
we compute its material time derivative via

Ċ =
∂

∂t
[FT F] = ḞT F + FT Ḟ = (LF)T F + FT (LF) = FT (L + LT )F. (6.13)

which, in view of Equation (6.8), leads us to conclude

Ċ(X, t) = 2FT (X, t)D(ϕ(X), t)F(X, t). (6.14)

Equation (6.14) reveals why 1
2Ċ is sometimes called the material rate of deformation tensor.

Noting that F is the Jacobian of the transformation ϕt, readers with a background in differential
geometry will recognize 1

2Ċ as the pull-back of the spatial tensor field D defined on ϕt(Ω).
Conversely, D is the push-forward of the material tensor field 1

2Ċ defined on Ω. The concepts of
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pull-back and push-forward are outside the scope of this document, but the physical principle they
embody in the current context is perhaps useful. Loosely speaking, the push forward (or
pull-back) of a tensor with respect to a given transformation produces a tensor in the new frame of
reference that we, as observers, would observe as identical to the original tensor if we were
embedded in the material during the transformation. Thus, the same physical principle is
represented by both 1

2Ċ and D, but they are very different objects mathematically since the
transformation that interrelates them is the deformation itself. Recalling the definition of Green’s
strain E given in Equation (5.20), we can easily see that

Ė =
1
2

Ċ = FT DF. (6.15)

This further substantiates the interpretation of D as a strain rate.

We have thus far developed measures of strain and strain rate appropriate for both the spatial and
reference configurations. Now we consider appropriate definitions of these quantities for the
rotated configuration defined according to the polar decomposition and depicted schematically in
Figure 5-2. This can be done by applying the linear transformation R relating the rotated
configuration to the spatial one.

The rotated rate of deformation tensor DDD is thus defined via

DDD(X, t) = RT (X, t) ·D(ϕ(X, t), t) ·R(X, t)
= RT (D◦ϕ)R.

(6.16)

Noting that
Ċ = 2FT (D◦ϕ)F = 2UT RT D◦ϕ)RU = 2UT DDDU, (6.17)

we find
DDD =

1
2

U−1ĊU−1 =
1
2

C−1/2ĊC−1/2. (6.18)

In connection with the rotated reference, another tensor, LLL, is sometimes introduced:

LLL = ṘRT . (6.19)

Note that LLL is skew:
LLL +LLLT = ṘRT + RṘT =

∂

∂t
(RRT ) =

∂I
∂t

= 0. (6.20)

We will return later in this document to the various measures associated with the rotated
configuration. They have particular importance in the study of material frame indifference.

56



7. STRESS MEASURES

7.1. Cauchy Stress

In this chapter we discuss the quantification of force intensity, or stress, within a body undergoing
potentially large amounts of deformation. We begin with the Cauchy stress tensor T and note
that, provided we associate this object with the spatial configuration, this object can be interpreted
exactly as in the infinitesimal case outlined in Chapter 2. In the current notational framework, we
interpret the components of T, denoted as Ti j, which represent forces per unit areas in the spatial
configuration at a given spatial point x ∈ ϕt(Ω).

It will be necessary in our description to consider related measures of stress defined in terms the
reference and rotated configurations. To motivate this discussion, we reconsider the concept of
traction discussed previously in the context of the infinitesimal elastic system. Recall that given a
plane passing through the point of interest x, the traction, or force per unit area acting on this
plane, is given by the formula

ti = Ti jn j, (7.1)

where n j is the unit normal vector to the plane in question.
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7.2. Nanson’s formula

We consider two differential vectors, dr1 and dr2, as illustrated in Figure 7-1. We assume that dr1
and dr2 are linearly independent and that both have spatial point x as their base point. We further
assume that their orientations are such that the following relation from basic geometry holds:

dr1×dr2 = nda, (7.2)

where da is the (differential) area of the parallelogram encompassed by dr1 and dr2.

Figure 7-1. Notation for derivation of Nanson’s formula

As discussed in Chapter 5 (see Equation (5.5)), we can think of the differential vectors dr1 and
dr2 as the current positions of reference differential vectors dR1 and dR2, which are based at
X = ϕ−1

t (x). In index notation, we can relate these two sets of differential vectors using the
deformation gradient via

(dr1)i = FiI(dR1)I , (7.3)

and

(dr2)i = FiI(dR2)I . (7.4)

We now seek to re-express Equation (7.2) in terms of reference quantities. Working in index
notation, we write
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nida = ei jkF jJ(dR1)JFkK(dR2)K

= el jkδliF jJ(dR1)JFkK(dR2)K

= el jkFlLF−1
Li F jJ(dR1)JFkK(dR2)K

(7.5)

We extract and manipulate a particular product in the last line of Equation (7.5), namely
el jkFlLF jJFkK . One can show by a case-by-case examination that the following relation holds:

el jkFlLF jJFkK = eLJKel jkFl1F j2Fk3. (7.6)

Recall from Chapter 5, Equation (5.11) that J = det(F) has the following representation in index
notation:

J = det(F) = el jkFl1F j2Fk3 (7.7)

Combination of Equation (7.5), Equation (7.6), and Equation (7.7) yields the following result:

nida = JeLJKF−1
Li (dR1)J(dR2)K

= JF−1
Li mLdA.

(7.8)

In Equation (7.8), dA is the differential reference area spanned by dR1 and dR2, and m is the
reference unit normal to this area.

In direct notation, we express this result as

nda = JF−T mdA. (7.9)

Equation (7.9) is referred to as Nanson’s formula and it is important, among other reasons,
because it provides the appropriate change-of-variables formula for surface integrals in the
reference and current configurations.
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7.3. First and Second Piola-Kirchhoff Stress

We want to compute a differential force, which is the product of the traction acting on our plane at
x and the differential area under consideration. Denoting this differential force by df, we write

df = tda = Tnda = JTF−T mdA. (7.10)

In examining Equation (7.10), we find that the following definition is useful:

P(X) = J(X)T (ϕt(X))F−T (ϕt(X)) . (7.11)

This allows us to write

df = PmdA. (7.12)

In Equation (7.12), the product Pm represents a traction, the current force, df, divided by the
reference area, dA. The tensor P is called the (First) Piola-Kirchhoff Stress and Pm is called the
Piola Traction. Similar to the Piola Traction, the First Piola-Kirchhoff Stress measures stress in
terms of forces in the current configuration and areas in the reference configuration. The
one-dimensional manifestation of this stress measure is the engineering stress, σE , originally
defined in Equation (1.3).

It is worthy to note that P is neither a pure spatial nor a pure reference object. A reference object
for stress can be constructed by performing a pull-back of the spatial Cauchy stress tensor T to
the reference configuration:

S(X) = JF−1 (ϕt(X))T (ϕt(X))F−T (ϕt(X))
= F−1 (ϕt(X))P(X).

(7.13)

S is called the Second Piola-Kirchhoff Stress and it is purely a reference object. We note, in
particular, that S is a symmetric tensor, while P is not symmetric in general.

This same concept of pull-back can be employed to define a stress tensor in the rotated
configuration, which we shall denote as TTT . This rotated tensor is defined as

TTT = RT (ϕt(X))T (ϕt(X))R (ϕt(X)) . (7.14)

As was the case with the rotated configuration quantities introduced in Chapter 6, this definition
will be of particular importance in the later examination of frame indifference.
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8. BALANCE LAWS

In this chapter, we examine the local forms of the various conservation laws as expressed in the
various reference frames we have introduced (spatial, reference, and rotated). To expedite our
development, we first discuss how integral representations of balances can be converted to point
wise conservation principles, a process known as localization.

8.1. Localization

Suppose we consider an arbitrary volume of material in the reference configuration, V ⊂Ω, of a
solid body as depicted in Figure 8-1. Suppose further that we can establish the following generic
integral relation over this volume: ∫

V
f (X)dV = 0, (8.1)

where f is some reference function, be it scalar-, vector-, or tensor-valued, defined over all of Ω.
If Equation (8.1) holds true for each and every subvolume V of Ω, then the localization theorem
states that

f = 0 pointwise in Ω. (8.2)

The interested reader should consult reference [1] for elaboration on this principle.

It should be noted that the same procedure can be applied spatially. In other words, if we are
working with a spatial object, we might consider arbitrary volumes v in the spatial domain, and if
the following holds for a spatial object g for all v:∫

v
g(x)dv = 0, (8.3)

then g(x) = 0 throughout ϕt(Ω). Our primary interest in these localization principles will be to
take the well known conservation laws for control volumes and convert them to their local
counterparts valid point wise throughout the domain.
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Figure 8-1. Notation for localization concept
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8.2. Conservation of Mass

For conservation of mass, we consider a fixed control volume, v, in the spatial domain,
completely filled with our solid body at the instant in question as the body moves through it. We
can write a conservation of mass for this control volume via

−

∫
∂v
ρv ·nda =

∫
v

∂ρ

∂t
dv, (8.4)

where the left-hand side can be interpreted as the net mass influx to the control volume, and the
right-hand side is the rate of mass accumulation inside the control volume. Applying the
divergence theorem to the left-hand side gives

−

∫
v
∇ · (ρv)dv =

∫
v

∂ρ

∂t
dv. (8.5)

This can be further rearranged to yield∫
v

(
∂ρ

∂t
+∇ρ ·v +ρ(∇ ·v)

)
dv = 0, (8.6)

which can be established for any arbitrary spatial volume v. Applying the localization theorem
gives the local expression of continuity, which may be familiar to those versed in fluid
mechanics:

∂ρ

∂t
+∇ρ ·v +ρ(∇ ·v) = ρ̇+ρ(∇ ·v) = 0, (8.7)

where the concept of the material time derivative has been employed (cf. Equation (6.5)).

A reference configuration representation of continuity is desirable for the study of solid
mechanics. Therefore we convert Equation (8.6) to a reference configuration integral to obtain:∫

V=ϕ−1
t (v)

(ρ̇+ρḞ : F−T )JdV = 0, (8.8)

where the transformation between dv and dV is accomplished using Equation (5.10) and the chain
rule is used to convert ∇ ·v via

vi,i(x) =
∂

∂xi
Vi
(
ϕ−1

t (x)
)

=
∂

∂XI
Vi
(
ϕ−1

t (x)
) ∂XI

∂xi

(
ϕ−1

t (x)
)

= ḞiI
(
ϕ−1

t (x)
)

F−1
Ii
(
ϕ−1

t (x)
)
,

(8.9)

which is the index notation form of Ḟ : F−T . Applying the localization theorem in the reference
configuration gives

ρ̇J +ρJḞ : F−T = 0, (8.10)

which holds point wise in Ω.
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Working in index notation, we can further simplify Equation (8.10) by concentrating on the term
JḞ : F−T . We compute the material time derivative of J as

J̇ =
∂J

∂FmM
˙FmM, (8.11)

where

∂J
∂FmM

=
∂

∂FmM
(ei jkFi1F j2Fk3)

= ei jkδimδM1F j2Fk3 + ei jkδ jmδM2Fi1Fk3 + ei jkδkmδM3Fi1F j2

= ei jkFiN F−1
NmδM1F j2Fk3 + ei jkF jN F−1

NmδM2Fi1Fk3 + ei jkFkN F−1
NmδM3Fi1F j2,

(8.12)

which simplifies to
∂J

∂FmM
= JF−1

1mδM1 + JF−1
2mδM2 + JF−1

3mδM3

= JF−1
ImδMI = JF−1

Mm.

(8.13)

Substitution of Equation (8.13) into Equation (8.11) gives

J̇ = JF−1
Mm

˙FmM, (8.14)

which is the index notation form of
J̇ = JF−1 : Ḟ. (8.15)

Finally, substitution of Equation (8.15) into Equation (8.10) gives

ρ̇J +ρJ̇ =
d
dt

(ρJ) = 0. (8.16)

Equation (8.16) is the reference configuration version of the continuity equation, which tells us
that the product of the density and deformation gradient determinant must be invariant with time
for all material points. This is commonly enforced in practice by assigning a reference density ρ0
to all material points. If the current density ρ is computed via

ρ =
1
J
ρ0, (8.17)

then Equation (8.16) is automatically satisfied (recall that the Jacobian is unity in the reference
configuration).
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8.3. Conservation of Linear Momentum

Considering once more a fixed control volume v, the control volume balance of linear momentum
can be expressed as ∫

∂v
(ρv)v ·nda +

∫
v

∂

∂t
(ρv)dv =

∫
v
fdv +

∫
∂v

tda. (8.18)

On the left-hand side, the first term expresses the momentum out flux and the second term
represents the rate of accumulation inside the control volume. This net change of momentum is
produced by the total resultant force on the system, i.e., the right-hand side of the equation, which
is equal to the sum effect of the body forces f and the surface tractions t.

Applying the divergence theorem to both surface integrals, we find that∫
∂v

(ρv)v ·nda =

∫
v

[
∇ · (ρv)v +ρ(∇v)v

]
dv, (8.19)

and ∫
∂v

tda =

∫
∂v

Tnda =

∫
v
∇ ·Tdv. (8.20)

Substituting Equation (8.19) and Equation (8.20) into Equation (8.18), and rearranging, gives∫
v

[
∇ ·T + f −ρ

∂v
∂t
−ρ(∇v)v−

∂ρ

∂t
v− (∇ρ ·v)v−ρ(∇ ·v)v

]
dv = 0. (8.21)

Employing the spatial form of the continuity Equation (8.6) and recalling the formula for the
material time derivative Equation (6.5) gives∫

v

[
∇ ·T + f −ρv̇

]
dv = 0. (8.22)

The localization theorem then implies

∇ ·T + f = ρv̇ (8.23)

point wise, which is recognized as the same statement of linear momentum balance utilized in our
earlier treatment of linear elasticity, Equation (2.2).

In large deformation problems it is desirable to also have a reference configuration form of
Equation (8.23). Converting Equation (8.22) to its index form, we have∫

v

[
Ti j, j + fi−ρv̇i

]
dv = 0. (8.24)

Working with the stress divergence term first, we write

Ti j, j =
∂Ti j

∂XJ

∂XJ

∂x j
=
∂Ti j

∂XJ
F−1

J j . (8.25)
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Using Equation (7.11), we can write

∂Ti j

∂XJ
=

∂

∂X j

(
1
J

PiIF jI

)
=
−1
J2

∂J
∂FkK

∂FkK

∂X j
PiIF jI +

1
J
∂

∂XJ
(PiIF jI). (8.26)

Now using Equation (8.13), we can simplify Equation (8.26) and post multiply F−1
J j to obtain:

∂Ti j

∂XJ
F−1

J j =
−1
J

F−1
Kk
∂FkK

∂XJ
PiJ +

1
J
∂PiI

∂XI
+

1
J

F−1
J j
∂F jI

∂XJ
PiI (8.27)

The first and last terms on the right-hand side of Equation (8.27) cancel each other due to the fact
that ∂F jI

∂XJ
=

∂F jJ
∂XI

. Therefore we have

∂Ti j

∂XJ
F−1

J j =
1
J
∂PiI

∂XI
. (8.28)

Combining this result with Equation (8.25) and Equation (8.24), and applying a change of
variables, gives ∫

V
(PiI,I + bi−ρ0V̇i)dV = 0, (8.29)

where bi = J fi, the prescribed body force per unit reference volume. Employing the localization
theorem gives

∇0 ·P + b = ρ0V̇ (8.30)

point wise in Ω, which expresses the balance of linear momentum in terms of reference
coordinates. In Equation (8.30), ∇0 is the gradient operator with respect to the reference
configuration.
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8.4. Conservation of Angular Momentum

Again considering an arbitrary control volume in the spatial frame, we write its balance of
angular momentum via∫

∂v
(x×ρv)v ·nda +

∫
v

∂

∂t
(x×ρv)dv =

∫
v
(x× f)dv +

∫
∂v

x× tda, (8.31)

where the terms on the left-hand side are the out flux and accumulations terms, and the terms on
the right-hand side represent the total resultant torque.

Working this time in index notation, we apply the divergence theorem to the surface integrals as
follows:

∫
∂v

ei jkρx jvkvlnlda =

∫
v

(
ρ,lei jkx jvkvl + ei jkρδ jlvkvl + ei jkρx jvk,lvl + ei jkρx jvkvl,l

)
dv, (8.32)

and ∫
∂v

ei jkx jTklnlda =

∫
v

(
ei jkx jTkl,l + ei jkTk j

)
dv. (8.33)

Substituting Equation (8.32) and Equation (8.33) into Equation (8.31), and rearranging terms,
reveals that

∫
v

(
ei jkx j

(
Tkl,l + fk −ρ

∂vk

∂t
−ρ

∂vk

∂xl
vl

)
−ei jkx jvk

(
∂ρ

∂t
+
∂ρ

∂xl
vl +ρvl,l

)
+ei jkTkl−ρei jkρv jvk

)
dv = 0.

(8.34)

Using Equation (8.24) and Equation (8.7), and noting that the cross product of a vector with itself
is zero, we can simplify Equation (8.34) and apply the localization theorem to conclude

ei jkTkl = 0, (8.35)

which, in turn, implies the following three equations:

T23 = T32, T13 = T31, T21 = T12. (8.36)

In other words, the symmetry of the Cauchy stress tensor is a direct consequence of the
conservation of angular momentum. Use of Equation (7.13) and Equation (7.14), respectively,
reveals that the Second Piola-Kirchhoff stress S and the rotated stress tensor TTT are likewise
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symmetric. The First Piola-Kirchhoff stress is not symmetric and is not, in fact, a tensor in the
purest sense because it does not fully live in either the spatial or reference frame.
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8.5. Stress Power

We examine the consequences of a control volume expression of energy balance. We assume
herein a purely mechanical description and, to begin, that there is no mechanical dissipation, so
that the system we consider conserves energy exactly. In other words, all work put into the system
through the applied loads goes either into stored internal elastic energy or into kinetic energy.

With this in mind, the conservation of energy for a spatial control volume is written as∫
∂v

(
e +

1
2
ρv ·v

)
v ·nda +

∫
v

∂

∂t

(
e +

1
2
ρv ·v

)
dv =

∫
v
f ·vdv +

∫
∂v

t ·vda, (8.37)

where e is the internal stored energy (i.e., elastic energy) per unit spatial volume.

As we have done previously, we apply the divergence theorem to the surface integrals:∫
∂v

(
e +

1
2
ρv ·v

)
v ·nda =

∫
v

[
∇ ·v

(
e +

1
2
ρv ·v

)
+∇e ·v

+
1
2
∇ρ ·v(v ·v) +ρv · (∇v)v

]
dv,

(8.38)

and ∫
∂v

t ·vda =

∫
v
[T : ∇v + (∇ ·T) ·v]dv. (8.39)

Substituting Equation (8.38) and Equation (8.39) into Equation (8.37), and rearranging, gives

0 =

∫
v

[(
∇ ·T + f −ρ

∂v
∂t
− (ρ∇v)v

)
·v

−
1
2

v ·v
(
∂ρ

∂t
+ (∇ ·v)ρ+∇ρ ·v

)
+T : ∇v− (∇ ·v)e− ė]dv.

(8.40)

Using Equation (8.24) and Equation (8.7), we find

0 =

∫
v
[T : ∇v− (∇ ·v)e− ė]dv. (8.41)

Splitting Equation (8.41) into two integrals, we have

0 =

∫
v
T : ∇vdv−

∫
v
((∇ ·v)e + ė)dv. (8.42)

We now convert Equation (8.42) to the reference configuration and apply localizations. In so
doing, we recognize that the second integral in Equation (8.42) can be treated directly analogous
to that of Equation (8.6), with the density ρ in Equation (8.6) replaced by the energy e in the
current case. The result of this manipulation will be analogous to Equation (8.16) with e
substituted for ρ. In other words, we have∫

v
((∇ ·v)e + ė)dv =

∫
V

d
dt

(eJ)dV. (8.43)
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Concentrating on the first integral and using Equation (6.12) and Equation (8.11) to aid in the
calculation, we find ∫

v
T : ∇vdv =

∫
V

(T◦ϕ−1) : (L◦ϕ−1)JdV

=

∫
V

(T◦ϕ−1) : (ḞF−1)JdV =

∫
V

P : ḞdV.
(8.44)

Plugging the results of Equation (8.43) and Equation (8.44) into Equation (8.42) and employing
the localization theorem, we determine that

d
dt

(eJ) = Ė = P : Ḟ (8.45)

point wise in Ω, where E is the stored elastic energy per unit reference volume. Therefore, P : Ḟ
represents the rate of energy input into the material by the stress (per unit volume), commonly
known as the stress power. Taking into account the various measures of stress and deformation
rate we have considered, it can be shown that for a given material point, the stress power can be
written in the following alternative forms:

stress power = P : Ḟ =
1
2

SĊ = JT : D = JTTT : DDD. (8.46)

It should be noted that this definition can be used also for dissipative (i.e., non-conservative)
materials but the interpretation changes. The stress power in that case is the sum of the rate of
increase of stored energy and the rate of energy dissipated by the solid.
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8.6. Thermodynamics

Finally we discuss the application of the laws of thermodynamics to large deformation
Lagrangian mechanics. Recalling the notation from Chapter 4, we consider the first and second
laws applied to a body Ω in the reference (i.e., material) configuration.

First Law

The first law states that the change in internal energy, change in kinetic energy, external power,
and heat flux over the body must be balanced:

Ė+ K̇ =W+Q (8.47)

where

1. E, the total internal energy, is given by

E =

∫
Ω

ρ0wdV, (8.48)

where w is the specific internal energy (both elastic and dissipated),

2. K , the kinetic energy, is given by

K =

∫
Ω

1
2
ρ0 |v|2 dV, (8.49)

3. W, the conventional external power, is given by

W =

∫
∂Ω

Tn ·vdΓ+

∫
Ω

bdV, (8.50)

4. Q, the heat flux, is given by

Q = −

∫
∂Ω

q ·ndΓ+

∫
Ω

qdV, (8.51)

where q is the scalar heat supply, and q is the heat flux vector.

The corresponding local energy balance can be readily derived by applying the divergence
theorem and power balance on sub-regions:

ρ0ẇ = T : D−∇0 ·q + q, (8.52)

where ∇0· is the divergence operator in the reference configuration.

Second Law

The second law of thermodynamics states that the entropy of an isolated system can not decrease.
The global inequality over Ω corresponding to this statement is∫

Ω

ρ0η̇dV ≥ −
∫
∂Ω

q
θ

dΓ+

∫
Ω

q
θ

dV, (8.53)
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where η is the specific entropy, θ is the absolute temperature, q
θ is the entropy flux, and q

θ is the
entropy supply. The corresponding local entropy imbalance can be derived using the divergence
theorem and localization to sub-regions:

ρ0η̇ ≥ −∇0 ·
(q
θ

)
+

q
θ
. (8.54)

Using Equation (8.52) and some manipulation this can be rewritten

T : D−ρ0
(
ė +ηθ̇

)
−

1
θ

q · ∇0θ ≥ 0, (8.55)

where e, the specific free-energy (i.e., the elastic energy), is given by

e = w− θη. (8.56)

In the absence of thermal effects, Equation 8.55 reduces to

T : D ≥ ρ0 ė, (8.57)

which states that the internal power expenditure (stress power) must exceed the rate of increase of
stored energy. More simply put, the dissipated power in the body must always be positive.

The references for chapter 8 are [1, 2, 3, 4].
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9. FRAME INDIFFERENCE

An important concept in the formulation of constitutive theories in large deformations is frame
indifference, alternatively referred to as objectivity. Although somewhat mathematically involved,
the concept of objectivity is fairly simple to understand physically.

When we write constitutive laws in their most general form, we seek to express tensorial
quantities, such as stress and stress rate, in terms of kinematic tensorial quantities, most
commonly strain and strain rate. The basic physical idea behind frame indifference is that this
constitutive relationship should be unaffected by any rigid body motions of the material.
Mathematically, we evaluate frame indifference by defining an alternative reference frame that is
rotating and translating with respect to the coordinate system in which we pose the problem. For
our constitutive description to make sense, the tensorial quantities we use (stress, stress rate,
strain, and strain rate) should transform according to the laws of tensor calculus when subjected
to a change in reference frame. If a given quantity does this, we say it is material frame
indifferent, and if it does not, we say it is not properly invariant.

9.1. Objective Strain and Strain Rate Measures

Consider a motion, ϕ(X, t). We imagine ourselves to be viewing this motion from another
reference frame, denoted in the following by ∗, which is related to the original spatial frame via

x∗ = c(t) + Q(t)x, (9.1)

where x = ϕ(X, t). In Equation (9.1), c(t) and Q(t) are rigid body translation and rotation,
respectively, between the original frame and observer ∗. To observer ∗, the motion appears as
defined by

x∗ = ϕ∗(X, t) = c(t) + Q(t)ϕ(X, t). (9.2)

The time derivative of this motion equation gives the relationship between the deformation
gradients in the two frames:

F∗ =
∂

∂X
ϕ∗t = Q

∂

∂X
ϕt(X) = QF. (9.3)

The spatial velocity gradient L∗ is then

L∗ = ∇∗v∗ = Ḟ∗(F∗)−1 =
d
dt

(QF)(QF)−1 =
(
QḞF−1QT + Q̇FF−1QT) , (9.4)

which simplifies to
L∗ = QLQT + Q̇QT . (9.5)
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For L = ∇v to be objective, it would transform according to the laws of tensor transformation
between the two frames, i.e., only the first term on the right-hand side of Equation (9.5) would be
present. Clearly, L = ∇v is not objective.

Examining the rate of deformation tensor D∗, on the other hand, one finds:

D∗ =
1
2
(
L∗+ (L∗)T) =

1
2
[
QLQT + Q̇QT + QLT QT + QQ̇T ] , (9.6)

where
Q̇QT + QQ̇T =

d
dt

[
QQT ] =

d
dt

[I] = 0. (9.7)

Hence, Equation (9.6) simplifies to

D∗ =
1
2

Q
[
L + LT ]QT = QDQT , (9.8)

which shows us that D is objective.

Therefore we have a tensorial quantity for the spatial rate-of-strain that is objective. The question
arises whether corresponding reference measures of rate are objective. It turns out that such
material rates are automatically objective, since they do not change when superimposed rotations
occur spatially. Consider, for example, the right Cauchy-Green tensor C:

C∗ = (F∗)T (F∗) = FT QT QF = C. (9.9)

Similarly, the time derivative of Equation (9.9) simplifies to

Ċ∗ = Ċ. (9.10)
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9.2. Stress Rates

Turning our attention to stress rates, examine the material time derivative of the Cauchy stress
T:

Ṫ =

[
d
dt

(T◦ϕt)
]
•ϕ−1

t =

(
∂T
∂t

+ v · ∇T
)
. (9.11)

T is itself objective by its very definition as a tensorial quantity. Thus, we can write

T∗ = QTQT . (9.12)

Computing the material time derivative of Equation (9.12) gives

Ṫ∗ = Q̇TQT + QṪQT + QTQ̇T . (9.13)

Since the first and third terms on the right-hand side of Equation (9.13) do not, in general, cancel,
we see that the material time derivative of the Cauchy stress T is not objective.

It therefore becomes critical to consider a frame indifferent measure of stress rate when
formulating a constitutive description that requires a stress rate. A multitude of such rates have
been contrived; the interested reader is encouraged to consult Reference [1] for a highly
theoretical treatment. For our discussion here, we consider two such rates especially prevalent in
the literature: the Jaumann rate and the Green-Naghdi rate. Both rates rely on roughly the same
physical idea. Rather than taking the derivative of the Cauchy stress itself, we rotate the object
from the spatial frame before taking the time derivative, so that the reference frame in which the
time derivative is taken is the same for all frames related by the transformation in
Equation (9.1).

For example, we consider the Jaumann rate of stress, which we denote here as T̂. Its definition is
given as

T̂ = Ṫ−WT + TW, (9.14)

where W = L−D. We can verify that this rate of stress is truly objective by considering the object
as it would appear to observer ∗:

T̂∗ = Ṫ∗−W∗T∗+ T∗W∗. (9.15)

The quantity Ṫ∗ is given by Equation (9.13), T∗ is given by Equation (9.12), and W∗ is computed
with the aid of Equation (9.5) and Equation (9.8):

W∗ = L∗−D∗ = QLQT + Q̇QT −QDQT . (9.16)

Substituting these quantities into Equation (9.15), we find

T̂∗ = Q̇TQT + QṪQT −QTQ̇T

−
(
QLQT + Q̇QT −QDQT)QTQT

+ QTQT (QLQT + Q̇QT −QDQT) . (9.17)

76



Canceling terms and using the fact that Q̇QT = −QQ̇T , we can simplify Equation (9.17) to

T̂∗ = Q
[
Ṫ−WT + TW

]
QT = QT̂QT , (9.18)

which ensures us that, indeed, T̂ is objective.

By considering the Green-Naghdi rate we can gain more insight into how objective rates are
defined. The Green-Naghdi rate of Cauchy stress is defined via

T̃ = RṪTTRT , (9.19)

where R is the rotation tensor from the polar decomposition of F, and TTT is the rotated Cauchy
stress defined in Equation (7.14).

We examine how the rotation tensor R transforms. Utilizing Equation (9.3) and the polar
decomposition, we get

F∗ = R∗U∗ = QF = QRU. (9.20)

We now note two things: first, the product QR is itself a proper orthogonal tensor; and second, the
polar decomposition is unique for a given deformation gradient. Therefore, comparing the second
and fourth terms of Equation (9.20), we must conclude

U∗ = U, (9.21)

and
R∗ = QR. (9.22)

Using Equation (9.22) and Equation (9.19), we can compute

T̃∗ = R∗ṪTT∗R∗T = QRṪTT∗RT QT . (9.23)

Returning to the definition of TTT in Equation (7.14) and incorporating Equation (9.12) and
Equation (9.22), we can write

TTT∗ = R∗T T∗R∗ = RT QT (QTQT )QR = RT TR = TTT . (9.24)

Therefore, the rotated stress tensor appears exactly the same in both frames of reference. It
follows that

ṪTT∗ = ṪTT , (9.25)

which, when substituted into Equation (9.23), gives

T̃∗ = QRṪTTRT QT = QT̃QT . (9.26)

This is recognized as the properly objective transformation of T̃.

One may note that this result gives considerable insight into how objective rates can be
constructed. In the current case, we transform the stress into the rotated configuration before
computing its time derivative, and then we transform the result back to the spatial configuration.
Since the rotated stress is exactly the same for all reference frames, related by Equation (7.1),
taking the time derivative of it and then transforming produces an objective tensor. This idea can
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be generalized as follows: construction of an objective rate of stress is achieved by considering
the time derivative of a stress measure defined in a coordinate system that is rotating about some
set of axes. In fact, one can show that the Jaumann stress rate can be similarly interpreted.

Finally, the Green-Naghdi rate can be manipulated further to a form more closely resembling the
form for the Jaumann rate (Equation (9.14)). That is, we can write

T̃ = R
d
dt

(RT TR)RT

= RṘT T + Ṫ + TṘRT

= Ṫ +LLLT T + TLLL

= Ṫ + TLLL−LLLT,

(9.27)

where Equation (6.19) is used to define LLL, recalling also that this object is skew.

The reference for Chapter 9 is [1]
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10. DISCRETIZATION

10.1. Weak Form for Large Deformation Problems

We begin by reviewing the field equations to be considered. The reference for this chapter is [1].
The problem to be solved is shown schematically in Figure 10-1, in which we want to the
compute finite deformation response of a body Ω in its reference configuration. Assuming that

Figure 10-1. Large deformation initial/boundary value problem

this time dependent configuration mapping is denoted by ϕt, the following problem is solved for
each time, t, in the time interval of interest:

∇ ·T + f = ρa on ϕt(Ω), (10.1)
ϕt = ϕ̄t on ϕt(Γu), (10.2)

and
t = t̄ on ϕt(Γσ), (10.3)

where all notations are as discussed in Chapter 4. In particular, a is the material acceleration
expressed in spatial coordinates, f is the body force per unit (spatial) volume, and T is the Cauchy
stress tensor. The vector t is the Cauchy traction vector, obtained via t = Tn, where n is the
outward unit normal to the spatial surface ϕt(Γσ).
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The problem is also subject to initial conditions of the form

ϕ(X,0) = ϕ0(X) on Ω, (10.4)

and
∂ϕ

∂t
(X,0) = X0(X) on Ω. (10.5)

Recall that Equation (10.1)–Equation (10.3) are written in the so-called spatial configuration, but
we still consider ourselves working in a Lagrangian framework where all quantities are ultimately
indexed to material points through the mapping x = ϕt(X) (see Lagrangian and Eulerian
Descriptions in Chapter 4).

A prerequisite of the finite element method is that a weak, or variational, form of the above field
equations be available for discretization. This can be obtained following the general procedure
outlined for linear problems in Chapter 3 by considering weighting functions ϕ∗ defined over Ω

which satisfy the following condition:

ϕ∗ = 0 on Γu, (10.6)

where we also assume that all ϕ∗ are sufficiently smooth so that any desired partial derivatives can
be computed. In treating large deformation problems, it is useful to consider spatial forms of the
functions ϕ∗ obtained by composition with the (unknown) mapping ϕ−1

t . We denote these spatial
variations by w and note that they may be obtained via

w(x) = ϕ∗
(
ϕ−1

t (x)
)

(10.7)

for any x ∈ ϕt(X). Equation (10.6) means

w = 0 on ϕt(Γu). (10.8)

Assuming the configuration mapping ϕt is smooth, all required partial derivatives of w can be
computed.

With these definitions, the development in Chapter 3 can be reproduced in the current context to
provide the following spatial representation of the variational form for large deformations:

Given the boundary conditions t̄ on ϕt(Γσ), ϕ̄t on ϕt(Γu), the initial conditions ϕ0 and V0 on Ω,
and the distributed body for f on ϕt(Ω), find ϕt ∈ S t for each time t ∈ (0,T ) such that:∫

ϕt(Ω)
ρw ·adv +

∫
ϕt(Ω)
∇w : Tdv =

∫
ϕt(Ω)

w · fdv +

∫
ϕt(Γσ)

w · t̄da (10.9)

for all admissible w, where S t is defined as

S t = {ϕt|ϕt = ϕ̄(t) on Γu , ϕt is smooth} (10.10)

and where admissible w are related in a one-to-one manner via Equation (10.7) to the material
variations ϕ∗ ∈W with the definition of W being

W =
{
ϕ∗
∣∣ϕ∗ = 0 on Γu , ϕ∗ is smooth

}
. (10.11)
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Note that in contrast to the previous development, the constitutive relation governing T is left
unspecified, but it can in general be subject to both geometric and material nonlinearities.
Furthermore, it should be implied that geometric nonlinearities include consideration of large
deformation kinematics discussed in Chapter 5, Chapter 6, and Chapter 9. The notation a for the
acceleration is to be understood as the material acceleration as defined by Equation (6.4).

In addition, the solution ϕ is subject to the following conditions at t = 0:∫
Ω

ϕ∗ · (ϕ|t=0−ϕ0)dΩ = 0 (10.12)

and ∫
Ω

ϕ∗ ·

(
∂ϕ

∂t

∣∣∣∣
t=0
−V0

)
dΩ = 0, (10.13)

both of which must hold for all ϕ∗ ∈W.
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10.2. Finite Element Discretization

The process of numerically approximating a continuous problem is generically called
discretization. In the finite element method, the entity discretized is a weak form (alternatively,
variational equation). The variational form to be considered here is that just summarized in the
previous section. We now refer to Figure 10-2 which gives the general notation to be used in the
description of the discretization process.

Figure 10-2. General notation for finite element discretization of the reference
domain

Referring to Figure 10-2, the reference domain Ω is subdivided into a number of element
subdomains Ωe. The superscript e is an index to a specific element, running between 1 and the
total number of elements in the discretization, nel, of the domain Ω. We assume in the figure and
throughout the ensuing discussion that Ω is a subset of R3.

Note that a number of nodal points are indicated by the dots in Figure 10-2. We assume that all
degrees of freedom in the discrete system to be proposed will be associated with these nodes.
These nodes may lay at corners, edges, and in interiors of the elements with which they are
associated. A key feature of the finite element method will be that a specific element can be
completely characterized by the coordinates and degrees-of-freedom associated with the nodes
attached to it. In the following we will index the nodes with uppercase letters A, B, etc. having
values running between 1 and nnp, the total number of nodal points in the problem
discretization.
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10.3. Galerkin Finite Element Methods

The essence of any finite element method lies in the discretization of the variational form. This
discretization process involves approximation of a typical member of both the solution space S t
and the weighting space W. These approximations are typically expressed as an expansion in
terms of prescribed shape or interpolation functions, usually associated with specific nodal
points in the mesh. Since the number of nodal points is obviously finite, the expansion is likewise
finite, giving rise to the concept of a finite-dimensional approximation of the space.

Roughly speaking, the idea of discretization is as follows. We know from earlier chapters that if
the variational equation is enforced considering all ϕt ∈ S t and ϕ∗ ∈W as mandated by its
definition, then the solution of the weak form is completely equivalent to that of the strong form
(i.e., the governing partial differential equation with boundary/initial conditions). This fact results
because of the arbitrary nature of ϕ∗ and the very general definitions for S t and W. If we restrict
our attention only to some subset of the above spaces, we inherently incur some error with the
solution of our approximated weak form in that it no longer is identical to the solution of the
strong form. If our choice for the type of shape functions to be used is reasonable, however, we
can represent the full solution and weighting spaces with arbitrary closeness by increasing the
number of nodal points and/or the degree of polynomial approximation utilized in the
interpolation functions. In the limit of such refinement, we should expect recovery of the exact
solution (i.e., convergence).

We represent the shape function associated with node A as NA and assume it to be as follows:

NA : Ω̄→ R. (10.14)

Given a time, t, the finite dimensional counterpart of ϕt will be denoted as ϕh
t and is expressed in

terms of the shape functions as

ϕh
t =

nnp∑
B=1

NBdB(t), (10.15)

where dB(t) is a 3-vector containing the unknown displacements of nodal point B at time t.
Given a prescribed set of nodal shape functions NB, B = 1, . . . ,nnp, the finite dimensional solution
space S h

t is defined as the collection of all such ϕh
t :

S h
t =

{
ϕh

t =

nnp∑
B=1

NBdB(t)

∣∣∣∣∣ϕh
t ≈ ϕ̃t(X for all X ∈ Γu

}
. (10.16)

In other words, we require members of the discrete solution space to (approximately) satisfy the
displacement boundary condition on Γu. The approximation comes about because, in general, we
only force ϕh

t to interpolate the nodal values of ϕ̄t on Γu with the NB serving as the interpolation
functions. Note that Γu itself is typically geometrically approximated by the finite element
discretization, also contributing to the approximation.

This notationally defines the discretization procedure for ϕh
t . It still remains, however, to

approximate the weighting space. The (Bubnov-) Galerkin finite element method is characterized
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by utilizing the same shape functions to approximate W as were used to approximate S t.
Accordingly, we define a member of this space, (ϕ∗)h, via

(
ϕ∗
)h

=

nnp∑
A=1

NAcA, (10.17)

where cA are 3-vectors of nodal constants. We can then express the finite dimensional weighting
space Wh via

Wh =

{(
ϕ∗
)h

=

nnp∑
A=1

NAcA

∣∣∣∣∣(ϕ∗)h
= 0 for all X ∈ Γu

}
. (10.18)

Analogous to the situation for S h
t , Equation (10.18) features a discrete version of the boundary

condition on Γu. In other words, Wh consists of all functions of the form Equation (10.17)
resulting in satisfaction of this condition. Note that the only restriction on cA is that they result in
satisfaction of the homogeneous boundary condition on Γu.

With these ideas in hand, the approximate Galerkin solution to the initial/boundary value problem
takes the form described below.

Given the boundary conditions t̄ on ϕh
t (Γσ), ϕ̄t on ϕh

t (Γu), the initial conditions ϕ0 and V0 on Ω,
and the distributed body force f on ϕh

t (Ω), find ϕh
t ∈ S h

t for each time t ∈ (0,T ) such that:∫
ϕh

t (Ω)
ρwh ·ahdv +

∫
ϕh

t (Ω)
∇wh : Thdv =

∫
ϕh

t (Ω)
wh · fdv +

∫
ϕh

t (Γσ)
wh · t̄da (10.19)

for all admissible wh, where S t is defined in Equation (10.16) and where admissible wh are
related to the material variations (ϕ∗)h ∈Wh via

wh(x) =
(
ϕ∗
)h
∈
(
ϕh

t
)−1

(x). (10.20)

In Equation (10.19), Th refers to the Cauchy stress field computed from the discrete mapping ϕh
t

through the constitutive relations, whereas ah is the discrete material acceleration.

The initial conditions are ordinarily simplified in the discrete case to read

dB(0) = ϕ̄0(XB) (10.21)

and
ḋB(0) = V0(XB), (10.22)

both of which must hold for all nodes B = 1, . . . ,nnp, where XB are the reference coordinates of
the node in question.

85



10.4. Notation for Discrete Problem

In preparation for generating vector/matrix equations for the discrete system, it will be helpful to
be explicit with our notation. We therefore express the nodal vectors cA and dB in terms of their
components via

cA = {ciA} , i = 1,2,3 (10.23)

and
dB =

{
d jB
}
, j = 1,2,3. (10.24)

Note that indices i and j are spatial indices, in general. It is useful in generating matrix equations
to have indices referring not to nodes A and B or spatial directions i and j, but rather to degree of
freedom numbers in the problem. Thus, we define for notational convenience the concept of an
ID array that is set up as follows:

ID(i,A) = P (global degree of freedom number). (10.25)

In other words, the ID array takes the spatial direction index and nodal point number as
arguments and assigns a global degree of freedom number to the corresponding unknown. For
three-dimensional deformation problems, the number of degrees of freedom ndo f is

ndo f = 3×nnp. (10.26)

With this notation, the equation numbers P and Q corresponding to the degrees of freedom are
defined as

P = ID(i,A) (10.27)

and
Q = ID( j,B). (10.28)

86



10.5. Discrete Equations

We now generate the discrete equations by substitution of Equation (10.15) and Equation (10.17)
into Equation (10.19), causing the variational equation to read

∫
ϕh

t (Ω)
ρ

( nnp∑
A=1

NA
(
ϕ−1

t (x)
)

cA

)
·

( nnp∑
B=1

NB
(
ϕ−1

t (x)
)

d̈B(t)

)
dv

+

∫
ϕh

t (Ω)

( nnp∑
A=1

∇NA
(
ϕ−1

t (x)
)
⊗ cA

)
: Thdv

+

∫
ϕh

t (Ω)

( nnp∑
A=1

NA
(
ϕ−1

t (x)
)

cA

)
· fdv +

∫
ϕh

t (Γσ)

( nnp∑
A=1

NA
(
ϕ−1

t (x)
)

cA

)
· t̄da

(10.29)

where we note in particular that Th is a function of ϕh
t =
∑nnp

B=1 NBdB(t) through the
strain-displacement relations (nonlinear, in general) and the constitutive law (as yet unspecified
and perhaps likewise nonlinear).

The inertial term in Equation (10.29) can be expanded as

∫
ϕh

t (Ω)
ρ

( nnp∑
A=1

NA
(
ϕ−1

t (x)
)

cA

)
·

( nnp∑
B=1

NB
(
ϕ−1

t (x)
)

d̈B(t)

)
dv

=

nnp∑
A=1

3∑
i=1

ciA

∫
ϕh

t (Ω)

(
ρNA

(
ϕ−1

t (x)
)

ciA

( nnp∑
B=1

NB
(
ϕ−1

t (x)
)

d̈iB

)
dv

)

=

nnp∑
A=1

3∑
i=1

ciA

[ nnp∑
B=1

3∑
i=1

∫
ϕh

t (Ω)
ρNA

(
ϕ−1

t (x)
)
δi jNB

(
ϕ−1

t (x)
)

dvd̈iB

]

=

ndo f∑
P=1

cP

ndo f∑
Q=1

MPQd̈Q



(10.30)

where MPQ is defined as

MPQ =

∫
ϕh

t (Ω)
ρNA

(
ϕ−1

t (x)
)
δi jNB

(
ϕ−1

t (x)
)

dv. (10.31)

The second term of Equation (10.29) can be simplified via

∫
ϕh(Ω)

( nnp∑
A=1

∇NA
(
ϕ−1

t (x)
)
⊗ cA

)
: Thdv

=

∫
ϕh(Ω)

 nnp∑
A=1

3∑
i=1

3∑
j=1

NA, j
(
ϕ−1

t (x)
)

ciAT h
i j

dv =

ndo f∑
P=1

cPFint
P

(10.32)
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where

Fint
P =

∫
ϕh

t (Ω)

 3∑
j=1

NA, j
(
ϕ−1

t (x)
)

Ti jNB

dv (10.33)

Finally, the last two terms of Equation (10.29) can be treated as∫
ϕh

t (Ω)

( nnp∑
A=1

NA
(
ϕ−1

t (x)
)

cA

)
· fdv +

∫
ϕh

t (Γσ)

( nnp∑
A=1

NA
(
ϕ−1

t (x)
)

cA

)
· t̄da =

ndo f∑
P=1

cPFext
P (10.34)

where
Fext

P =

∫
ϕh

t (Ω)
NA
(
ϕ−1

t (x)
)

fidv +

∫
ϕh

t (Γσ)
NA
(
ϕ−1

t (x)
)
· t̄ida. (10.35)
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10.6. Generation of Vector/Matrix Equations

We now define the following vectors and matrices of global variables, all with dimension ndo f :

c = {cP}

d(t) =
{

dQ(t)
}

Fint(d(t)) =
{

Fint
P

}
Fext =

{
Fext

P
}

M =
[
MPQ

]
(10.36)

The results of Equation (10.30)–Equation (10.35) can now be summarized as

cT
[
Md̈(t) + Fint(d(t))−Fext

]
= 0, (10.37)

which must hold for all ndo f -vectors c that result in satisfaction of the homogeneous boundary
condition imposed on W (i.e., Equation (10.18)).

Finally we observe that not all of the members of d(t) are unknown; for nodes lying on Γu, these
degrees of freedom are prescribed. Furthermore, the corresponding entries of c at these nodes are
typically taken to be zero, so that the aforementioned condition on Wh is obeyed. Since the
remainder of the vector c is arbitrary, it must be the case that the elements of the bracketed term in
Equation (10.37) corresponding to free degrees of freedom must be identically zero, so that
Equation (10.37) will hold for arbitrary combinations of the cP. Thus we can write the nonlinear
equation that expresses the discrete equations of motion:

Md̈(t) + Fint(d(t)) = Fext. (10.38)

Here we employ a slight abuse of notation because we have asserted in Equation (10.36) that all
vectors and matrices have dimension ndo f , yet we only enforce Equation (10.38) for free degrees
of freedom. Denoting the number of free degrees of freedom as neq, on can account for this
difference in practice by calculating the vector and matrix entries for all degrees of freedom and
then merely disregarding the ndo f −neq equations corresponding to the prescribed degrees of
freedom. The members of d(t) that are prescribed do need to be retained in its definition,
however, since they enter into both terms on the left-hand side of Equation (10.38). It should
simply be remembered that only neq members of d(t) are, in fact, unknown. We will have an
opportunity to visit the general topic of constraint enforcement in greater detail when discussing
solutions to these nonlinear equations (see Chapter 13).
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10.7. Localization and Assembly

The description to this point is mostly a matter of mathematical manipulation with little insight
gained into the character of the interpolation functions, NA. In fact, the basic nature of these
interpolation functions distinguishes the finite element method from other variational solution
techniques.

The detail of shape function construction will be discussed in Chapter 14 in the context of
element programming. However it is useful to discuss here the basic character of finite element
approximation functions to give general insight into the structure of the method. We refer to
Figure 10-3 which depicts a node A in Ω, along with the elements attached to it. A basic starting
point for the development of a finite element method is as follows: the shape function associated
with Node A, NA, is only nonzero in that sub-portion of Ω encompassed by the elements
associated with Node A and is zero everywhere else in Ω.

This property of the shape functions is crucial to the modular character of the finite element
method. Shape functions NA having this property are said to possess local support.

Figure 10-3. Local support of finite element interpolation functions. The region
of support for NA shown as shaded.

To gain insight into the effect of this property, we examine the expression given in
Equation (10.31) for an element of the mass matrix MPQ. We note in particular that the integrand
of Equation (10.31) will be nonzero if both nodes A and B share a common element in the mesh.
Otherwise MPQ must be zero. If we fix our attention on a given Node A in the mesh, we can
conclude that very few Nodes B will produce nonzero column entries in M. This matrix is
therefore sparse, and it would be a tremendous waste of time to compute M by looping over all
the possible combinations of node numbers and spatial indices without regard to elements and the
node numbers attached to them.
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Instead the global matrices and vectors needed in the solution of Equation (10.38) are more
typically computed using two important concepts: localization and assembly. Still considering the
matrix M as an example, we note that by the elementary properties of integration, we can write

MPQ =

∫
ϕh

t (Ω)
ρNA

(
ϕ−1

t (x)
)
δi jNB

(
ϕ−1

t (x)
)

dv

=

nel∑
e=1

∫
ϕh

t (Ωe)
ρNA

(
ϕ−1

t (x)
)
δi jNB

(
ϕ−1

t (x)
)

dv

=

nel∑
e=1

Me
PQ,

(10.39)

where
Me

PQ =

∫
ϕh

t (Ωe)
ρNA

(
ϕ−1

t (x)
)
δi jNB

(
ϕ−1

t (x)
)

dv. (10.40)

Thus the global mass matrix can be computed as the sum of a number of element mass matrices.
This fact in itself is not especially useful because each of the Me is extremely sparse, even more
so than M. In fact, the only entries of Me that will be nonzero will be those for which both P and
Q are degrees of freedom associated with element e.

This fact can be exploited by defining another local element matrix me containing only degrees of
freedom associated with that element. We introduce element degrees of freedom indices p and q,
as indicated in Figure 10-4. Assuming that p and q can take on values between 1 and nedo f , where
nedo f is the number of degrees of freedom associated with the element, an nedo f ×nedo f matrix m
is constructed as

me =
[
me

pq
]
. (10.41)

The me
pq can be specified by introducing the concept of a local node number a or b as shown in

Figure 10-4. With these definitions we can write

me
pq =

∫
ϕh

t (Ωe)
ρNa

(
ϕ−1

t (x)
)
δi jNb

(
ϕ−1

t (x)
)

dv (10.42)

where a sample relationship between indices i, a, and p appropriate for the element at hand might
be

p = (a−1)×2 + i (10.43)

(similarly for j, b, and q). The notation Na simply refers to the shape function associated with
local Node a. By definition it is the restriction of the global interpolation function NA to the
element domain.

Calculation of the local element entities, such as me, turns out to be highly modular procedure
whose form remains essentially unchanged for any element in a mesh. Detailed discussion of this
calculation is deferred until Chapter 14.

Let us suppose for a moment, however, that we have a procedure in hand for calculating this
matrix. We might then propose the following procedure for calculating the global mass matrix M
and internal force vector Fint:
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Figure 10-4. Element (local) degrees of freedom for a sample finite element.

Step 1: Zero out M, Fint.

Step 2: For each element e, e = 1, . . . ,nel :

a) Prepare local data necessary for element calculations - e.g., Xe (nedo f - vector of
element nodal coordinates), de (nedo f -vector of element nodal configuration
mappings), etc.

b) Calculate element internal force vector fint,e =
{

f int,e
p
}

and element mass matrix
me =

[
me

pq
]

via

f int,e
p =

∫
ϕh

t (Ωe)

 3∑
j=1

Na, j
(
ϕ−1

t (x)
)

T h
i j

dv (10.44)

and Equation (10.42).

c) Assemble the element internal force vector and element mass matrix into their global
counterparts by performing the following calculations for all local degrees of freedom
p and q:

MPQ = MPQ + me
pq (10.45)

and
Fint

P = Fint
P + f int,e

p , (10.46)

where local degrees of freedom are related to global degrees of freedom via the LM
array, defined so that

P = LM(p,e) (10.47)
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and
Q = LM(q,e). (10.48)

Step 2a) above is referred to as localization; given a particular element, e, it extracts the local
information from the global arrays necessary for element level calculations. Step 2b) consists of
element level calculations; these calculations will be discussed in detail in Chapter 14. Step 2c) is
the process known as assembly and takes the data produced by the element level calculations and
assembles them in the proper locations of the global arrays.

We can thus now summarize the effect of localization and assembly in a finite element
architecture. They act as pre- and post-processors to the element-level calculations, enabling the
entities needed for global equilibrium calculations to be computed in a modular manner as
summation of element contributions. Of course, the effectiveness of this procedure, as well as the
convergence behavior of the numerical method in general, depends crucially on the interpolation
functions chosen and their definitions in terms of elements. We defer this topic for now and
concentrate in the coming chapters on the classes of problems and global equation-solving
strategies to be utilized.
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11. QUASISTATICS

11.1. Quasistatic Assumption

As discussed previously in the context of a Linear Elastic IBVP, the quasistatic approximation
is appropriate when inertial forces are negligible compared to the internal and applied forces in a
system. The question of what is negligible generally relies on intuition, and numerical
experimentation is one way to gain this intuition.

Omission of the inertial term in the discrete equations of motion, Equation (10.38), yields a
quasistatic problem of the form

Fint(d(t)) = Fext (11.1)

subject to only one initial condition of the form

d(0) = d0. (11.2)

Note that the time variable, t may correspond to real time (e.g., if rate-dependent material
response is considered) but need not have physical meaning for rate independent behavior. For
example, it is common for t to be taken as a generic parameterization for the applied loading on
the system as discussed below.
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11.2. Internal Force Vector

The quantity Fint (d(t)) is known as the internal force vector and consists of that set of forces that
are variationally consistent with the internal stresses in the body undergoing analysis. The generic
expression for an element in this vector is

Fint
P =

∫
ϕh

t (Ω)

 3∑
j=1

NA, j
(
ϕ−1

t (x)
)

T h
i j

dv. (11.3)

This vector-valued operator is generally a nonlinear function of the unknown solution vector d(t)
due to the possible material nonlinearity and/or geometric nonlinearity inherent in the definition
of the Cauchy stress T h

i j in Equation (11.3). As implied by our notation, we assume the solution
vector d to be smoothly parameterized by t which may represent time or some other loading
parameter.
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11.3. External Force Vector

The external load vector Fext(t) must equilibrate the internal force vector, as is clear from
Equation (11.1). As presented in the previous chapter, the expression of an element Fext

P of Fext(t)
is

Fext
P =

∫
ϕh

t (Ω)
NA
(
ϕ−1

t (x)
)

fi(t)dv +

∫
ϕh

t (Γσ)
NA
(
ϕ−1

t (x)
)
· t̄i(t)da, (11.4)

where the explicit dependence of fi and t̄i upon t has been indicated and where P = ID(i,a) as
given in Equation (10.27). In other words, we assume that the prescribed external force loadings
fi and prescribed surface tractions t̄i are given functions of t.

Equation (11.4) implies no dependence of either t̄i or fi upon ϕt(x) (and thus d). Provided no such
dependence exists, the external force is completely parameterized by t, and the sole dependence of
the equilibrium equations on d occurs through Fint. However , it is important to realize that some
important loading cases are precluded by this assumption. Perhaps the most important being the
case of pressure loading, where the direction of applied traction is opposite to the surface normal,
which in large deformation problems depends upon ϕt(x). Such a load is sometimes called a
follower force and will, in general, contribute additional nonlinearities. Such nonlinearities are
handled notationally, simply by recognizing that the traction t̄i now depends on ϕt(x), i.e.,

Fext
P =

∫
ϕh

t (Ω)
NA
(
ϕ−1

t (x)
)

fidv +

∫
ϕh

t (Γσ)
NA
(
ϕ−1

t (x)
)
· t̄i(t,ϕt(x))da. (11.5)
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11.4. Incremental Load Approach

We may now summarize the global solution strategy applied to quasistatic nonlinear solid
mechanics applications. We assume that we are interested in the solution d(t) over some time
interval of interest for t:

t ∈ [0,T] (11.6)

We subdivide this interval of interest into a set of sub-intervals via

[0,T] =

N−1⋃
n=0

[tn, tn+1] , (11.7)

where n is an index on the time steps or intervals, and N is the total number of such increments.
We assume that t0 = 0 and that tN = T, but we do not, in general, assume that all time intervals
[tn, tn+1] have the same width.

With this notation, the incremental load approach attempts to solve the following problem
successively in each time interval [tn, tn+1]:

Given the solution dn corresponding to time level tn, find dn+1 corresponding to tn+1 satisfying:

Fint (dn+1) = Fext (dn+1) . (11.8)

where we have included an assumed dependence of the external loading on deformation ϕt(x).

This governing equation is also often expressed by introducing the concept of a residual vector
r(dn+1):

r (dn+1) = Fext (dn+1)−Fint (dn+1) . (11.9)

Solution of Equation (11.8), therefore, amounts to finding the root of the equation

r (dn+1) = 0. (11.10)

The importance of stating equilibrium in this manner will be made much clearer in the Chapter
discussing nonlinear equation solving, (chapter 13). For the moment, the physical meaning of this
approach is depicted graphically in Figure 11-1. Starting with an initial equilibrium state tn, so
that r(dn) = 0, we introduce an increment in the prescribed load and attempt to find that
displacement increment, dn+1−dn, that will restore equilibrium (i.e., result in satisfaction of
Equation (11.10). This will require a nonlinear equation solving technique for determination of
dn+1, a topic that will be discussed further in Chapter 13.
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Figure 11-1. Simple illustration of the incremental load approach to quasistatics
problems
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12. DYNAMICS

12.1. Semi-discrete Approach

We now include the inertial terms in the discrete equation system and consider solving

Md̈(t) + Fint(d(t)) = Fext(d(t)) (12.1)

for t ∈ [0,T] subject to the initial conditions

d(0) = d0 (12.2)

and
ḋ(0) = v0. (12.3)

Note that in Equation (12.1) time remains continuous, whereas spatial discretization has already
been achieved by the finite element interpolations summarized in Chapter 10. This type of finite
element approach to transient problems is sometimes referred to as the semi-discrete finite
element method, since the approximation in space is performed first, leaving a set of equations
discrete in space but still continuous in time. To complete the approximation, a finite differencing
procedure is generally applied in time as discussed next.
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12.2. Time-Stepping Procedures

As discussed in Chapter 11, we subdivide the time interval of interest [0,T] via

[0,T] =

N−1⋃
n=0

[tn, tn+1] (12.4)

and consider the problem:

Given algorithmic approximations for the solution vector (dn), velocity (vn), and acceleration (an)
at time tn, find approximations dn+1, vn+1, and an+1 for these quantities at time tn+1. Note that, in
contrast to the quasistatic problem, the variable t here does have the interpretation of actual
time.

A thoroughly studied topic in dynamics is the construction of effective time integrators for
application to the semi-discrete equations of motion. An ideal approach possesses minimal
dispersion and dissipation. As shown in Figure 12-1, a measure of numerical dispersion is
period error (T̄ −T ), and a measure of numerical dissipation is amplitude decay (Ā−A).
Figure 12-1 depicts a single wave with amplitude and period A and T that generically is the exact
solution to the wave equation (subject to the proper initial conditions and/or external force).
Numerical dispersion by the time integrator causes a wave’s frequency to decrease, thus
dispersing its energy to the lower frequencies. Numerical dissipation by the time integrator causes
the wave’s energy to decrease and therefore is said to dissipate its energy.

Figure 12-1. Simple illustration of approximation error in transient time integra-
tors

The time integrators we consider here can all be described by a 3-parameter method called the
α-method of time integrators. It is also referred to as the Hilber-Hughes-Taylor Method, or HHT
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method, as described in Reference [1], which is a generalization of the well-known and pervasive
Newmark family of temporal integrators (Reference [2]). The Newmark algorithm can be
summarized in a time step [tn, tn+1] as follows:

Man+1 + Fint(dn+1) = Fext(dn+1)

dn+1 = dn +∆tvn +
∆t2

2
[
(1−2β)an + 2βan+1

]
vn+1 = vn +∆t

[
(1−γ)an +γan+1

]
,

(12.5)

where β and γ are algorithmic parameters that define the stability and accuracy characteristics of
the method.

The extension of the Newmark family of integrators to the α-method of integrators is
accomplished with the addition of the parameter, α:

Man+1 + (1 +α)Fint(dn+1)−αFint(dn) = (1 +α)Fext(dn+1)−αFext(dn)

dn+1 = dn +∆tvn +
∆t2

2
[
(1−2β)an + 2βan+1

]
vn+1 = vn +∆t

[
(1−γ)an +γan+1

]
,

(12.6)

where, as expected, setting α to zero reduces the HHT integrator to Newmark’s method. Although
a wide range of algorithms exist corresponding to the different available choices of β and γ, two
algorithms in particular are significant:

• Central Differences (α = 0, β = 0, γ = 1/2). This integrator is second-order accurate in time
and only conditionally stable, meaning that the linearized stability is only retained when ∆t
is less than some critical value. This algorithm is an example of an explicit finite element
integrator discussed in Section 12.3.

• Trapezoid rule (α = 0, β = 1/4, γ = 1/2). This integrator is also second-order accurate but
unconditionally stable for linear problems, meaning that the spectral radii of the integrator
remains less than one in modulus for any time step ∆t (in linear problems). This algorithm
is an example of an implicit finite element integrator discussed in Section 12.4
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12.3. Explicit Finite Element Methods

Examining the central differences algorithm, we substitute β = 0, γ = 1/2 into Equation (12.6) to
obtain

an+1 = M−1
(

Fext(dn+1)−Fint(dn+1)
)

dn+1 = dn +∆tvn +
∆t2

2
an

vn+1 = vn +
∆t
2

[an + an+1] ,

(12.7)

where the first equation has been written as solved for an+1.

Equation (12.7) can be used to explain why this formulation is termed explicit. Given the three
vectors {an,vn,dn}, the data at tn+1, {an+1,vn+1,dn+1} can be computed explicitly, i.e., without the
need for solution of coupled equations provided the mass matrix M is a diagonal matrix.

It is important to note approximation properties of the explicit time integrator (see Reference [3]).
By itself, the explicit time integrator causes the period to be shortened. However, a lumped or
diagonalized mass matrix as opposed to a consistent mass matrix causes the period to be
elongated. For one-dimensional problems with uniform meshes the period error cancels exactly.
In the words of Reference [3], these compensating errors generally produce a matched approach.
Thus a lumped mass matrix gives rise to the fully explicit algorithm, requiring only an inverse of
a diagonal matrix.

Although this form of the central difference formulation (Equation (12.7)) is readily obtained
from the Newmark formulas, it does not give insight into the source of the central difference
terminology and, in fact, does not represent the (historical) manner in which the integrator is
ordinarily developed or implemented. To see the usual form, one starts with the difference
formulas for acceleration and velocity (see e.g., “The Difference Calculus” Chapter 9 in
Reference [4]):

an =
vn+1/2−vn−1/2

tn+1/2− tn−1/2
, (12.8)

and

vn+1/2 =
dn+1−dn

tn+1− tn
, (12.9)

where, as shown in Figure 12-2, the time axis is discretized with notions of whole step
configurations at times tn−1, tn, tn+1 and half-step configurations at times tn−1/2, tn+1/2, . . .

Rearranging, these difference formulas (Equations (12.8) and (12.9)) can be converted into
integration formulas:

vn+1/2 = vn−1/2 +
1
2
(
∆tn−1/2 +∆tn+1/2

)
an

dn+1 = dn +∆tn+1/2vn+1/2

(12.10)

Combining these integration formulas with the equilibrium equation evaluated at tn, we can
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Figure 12-2. Graphical construction of the central difference time integrator

express the algorithm as

an = M−1
[
Fext(dn)−Fint(dn)

]
vn+1/2 = vn−1/2 +

1
2
(
∆tn−1/2 +∆tn+1/2

)
an

dn+1 = dn +∆tn+1/2vn+1/2

(12.11)

The velocity and displacement updates emanate from the central difference approximations to the
acceleration an and velocity vn+1/2, respectively, giving the algorithm its name. The velocity
measures that are utilized by the algorithm are shifted by a half step (said to be centered at the
half-step), whereas accelerations and displacements are centered at the whole step. Figure 12-3
graphically reveals the simplicity of the explicit time integration scheme.

As already mentioned, explicit finite element schemes are only conditionally stable, meaning that
they only remain stable when the time increment ∆t is less than some critical limit. This limit,
sometimes called the Courant stability limit (see Reference [5]), can be shown to be as follows

∆t ≤
2
ω
, (12.12)

where ω is the highest natural frequency in the mesh. An important necessary step in the central
difference explicit time integrator is the estimation of this highest natural frequency in the
discretized problem. Explicit dynamics problems frequently involve large deformations with
potentially significant geometric, material, and contact nonlinearities, all of which can cause
significant changes in the critical time step. Therefore, estimation of the critical time step must be
made repeatedly throughout the problem simulation. It is thus important that the this calculation
be as accurate and efficient as possible to make the most of the explicit method.
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Figure 12-3. Graphical representation of the central difference time integrator

12.3.1. Element-based Critical Time Step Estimate

Stable time step estimates for explicit finite element methods are traditionally based on the
conservative estimate of the frequency:

ω = 2
(c

h

)
max

, (12.13)

where c and h are the sound speed and characteristic mesh size, respectively, associated with the
element in the mesh having the largest ratio of these two quantities. Combining Equations (12.12)
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and (12.13) we find that

∆tmax =

(
h
c

)
min

. (12.14)

In other words, the time step may be no larger than the amount of time required for a sound wave
to traverse the element in the mesh having the smallest transit time. Such an estimation of the
critical time step is based solely on element level calculations and is, in fact, part of the element
internal force calculation. This is due in large part to the estimate of the sound speed of the
material, which is of a dilatational wave. The accuracy of directly applying this condition is
limited in practice due to the arbitrary finite element geometries in a typical mesh because the
definition of characteristic length is somewhat of an art for distorted elements. Alternatively, the
stability limit as reported in Reference [3] is related to the maximum global eigenvalue, λmax:

∆t2 =
4

λmax
. (12.15)

Because the maximum element eigenvalue is an upper bound on the maximum global eigenvalue
(Reference [6]), we can compute an element-based stable time step estimate using

∆tE =
2

√
λ
∣∣∣
max over e

. (12.16)

Details of how this element-based time step is calculated for different elements are covered in the
chapter on element formulations.

12.3.2. Nodal-based Critical Time Step Estimate

A method is now described in which the maximum element modal stiffness are used to estimate a
maximum nodal stiffness which, when combined with the lumped nodal mass, gives a sharper
upper bound on the maximum global eigenvalue.

Let λmax denote the largest eigenvalue of the generalized problem

(K−λM)u = 0 (12.17)

and umax the eigenvalue corresponding to λmax. In Equation (12.17), K is the stiffness matrix and
M the diagonal, lumped mass matrix. The Rayleigh quotient for the maximum eigenvalue is

λmax =
uT

maxKumax

uT
maxMumax

. (12.18)

Noting that the numerator of Equation (12.18) is twice the strain energy S of the system when
deformed into the mode shape umax, we can write

2S = uT
maxKumax =

ne∑
e=1

(
ue

max
)T Ke (ue

max
)
. (12.19)
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We observe that the eigenvalue problem for the element stiffness matrix Ke may be stated as

Keφe = keφe. (12.20)

Consequently,
(ue)T Keue ≤ ke

max(ue)T ue (12.21)

for all ue where ke
max is the maximum eigenvalue (so called modal stiffness) of the element

stiffness matrix. From this result, we define a global stiffness matrix K̂ assembled from the
element stiffness matrices K̂e defined as

K̂e = ke
maxIe (12.22)

where Ie is an ndofe by ndofe identity matrix (ndofe is the number of degrees of freedom in the
element). Based on Equations (12.18), (12.20) and (12.21),

2S ≤
ne∑

e=1

(
ue

max
)T K̂e (ue

max
)

(12.23)

leading to

λmax =
uT

maxKumax

uT
maxMumax

≤
uT

maxK̂umax

uT
maxMumax

= λ̂max. (12.24)

Given the mode shape umax, the expression for λ̂max is easily evaluated since both K̂ and M are
diagonal. Methods for predicting this mode shape have been developed for specific ’template’
geometries (Reference [7], but for general finite element geometries this remains impractical.

Rather than directly calculating λ̂max, we seek an upper bound. To this end, we define the ratio for
every node I as

λ̂I =
K̂I

MI , (12.25)

where K̂I and MI are the diagonal elements in the Ith row of K̂ and M, respectively. Without loss
of generality, the ratios are ordered such that λ̂m ≥ λ̂m−1 ≥ · · · ≥ λ̂1, in which case Equation (12.24)
can be written as

λ̂max =

∑
I uT

maxI K̂I∑
I uT

maxI MI = λ̂m

{
1 +
[(

(um−1
max )2Mm−1

)
/
(
(um

max)2Mm
)]

λ̂m−1

λ̂m + . . .

1 +
[(

(um−1
max )2Mm−1

)
/
(
(um

max)2Mm
)]

+ . . .

}
(12.26)

Since all the ratios λ̂m−1/λ̂m are less than or equal to one, it follows immediately that

λ̂max ≤ λ̂
m =

K̂I

MI

∣∣∣∣
max over I

, (12.27)

in which MI is the lumped mass at node I, and K̂I is the assembly of the maximum element
modal stiffness at node I, that is

K̂I =
∑
e∈eI

ke
max, (12.28)
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where eI is the set of elements that are connected to node I.

Equations (12.15), (12.24), and (12.27) lead to a nodal-based stable time step estimate:

∆tN =
2√

K̂I

MI

∣∣∣∣
max over e

. (12.29)

Now we show that the nodal-based stable time step estimate is always greater than or equal to the
element-based estimate. Following a similar procedure outlined in Equation (12.26), we can
write

λ̂I =
K̂I

MI =

∑
e∈eI ke

max∑
e∈eI me =

k1
max
m1 + (m2/m1) k2

max
m2 + . . .

1 + (m2/m1) + . . .
≤

k1
max
m1 , (12.30)

where the element eigenvalues ke
max/m

e are arranged in descending order,
k1

max/m
1 ≥ k2

max/m
2 ≥ . . . . Thus the nodal-based estimate of the maximum eigenvalue at node I is

bounded by the largest of all element eigenvalues connected to node I. It follows from
Equation (12.30) that

λ̂m =
K̂I

MI

∣∣∣∣
max over I

≤
ke

max
me

∣∣∣∣
max over e∈eI

∣∣∣
max over I

=
ke

max
me

∣∣∣∣
max over e

= λe
max
∣∣
max over e (12.31)

Since λ̂m ≤ λe
max
∣∣
max over e, it follows directly from Equation (12.15) that the nodal-based estimate

is always greater than or equal to the element-based estimate.

The cost of the nodal-based estimate calculation includes the element eigenvalue analysis (which
must be done in the case of the element based calculation) plus the cost of an assembly procedure
every time step. Equation (12.29) must be evaluated at each node as opposed to evaluating
Equation (12.16) for every element.

12.3.3. Lanczos-based Critical Time Step Estimate

The paper [8], which is reproduced here, demonstrates the cost-effective use of the Lanczos
method for estimating the critical time step in an explicit, transient dynamics code. The Lanczos
method can give a significantly larger estimate for the critical time-step than an element-based
method (the typical scheme). However, the Lanczos method represents a more expensive method
for calculating a critical time-step than element-based methods. Our paper shows how the
additional cost of the Lanczos method can be amortized over a number of time steps and lead to
an overall decrease in run-time for an explicit, transient dynamics code. We present an adaptive
hybrid scheme that synthesizes the Lanczos-based and element-based estimates and allows us to
run near the critical time-step estimate provided by the Lanczos method.

12.3.3.1. Introduction

Codes using explicit time integration techniques are important for simulating transient dynamics
problems involving large deformation of solids with various nonlinear effects (contact, nonlinear
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materials, element death, etc.). The second order central difference operator used in explicit codes
is stable if the time step is no larger than the critical time step. For most problems in solid
mechanics, the critical time step is extremely small and the number of time steps required for a
typical analysis is quite large. Therefore, the accurate, efficient, and reliable calculation of the
critical time step is of fundamental importance.

The element-based method [9] is an efficient method for producing a critical time step estimate at
every time step. However, it can produce a conservative estimate for the critical time step in many
cases. The Lanczos [10] method is a reliable procedure for producing a time step that is the
theoretical maximum value for a structure and is usually much better than the element-based
estimate. The cost of obtaining a Lanczos based estimate will not offset the cost benefit of the
increased value for the critical time step. Therefore, it is not feasible to call the Lanczos method at
every explicit dynamics time step. In this paper we outline a cost-effective method for utilizing the
Lanczos method (together with an element-based scheme) for the critical time step estimation.

Benson [11] investigates estimating the critical time step by using the power iteration. Parlett [12,
sec. 12-5] presents analysis comparing the Lanczos method and power iteration. The Lanczos
method provides a more rapid approximation, in terms of matrix-vector products, relative to the
power iteration for approximating the largest eigenvalue as the relative separation of the largest
eigenvalue decreases. Hence, we can expect the Lanczos method to require less matrix-vector
products to approximate the critical time step to a specified tolerance. We also remark that in
contrast to our paper, Benson [11] does not present a scheme that addresses two crucial issues
when using the power iteration (or Lanczos method) for estimating the critical time step.

Two crucial issues must be addressed when using the Lanczos method to estimate the critical time
step. First, the Lanczos-based time step estimate must be used for two to three times the number
of explicit time integration steps required to recover the cost of the Lanczos method if we are to
see a noticeable reduction in overall computation times for a problem. (We explore the cost of the
Lanczos method in terms of internal force calculations in later sections.) Second, the Lanczos
method provides an overestimate of the critical time step, and so we need an effective scheme to
scale back the Lanczos-based critical time step estimate. We address both these issues and present
an adaptive hybrid scheme that synthesizes the Lanczos-based and element-based estimates and
allows us to run near the critical time-step estimate provided by the Lanczos method.

We also remark that in addition to the increased efficiency that can be achieved with the
Lanczos-based time step, we also have the added benefit of increased accuracy. For explicit
transient dynamic codes, using a time step as close as possible to the critical time step [3] gives
the most accurate answer. Reducing the time step in an explicit transient dynamics code actually
increases the error.

Our paper is organized as follows. Section 12.3.3.2 discusses the critical time step and motivates
a Lanczos-based estimate. The Lanczos iteration and method are briefly introduced in section
12.3.3.3. A cost benefit analysis of the element-based and Lanczos-based approximations to the
critical time is considered in section 12.3.3.4. A practical implementation within an explicit
dynamics code is the subject of section 12.3.3.5. Several numerical examples are presented in
section 12.3.3.6, and we provide our conclusions in section 12.3.3.7.
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12.3.3.2. Critical time step

Let K and M be the stiffness and mass matrices arising in an explicit dynamics simulation so that
M is a diagonal matrix due to mass lumping. The critical time step for second order central time
differencing is bounded from above by 2ω−2

max where ω2
max is the largest eigenvalue of the

generalized eigenvalue problem

Ku = Muω2
max,

(
K,M ∈ Rn×n) , (12.32)

where we assume that ω2
max is positive. An inexpensive [13] upper bound to ω2 is given by the

maximum element eigenvalue ω2
max,e over all the element eigenvalue problems

Keue = Meueω2
e ,

(
Ke,Me ∈ Rne×ne

)
, (12.33)

where ne� n. Therefore, ω−2
max,e ≤ ω

−2
max and we have a lower bound for the critical time step. The

maximal element eigenvalue is typically computed analytically [9] for the finite elements that are
typically used in transient dynamics.

The Lanczos method rapidly provides a lower bound ω2
max,L to ω2

max so that

ω−2
max,e ≤ ω

−2
max ≤ ω

−2
max,L. (12.34)

In fact, the Lanczos iteration is sharp so that ω−2
max / ω

−2
max,L so that with care, an excellent

approximation to the critical time step is computed for a modest cost. This approximation may be
dramatically superior to the standard element based estimate. The details of a careful use of the
Lanczos-based estimate is the subject of section 12.3.3.5.

12.3.3.3. Lanczos iteration

The Lanczos reduction rapidly provides approximations to the maximum and minimum
eigenvalues of a symmetric A ∈ Rn×n, in particular the largest in magnitude eigenvalue. Suppose
that

AQ j = Q jT j + f jeT
j , (12.35)

is a Lanczos reduction of length j where f j ∈ R
n, and e j ∈ R

j contains column j of the identity
matrix In ∈ R

n×n. If we denote

T j =


α1 β2 · · · 0
β2 α2 · · · 0
...

. . . β j
0 · · · β j α j

 , αi,βi ∈ R

and
Q j =

(
q1 q2 · · · q j

)
, qi ∈ R

n

then the familiar Lanczos three-term recurrence is recovered by equating column j of (12.35) to
obtain

f j = Aq j−q jα j−q j−1β
T
j−1. (12.36)
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Furthermore, because of the orthonormality of Q j, we have

α j = qT
j Aq j, (12.37a)

q j+1β j+1 = f j, (12.37b)

qT
i f j = 0, i = 1, . . . , j (12.37c)

and so q j+1 = f jβ
−1
j+1, where we assume that β j+1 is non-zero. We define a Lanczos iteration to be

that computing Aq j,α j,β j+1, and f j. We define the Lanczos method that of computing m
iterations and computing the largest in magnitude eigenvalue of Tm.

The largest eigenvalue of the symmetric tridiagonal matrix T j approximates the largest in
magnitude eigenvalue of A. We can determine the quality of the approximation produced by an
eigenpair of T j. If we post multiply (12.35) by s where T js = sθ (and ‖s‖ = 1), then

A(Q js)− (Q js)θ = f j(eT
j s). (12.38)

In words, the residual of the approximate eigenpair (Q js, θ) is proportional to f j (note that eT
j s is

notation for the last component of s). The implication is that we can easily monitor the quality of
the approximation produced by the Lanczos method. If θ is the largest in magnitude eigenvalue of
T j, then θ ≤ ω2

max ≤ ‖f j‖2 |eT
j s|+ θ (see [12] for a discussion). Hence,

1
‖f j‖2 |eT

j s|+ θ
≤ ω−2

max ≤
1
θ
. (12.39)

We also remark that the norm of the residual is a non-increasing function of j; again see [12].

The Lanczos iteration is adapted for computing the largest eigenvalues of (12.32) by replacing A
with M−1K and computing an M-orthonormal Q j. This orthonormality is needed so that M−1K is
symmetric in the inner product induced by M. See [14, 12] for further discussion and
implementations.

The cost of a careful implementation of a Lanczos iteration, j > 1, is one matrix-vector product
with K and M−1, and two vector products and vector subtractions. Within an explicit dynamics
code, the cost of computing a Lanczos vector is approximately the cost of an internal force
calculation, represented by the matrix-vector product Kq j. Therefore, we approximate the cost of
computing the Lanczos-based time step estimate as

mτ (12.40)

where m denotes the number of Lanczos iterations and τ represents the CPU (central processor
unit) time needed for an element-based explicit dynamics time integration step.

The Lanczos method only requires knowledge of K via its application on a vector. If internal
force calculations are used for the needed matrix-vector products, the Lanczos vectors q j are
scaled so that they represent velocities associated with small strain. When these scaled vectors are
sent to the internal force calculation, the internal force calculation becomes a matrix-vector
product with a (constant) tangent stiffness matrix KT .
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12.3.3.4. Cost benefit analysis

This section provides a simple model for assessing the cost of using the Lanczos method for
computing an estimate of the critical time step. We assume that Lanczos-based time step is valid
for nL time integration steps. We address the important issue of the adapting the time step when
we present the details for practical use of the Lanczos method in a subsequent section.

Denote by ∆tL and ∆te the time steps estimate of the critical time step computed by the Lanczos
and element-based methods, where the ratio ρ of ∆tL to ∆te is at least as large as one because of
(12.34). After nL time steps, the dynamics simulation is advanced in time nL∆tL. Let ne be the
number of element-based time steps so that ne∆te ≤ nL∆tL < (ne + 1)∆te. In terms of ρ, we have
the relationship

ne ≤ ρnL < ne + 1, (12.41)

so bounding the number of Lanczos-based explicit integration steps in terms of ρ and the number
of element-based integration steps.

Let us examine the computational costs in terms of CPU time in performing the above nL and ne
integration steps. Denote by τ the CPU time for an element-based time integration step and
assume that it is dominated by the cost of an internal force calculation. Using (12.41), the CPU
time of nL time integration steps is

(nL + m)τ, (12.42)

and the CPU time of ne time integration steps is neτ. Equating these two CPU times, determines
when the cost of both approaches is equivalent and results in the relationship

n̂e = m + n̂L. (12.43)

Using (12.43) within (12.41) gives

m
ρ−1

≤ n̂L <
m + 1
ρ−1

(12.44)

so bounding the minimum number of Lanczos-based time integration steps in terms of the
number of Lanczos iterations and ρ so that the cost of the computing the Lanczos-based time step
is amortized.

Our cost benefit analysis provides the “break-even” point at which the Lanczos method becomes
cost-effective by overcoming the associated overhead. For example, let ρ = 1.25 and m = 20 so
that n̂L is bounded from below by 80, and by (12.42) n̂e = 100. Hence, the time integration with
the Lanczos-based and element-based estimates of the critical time step give the same simulation
time for the same CPU time. If we use the Lanczos-based time step ∆tL for more than 80 time
integration steps, then the Lanczos-based approach is cost-effective.

A Lanczos-based critical time estimate is cost effective if m is small and ρ is not close to one. The
size of m is dependent upon the ability of the Lanczos method to rapidly provide an accurate
approximation to ω2

max. If ρ approaches one, then the Lanczos-based critical time step approaches
the element-based critical time step, implying that n̂L must increase to offset the cost of the m
Lanczos iterations. Section 12.3.3.6 demonstrate that m is small and that ρ is not close to one for
realistic problems.
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Our section ends by considering the additional cost involved with contact. The addition of contact
to an analysis can add computational costs to a time step that are as large as or larger than the
internal force calculations. Therefore, for an analysis with contact, running at a larger time step
than the element-based estimate can have an even greater impact on reducing CPU time for an
analysis.

The above analysis is easily extended to the case where we have contact. If the CPU time of
contact over a time step is some multiple γ of τ, then in analogy to (12.43) and (12.44), we have

(1 +γ)n̂e = m + (1 +γ)n̂L, (12.45)

and
m

(ρ−1)(1 +γ)
≤ n̂L <

m + 1 +γ

(ρ−1)(1 +γ)
(12.46)

Again, for example, let ρ = 1.25 and m = 20 and assume the computational cost of contact
calculations is the same as an internal force calculation so that γ = 1. Hence, the break-even point
is n̂L = 40 and n̂e = 50. The additional cost of the contact calculations within the time integration
reduces the break-even point over that with no contact (γ = 0).

12.3.3.5. Using the Lanczos-based estimate

The previous section shows how the repeated use of a Lanczos-based time step estimate could be
cost-effective within an explicit transient dynamics simulation. This section presents an adaptive
scheme that combines the Lanczos-based estimate with an element-based estimate of the critical
times-step over a number of explicit time integration steps.

Section (12.3.3.2) explained that the Lanczos method provides an approximation to the maximum
eigenvalue of (12.32) from below so overestimating the critical time step. Therefore, we scale
back the Lanczos-based time. The scheme to determine a scaled-back value employs the
element-based time step estimate. Again, let ∆tL and ∆te be the time steps computed by the
Lanczos and element-based methods. The scaled back estimate for the critical time step, ∆ts, is
computed from the equation

∆ts = ∆te + fs(∆tL−∆te), (12.47)

where fs is a scale factor. (The value for fs ranges from 0.9 to 0.95 for our problems—a rigorous
estimate can be made by using (12.39).) This value of fs results in ∆ts close to and slightly less
than the critical time step. Once ∆ts is determined, the ratio

tr =
∆ts

∆te
is computed. This ratio is then used to scale subsequent element-based estimates for the critical
time step. If ∆te(n) is the nth element-based time step after the time step where the Lanczos
method is computed, then the nth time step computed is

∆t(n) = tr∆te(n). (12.48)

The ratio tr is used until the next call to the Lanczos method. The next call to the Lanczos method
is controlled by one of two mechanisms. First, the user can set the frequency with which the
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Lanczos method is called. The user can set a parameter so that the Lanczos method is called only
once every n time steps. This number remains fixed throughout an analysis. Second, the user can
control when the Lanczos method is called based on changes in the element-based time step. For
this second method, the change in the element-based critical time step estimate is tracked. At the
nth step after the call to the Lanczos iteration, the element-based time step is ∆te(n). If the value

|∆te(n)−∆te|
∆te

(12.49)

is greater than some limit set by the user, then the Lanczos method is called. If there is a small,
monotonic change in the element-based time step over a large number of time integration steps,
this second mechanism will result in the Lanczos method being computed. If there is a large,
monotonic change in the element-based critical time step over a few time steps, the Lanczos
method will also be called.

These two mechanisms for calling the Lanczos method may be combined resulting in an adaptive
scheme for estimating the critical time step during an explicit transient dynamics simulation. For
example, suppose the second mechanism, the mechanism based on a change in the element-based
time step, results in a call to the Lanczos method. This resets the counter for the first mechanism,
the mechanism using a set number of time steps between calls to the Lanczos iteration.

12.3.3.6. Numerical experiments

This method for reusing a Lanczos-based time step estimate has been implemented in Presto [15],
and employed within a number of explicit dynamics simulations. We discuss several of these
examples.

Example one: The Lanczos method has been used to obtain a critical time step estimate for a
cubic block consisting solely of cubic elements—a 10×10×10 mesh of eight-node hexahedral
elements. We know that, for a cubic eight-node hexahedral element, the element-based estimate is
conservative by a factor of 1/

√
3. The Lanczos method yields a critical time estimate for this

mesh that is ρ =
√

3 (approximately 1.732) times larger than the element-based estimate. This is
done by using 20 Lanczos vectors.

Example two: Critical time step estimates were made for two mechanical systems. The systems
consisted of cylindrical metal cans containing a variety of components. Some of these
components have relatively simple geometries, while other components have complex shapes. A
number of the components with complex shapes are a foam material used to absorb impact loads.
One component was modeled with approximately 250,000 degrees of freedom, and the other one
was modeled with approximately 350,000 degrees of freedom. For both of these models, a good
estimate for the maximum eigenvalue was obtained with the Lanczos method by computing only
twenty Lanczos vectors. For the model with 250,000 degrees of freedom, an actual analysis was
run. The value for ρ for this problem was 1.83. The break-even point for this case (nL = 20 and
ρ = 1.83) is ne = 45. It was possible to use the same scale factor for 1700 time steps for this
analysis, which is well above the break-even point. The extended use of the Lanczos based
estimate reduced the computation cost by over 56%.
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Example three: A study of a large-scale model involving 1.7 million nodes (5.1 million degrees of
freedom) showed that only 45 Lanczos vectors were required to obtain a good estimate of the
maximum eigenvalue. The value of ρ for this problems was 1.2. Use of this Lanczos based
estimated for this problem would be extremely cost-effective.

12.3.3.7. Conclusions

The Lanczos method is cost-effective for estimating the critical time step in an explicit, transient
dynamics code. The Lanczos method can give a significantly larger estimate for the critical
time-step than an element-based method (the typical scheme). The adaptive hybrid scheme
synthesizes the Lanczos-based and element-based estimates and allows us to run near the critical
time-step estimate provided by the Lanczos method.

Not all problems will lend themselves reuse of one Lanczos-based estimate for thousands of time
steps. However, if it is possible to use the Lanczos-based estimate for two to three times the
number of time steps required for break-even, we begin to see a noticeable reduction in the total
CPU time required for a problem.

In addition, to the increased efficiency we can achieve with the Lanczos iteration, we also have
the added benefit of increased accuracy. For explicit transient dynamic codes, using a time step as
close as possible to the critical time gives the most accurate answer. Reducing the time step in an
explicit transient dynamics code actually increases the error.
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12.4. Implicit Finite Element Methods

To introduce the concept of an implicit time finite element method, we examine the trapezoidal
rule, which is simply the member of the Newmark family obtained by setting α = 0, β = 1/4, and
γ = 1/2. Substitution of these values into Equation (12.6) yields

Man+1 + Fint(dn+1) = Fext(dn+1)

dn+1 = dn +∆tvn +
∆t2

4
[an + an+1]

vn+1 = vn +
∆t
2

[an + an+1] .

(12.50)

Insight into this method can be obtained by combining the first two equations in Equation (12.50)
and solving for dn+1 to get

4
∆t2

Mdn+1 + Fint(dn+1) = Fext(dn+1) + M
(

an +∆tvn +
4

∆t2
dn

)
an+1 =

4
∆t2

(dn+1−dn)−
4
∆t

vn−an

vn+1 = vn +
∆t
2

[an + an+1]

(12.51)

Solving the first equation is the most expensive procedure involved in updating the solution from
tn to tn+1. This equation is not only fully coupled, but also non-linear in general due to the internal
force vector.

Note that we can write the first equation of Equation (12.51) in terms of a dynamic incremental
residual rn+1 via

r(dn+1) =

[
Fext(dn+1) + M

(
an +∆tvn +

4
∆t2

dn

)
−

(
4

∆t2
Mdn+1 + Fint(dn+1)

)]
= 0 (12.52)

This system has the same form as Equation (11.10), which suggests that the same sort of
nonlinear solution strategies are needed for implicit dynamic calculations as in quasistatics
(Chapter 11). Equation solving is the topic of the next chapter, where we will discuss at some
length the techniques used to solve Equations (11.9) and Equation (12.52) in
Sierra/SolidMechanics, particularly for parallel computing.
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13. NONLINEAR EQUATION SOLVING

13.1. Introduction

This chapter discusses non-linear equation solving methods, specifically the use of iterative
algorithms for problems in solid mechanics. Although some of this work has taken place over
many years at Sandia National Labs and elsewhere, recent efforts have significantly added to the
functionality and robustness of these algorithms. This chapter primarily documents these recent
efforts. Some historical development is covered for context and completeness, hopefully showing
a complete picture of the current status of iterative solution algorithms for nonlinear solid
mechanics in Sierra/SolidMechanics.

Iterative algorithms have seen somewhat of a resurgent interest, possibly due to the advancement
of parallel computing platforms. Increases in computational speed and available memory have
raised expectations on model fidelity and problem size. Increased problem size has sparked
interest in iterative solvers because the direct solution strategy becomes increasingly inefficient as
problem size grows. A traditional implicit global solution strategy is typically based on Newton’s
method, generating fully coupled linearized equations that are often solved using a direct method.
In many applications in solid mechanics this procedure poses no particular problem for modern
computing platforms with sufficient memory. However, for large three-dimensional models of
interest, the cost of direct equation solving becomes prohibitive on any computer, except for the
largest supercomputers. This motivates the use of iterative solution strategies that do not require
the direct solution of linearized global equations.

Application of purely iterative solvers to the broad, general area of nonlinear finite element solid
mechanics problems has seen only modest success. Certain classes of problems have remained
notoriously difficult to solve. Examples of these include problems that are strongly geometrically
nonlinear, problems with nearly incompressible material response, and problems with frictional
sliding. Thus, much of this chapter is devoted to examining and discussing an implementation of
a multi-level solution strategy, where the nonlinear iterative solver is asked to solve simplified
model problems from which the real solution to these difficult problems is accumulated. This
strategy has greatly contributed to the functionality and robustness of the nonlinear iterative
solver.
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13.2. The Residual

Recall that the quasistatic problem, Equation (11.9), is written as

r (dn+1) = Fext (dn+1)−Fint (dn+1) = 0 (13.1)

and the implicit dynamics problem using the trapezoidal time integration rule, Equation (12.52),
is written as

r(dn+1) =

[
Fext(dn+1) + M

(
an +∆t vn +

4
∆t2

dn

)
−

(
4

∆t2
Mdn+1 + Fint(dn+1)

)]
= 0. (13.2)

In either case, the equation to be solved takes the form

r (dn+1) = 0, (13.3)

where the residual r (dn+1) is, in general, a nonlinear function of the solution vector dn+1. This
form allows us to consider the topic of nonlinear equation solving in its most general form, with
the introduction of iterations, j = 0,1,2, ..., as

r
(
(dn+1) j

)
= 0, (13.4)

or simply
r j = r

(
d j
)

= 0. (13.5)

For implicit dynamic Sierra/SM simulations, each load step from time n to n + 1 requires a new
nonlinear solve with sub-iterations j = 0,1,2, .... Here we have omitted the references to the load
step, yet it is understood that, e.g., d j is at n + 1.

We can rewrite Equations (13.1) and (13.2) as

r j = Fext
j −Fint

j = 0 (13.6)

and
r j = Fext

j −
4

∆t2
Md j−Fint

j + F̃ = 0 (13.7)

where Fint
j = Fint

(
d j
)

= Fint
(
(dn+1) j

)
and F̃ is the constant portion of the residual, defined as

F̃ = M
(

an +∆t vn +
4

∆t2
dn

)
. (13.8)

The task for any nonlinear equation solution technique is to improve the iterate (or guess) for the
solution vector d j such that the residual r j is close enough to 0. How that is done depends on the
method employed.

Figure 13-1 depicts a generalized nonlinear loadstep solution with solution iterates
j = 0,1,2, ..., j∗, where the iterates converge when

∥∥r j∗
∥∥ ≈ 0 at iteration j∗.

In (a) of Figure 13-1, the solution starts with iterate d0 taken as the solution of the prior load step
from n−1 to n. (Note that the zero iterate is not always taken to be the prior solution. See
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Section 13.6.4 on predictors for more details.) Iterate d0 results in a residual of r0, which then
informs the next iterate d1 such that ‖r1‖ < ‖r0‖. For details on how d1 is formed, see the
following Sections 13.3 through 13.8. In (b) and (c) this procedure from iteration j to j + 1 is
depicted, and in (d) the solution procedure has converged at iteration j∗ with iterate d j∗ . The load
step from n to n + 1 is then solved, and the solution procedure for the next load step from n + 1 to
n + 2 starts over in (a).

Figure 13-1. Graphical depiction of nonlinear iterations.
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13.3. Gradient Property of the Residual

The residual has the very important property that it ‘points’ in the steepest descent or gradient
direction of the function f :

f
(
d j
)

=
1
2
(
d j−d∗

)T r(d j), (13.9)

which is the energy error of the residual. Solving for d j = d∗ is equivalent to minimizing the
energy error of the residual, f

(
d j
)
.

The importance of this property can not be overemphasized. Any iterative solver makes use of it
in some way or another. Even though the solution d∗ is not known, a non-zero residual ‘points the
way’ to improving the guess. Mathematically, our nonlinear solid mechanics problem looks like a
minimization problem discussed at length in the optimization literature, see e.g. [1]. It is from this
viewpoint that the remainder of the nonlinear solution methods will be discussed. The concept of
the energy error of the residual reveals important physical insights into how iterative algorithms
are expected to perform on particular classes of problems.

An example of the energy error of the residual providing physical insight into a problem is
demonstrated in Figure 13-2.

Figure 13-2. Energy error example: two beams with large and small x-sectional
moments of inertia.

Two beams, one thick and one thin, are subjected to a uniform pressure load causing a downward
deflection to the equilibrium point (d1,d2) indicated by the blue dot. If we think of modes of
deformation rather than the nodal degrees of freedom (d1,d2), two modes of deformation come to
mind: a bending mode and an axial mode.

For the thick beam in Figure 13-3, the red dashed line is the locus of points (d1,d2) that induce
only bending stresses in the beam and is therefore called a bending mode. In contrast, the blue
dashed line is the locus of points (d1,d2) that induce only axial stresses in the beam and is
therefore called an axial mode. These bending and axial modes are characterized by the
eigenvectors qb and qa, respectively.
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Figure 13-3. Energy error example: modes of deformation for two beams.

Eigenvectors are typically written as linear combinations of the nodal degrees of freedom. The
bending modes, for example, can be written as qb = a1d1 + a2d2. However, since we are dealing
with a nonlinear problem in our simple example (and in general), the coefficients a1 and a2 vary
with the deformation of the beam - which is precisely why the dashed red line is curved. The
energy error contours can thus be displayed, as shown in Figure 13-4. Any displacement away
from the equilibrium point (d1,d2)∗ produces a nonzero residual and consequently requires
work.

Figure 13-4. Energy error example: Energy error contours for two beams.

Now we compare ‘moving’ the tip of the beam along the red dashed line, which invokes a
bending mode of deformation of the beam versus ‘moving’ the tip along the blue dashed line,
which invokes an axial mode of deformation. The larger modal stiffness (eigenvalue)
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corresponding to the axial mode induces a greater energy penalty for a given amount of
displacement compared to the bending mode. This produces the “stretched” energy contours
shown. Since the ratio of stiffness between the axial and bending modes is much larger for the
thin beam than the thick beam, the “stretching” of the energy error contours is more pronounced
for the thin beam. Mathematically, these contours are a graphical representation of the gradient of
the residual, ∇r(d).

The beam example is chosen for its simplicity, however it also poses a non-trivial nonlinear
problem. Experience has shown that the thinner the beam becomes the more difficult it is to solve.
In fact, convergence investigations reveal that it is the ratio of maximum to minimum eigenvalue
of ∇r(d) that is critical to the performance of iterative methods.
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13.4. Newton’s Method for Solving Nonlinear Equations

In this context, the idea embodied in classical Newton’s method is simple. Substituting the
nonlinear residual r(d j) with the local tangent approximation y(d) gives

y(d) = r(d j) +∇r(d j)(d−d j), (13.10)

which is linear in the vector of unknowns (d). Solving Equation (13.10) (solving for
y(d) = y(d j+1) = 0) gives the iterative update for Newton’s method,

d j+1 = d j−∇r−1(d j)r(d j). (13.11)

The structural mechanics community commonly refers to the tangent stiffness matrix in the
context of geometrically nonlinear problems. Based on Equation (13.10), the tangent stiffness
matrix arises from the tangent approximation of f (d j):

KT = ∇r(d j). (13.12)

Then Equation (13.11) can be written as

d j+1 = d j− [KT ]−1 r(d j), (13.13)

the solution of which requires the inverse of KT .

A conceptual view of Newton’s method applied to our two beam example is shown in
Figure 13-5.

Figure 13-5. Energy error example: Newton’s method applied to two beams.

Newton’s method is generally considered to be the most robust of the nonlinear equation solution
techniques, albeit at the cost of generating the tangent stiffness matrix Equation (13.12) and
solving the linear system of equations with ndo f unknowns:

[KT ]
(
d j+1−d j

)
= −r(d j). (13.14)
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There are a number of linear equation solution techniques available, and Sierra/SolidMechanics
has the ability to apply a linear equation solution approach available in the FETI library
(discussed briefly in section 13.7).

As mentioned, Newton’s method relies on computing the tangent stiffness matrix which, by
examination of Equation (13.15), requires the partial derivatives (with respect to the unknowns)
of the external and internal force vector,

KT =
∂

∂d

[
Fext

j −Fint
j

]
. (13.15)

In practice, for all but the simplest of material models, the exact tangent cannot be computed.
Thus Sierra/SolidMechanics computes a secant approximation with the property

KT̃ · (δd) = r(d j +δd)− r(d j) (13.16)

by simply probing the nonlinear system via perturbations δd. In Equation (13.16), the notation
KT̃ is used to indicate that the probed tangent is an approximation of the exact tangent.
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13.5. Steepest Descent Method

As mentioned in section 13.3, the steepest descent iteration takes steps in the direction of the
gradient of the energy error of the residual. On its own, it would not be considered a viable solver
for solid mechanics because of its general lack of performance compared to Newton-based
methods. However, there are algorithmic elements of this method that are conceptually important
for understanding nonlinear iterative solver such as the method of conjugate gradients, and in fact
are used in their construction.

The idea behind the steepest descent method is to construct a sequence of search directions, s j,

s j = M−1g j = −M−1r(d j), (13.17)

in which the energy decreases, thus producing a new guess of the solution vector

d j+1 = d j +αs j. (13.18)

The minimization is accomplished by taking a step of length α along s j, where α is called the line
search parameter:

d
dα

f (d j +αs j) ≈
[
r(d j)

]T s j +α
[
r(d j + s j)− r(d j)

]T s j = 0, (13.19)

which, after simplification, gives

α =

[
r(d j)

]T s j[
r(d j + s j)− r(d j)

]T s j
. (13.20)

The preconditioner matrix M is included in Equation (13.17) to accelerate the convergence rate
of the steepest descent method. Note that in this case M is not meant to be the mass matrix.

Figures 13-6 through 13-8 all show high aspect ratio ellipses. It turns out that the ideal
preconditioner would transform the ellipses to circles; this, in turn, would be M = KT . As
expected, the ideal steepest descent method is Newton’s method. However, the steepest descent
framework gives us a way to use approximations of KT .

A conceptual view of the steepest descent method applied to our two beam example is shown in
Figure 13-6. As indicated in the figure, the thinner beam would require more steepest descent
iterations to obtain convergence compared to the thicker beam.

It is instructive to consider whether or not the large number of iterations are due to the
nonlinearities in this model problem. For this purpose, we construct the two beam model problem
in linearized form. Figure 13-7 shows the first iteration of the steepest descent method for the
linearized problem. The immediate difference seen between the linearized version and the
nonlinear problem is in the elliptic form of the energy error contours. However, the contours are
still stretched reflecting the relative modal stiffness of the axial and bending modes. Thus, from
the same starting point, d1 = d2 = 0, the initial search direction is composed of different amounts
of d1 and d2. This is also apparent in all subsequent iterations. Figure 13-8 shows the completed
iterations for both thick and thin beams.
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Figure 13-6. Energy error example: Steepest descent method applied to two
beams.

Figure 13-7. Energy error example: First two iterations of the steepest descent
method applied to linearized version of the two beam problem.

Even for the linearized problem, there is a large difference in the number of iterations required for
the steepest descent method to converge for the two beams. We can see this because the slope of
the search directions is smaller for the thin beam. Therefore, each iteration makes less progress to
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Figure 13-8. Energy error example: Steepest descent method applied to lin-
earized version of the two beam problem.

the solution.

In general, the convergence rate of the steepest descent method is directly related to the spread of
the eigenvalues in the problem. In our conceptual beam example, the ratio λmax/λmin = λa/λb
(often called the condition number) is larger for the thin beam. It can be shown that in the worst
case, the steepest descent iterations reduce the energy error of the residual according to

f (d j+1) =

(
λmax/λmin−1
λmax/λmin + 1

)2

f (d j). (13.21)
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13.6. Method of Conjugate Gradients

With the foundation provided by the steepest descent method, application of a conjugate gradient
algorithm to Equation (13.6) or Equation (13.7) follows in a straightforward manner. Like the
steepest descent method, the important feature the conjugate gradient (or CG) algorithm is that it
only needs to compute the nodal residual vectors element by element, and as a result, does not
need the large amount of storage required for Newton’s method.

The method of conjugate gradients is a well-developed algorithm for solving linear equations.
Much of the original work can be found in the articles [2, 3, 4] and the books [5, 6]. A
convergence proof of CG with inexact line searches can be found in [7], and a well-presented
tutorial of linear CG can be found in [8]. The goal here is to review the method of conjugate
gradients to understand the benefits and potential difficulties encountered when applying it to the
solution of the nonlinear equations in solid mechanics problems.

13.6.1. Linear CG

The CG algorithm also uses the gradient, g j, to generate a sequence of search directions s j for
iterations j = 1,2, ...:

s j = −M−1r(d j) +β js j−1. (13.22)

Note the additional (rightmost) term in Equation (13.22) relative to the steepest descent algorithm
of Equation (13.17). The scalar β j is chosen such that s j and s j−1 are K-conjugate; this property is
key to the success of the CG algorithm. Vectors s j and s j−1 are K-conjugate if

sT
j Ks j−1 = 0, (13.23)

where K is the stiffness matrix. For a linear problem, K is a constant positive definite matrix
(assuming the internal force of Equation (13.15) is linear). Combining Equations (13.22) and
(13.23) gives the following expression for the search direction:

s j =
gT

j Ks j−1

sT
j−1Ks j−1

. (13.24)

Effective progress toward the solution requires minimizing the energy error of the residual along
proposed search directions. As with the steepest descent method, the line search performs this
function. Minimizing the energy error of the residual along the search direction occurs where the
inner product of the gradient and the search direction is zero:

gT
j (∆d j +αs j)s j =

[
∆Fext(t)−K · (∆d j +αs j)

]T M−1s j

=
[
(∆Fext(t)−K · (∆d j)T − (K ·αs j)T ]M−1s j

= gT
j s j−α jsT

j KT M−1s j

= 0.

(13.25)
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Solving Equation (13.25) gives an exact expression for the line search parameter α,

α j =
gT

j s j

sT
j M−1Ks j

, (13.26)

due to the inherent symmetry of K.

The essential feature of the method of conjugate gradients is that once a search direction
contributes to the solution, it need never be considered again. As a result, the inner product of the
error e changes from iteration to iteration in the following manner

e j+1Ke j+1− e jKe j = n−1∑
i= j+1

δisi

T

K

 n−1∑
i= j+1

δisi

−
δ js j +

n−1∑
i= j+1

δisi

T

K

δ js j +

n−1∑
i= j+1

δisi


= −

[
δ js j
]T K

[
δ js j
]
.

(13.27)

Since K is constant and positive definite, the energy error of the residual decreases monotonically
as the iterations proceed. Choosing β j such that the property in Equation (13.23) holds gives the
important result that the sequence of search directions s1,s2, ... spans the solution space in at most
neq iterations. Furthermore, Equation (13.27) reveals that the search directions s1,s2, ... reduce the
error in the highest eigenvalue mode shapes first and progressively move to lower ones.

An additional important numerical property of CG is that it can tolerate some inexactness in the
line search as discussed in [9] and still maintain its convergence properties.

Applying linear CG to our simple linearized beam model problem would generate the comparison
depicted in Figure 13-9. The fact that the linear CG algorithm precisely converges in two
iterations demonstrates the significance of the orthogonalization with the previous search
direction.

13.6.2. Nonlinear CG

For fully nonlinear problems, where the kinematics of the system are not confined to small
strains, the material response is potentially nonlinear and inelastic, and the contact interactions
feature potentially large relative motions between surfaces with frictional response, the residual is
a function of the unknown configuration at (n + 1), as indicated in Equations (13.1) and (13.2).

Nonetheless, in application of linear CG concepts, it is typical to proceed with the requirement
that the new search direction satisfy

sT
j (g j−g j−1) = 0. (13.28)

A comparison of Equations (13.28) and (13.23) reveals that (g j−g j−1) can be interpreted to mean
the instantaneous representation of KNLs j−1 to the extent that the incremental solution is known
and therefore, how it influences the residual.
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Figure 13-9. A comparison of steepest descent and linear CG methods applied to
the linearized beam example.

Combining Equations (13.22) and (13.28) gives the following result for the search direction

s j = β js j−1−g j =

(
gT

j (g j−g j−1)

sT
j−1(g j−g j−1)

)
s j−1−g j. (13.29)

Use of β j as implied in Equation (13.29) is proposed in the nonlinear CG algorithm in [10].
Alternatives to β j have also been proposed. For example, simplification of Equation (13.29) is
possible if it can be assumed that previous line searches were exact, in which case

sT
j−1g j = sT

j−2g j−1 = 0. (13.30)

The orthogonality implied in Equation (13.30) allows the following simplification to the
expression for the search direction:

s j =

(
gT

j (g j−g j−1)

−sT
j−1g j−1

)
=

(
gT

j (g j−g j−1)

−(β j−1s j−2−g j−1)T g j−1

)
=

(
gT

j (g j−g j−1)

gT
j−1g j−1

)
. (13.31)

Use of the result in Equation (13.31) to define the search directions is recommended in the
nonlinear CG algorithm in [7]. The Solid Mechanics code adopts this approach because it has
performed better overall. There are, however, instances when the condition implied in
Equation (13.30) is not satisfied (due to either highly nonlinear response or significantly
approximate line searches).
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The orthogonality ratio is computed every iteration to determine the nonlinearity of the problem
and/or the inexactness of the previous line search. When the orthogonality ratio exceeds a
nominal value (default is 0.1), the nonlinear CG algorithm is reset by setting

s j = g j. (13.32)

We recognize that the line search must be more general to account for potential nonlinearities.
Minimizing the gradient gT (∆d j +α js j) along the search direction s j still occurs where their inner
product is zero, but an exact expression for α j can no longer be obtained. A secant method for
estimating the rate of change of the gradient along s j is employed. Setting the expression to zero
will yield the value of α j that ensures the gradient is orthogonal to the search direction:

d
dα
[
gT (d j +αs j

)]
α=0 s j ≈ gT (d j

)
s j +α jsT

j

[
d

dα
[gT (d j +αs j

)
]α=0

]
s j = 0, (13.33)

where
[ d

dα [gT (d j +αs j)]α=0
]

is the instantaneous representation of the tangent stiffness matrix. In
order to preserve the memory efficient attribute of nonlinear CG, a secant approximation of the
tangent stiffness is obtained by evaluating the gradient at distinct points α = 0 and α = ε,[

d
dα

[gT (d j +αs j)]εα=0

]
=

1
ε

[
gT (d j +αs j)

]
α=ε
−
[
gT (d j +αs j)

]
α=0 . (13.34)

Substituting Equation (13.34) into Equation (13.33) and taking ε = 1 yields the following result
for the value of the line search parameter α j:

α j =
−gT (∆d j)s j

gT (∆d j + s j)−gT (∆d j)s j
. (13.35)

Applying nonlinear CG to our simple beam model problem would conceptually generate the
iterations depicted in Figure 13-10.

13.6.3. Convergence Properties of CG

It is well known that the convergence rates of iterative, matrix-free solution algorithms such as
CG are highly dependent on the eigenvalue spectrum of the underlying equations. In the case of
linear systems of equations, where the gradient direction varies linearly with the solution error,
the number of iterations required for convergence is bounded by the number of degrees of
freedom. Unfortunately, no such guarantee exists for nonlinear equations. In practice, it is
observed that convergence is unpredictable. Depending on the nonlinearities, a solution may be
obtained in surprisingly few iterations, or the solution may be intractable even with innumerable
iterations and the reset strategy of Equation (13.32), where the search direction is reset to the
steepest descent (current gradient) direction.

As a practical matter, for all but the smallest problem there is an expectation that convergence will
be obtained in fewer iterations. In order to understand the conditions under which this is even
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Figure 13-10. Nonlinear conjugate gradient method applied to the two beam prob-
lem.

possible, we summarize here an analysis (which can be found in many texts) of the convergence
rate of the method of conjugate gradients.

f (d j) = 2
( √

λmax/λmin−1
√
λmax/λmin + 1

) j

f (d0). (13.36)

Several important conclusions can be drawn from this analysis. First, convergence of linear CG as
a whole is only as fast as the worst eigenmode. Second, it is not only the spread between the
maximum and minimum eigenvalues that is important but also the number of distinct eigenvalues
in the spectrum. Finally, the starting value of the residual can influence the convergence path to
the solution.

These conclusions hold for the case of CG applied to the linear equations, yet they remain an
important reminder of what should be expected in the nonlinear case. They can provide guidance
when the convergence behavior deteriorates.

13.6.4. Predictors

One of the most beneficial capabilities added to the nonlinear preconditioned CG iterative solver
(nlPCG) is the ability to generate a good starting vector. Algorithmically, good starting vector is
simply

dpred
0 = d0 +∆dpred, (13.37)

where ∆dpred is called the predictor.
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This can dramatically improve the convergence rate. A perfect predictor would give a
configuration that has no inherent error, and thus no iterations would be required to improve the
solution.

Any other predicted configuration, of course, has error associated with it. This error can be
expressed as a linear combination of distinct eigenvectors. Theoretically, CG will iterate at most
to the same number as there are distinct eigenvectors. The goal is to generate a predictor with less
computational work than that required to iterate to the same configuration.

Computing the incremental solution from the previous step to the current one, and using this
increment to extrapolate a guess to the next is a cost effective predictor. Not only is it trivially
computed, but it also contains modes shapes that are actively participating in the solution. That
is,

∆dpred = dn−1
j∗ −dn−1

0 (13.38)

and therefore,

dn,pred
0 = dn

0 +∆dpred. (13.39)

In Equation (13.38), (n−1) refers to the previous load step, as we explicitly write the predicted
configuration dn,pred

0 for load step n in Equation (13.39).

When the solution path is smooth and gradually varying, this predictor is extremely effective. A
slight improvement can be made by performing a line search along the predictor in which case it
is more appropriately named a starting search direction. The effect of a simple linear predictor on
our simple beam model problem is depicted in Figure 13-11.

Figure 13-11. A linear predictor applied to the beam problem can produce a good
starting point
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13.6.5. Preconditioned CG

We have mentioned the preconditioner M without any specifics on how it is formed.
Preconditioning is essential for good performance of the CG solver. Sierra/SolidMechanics offers
two forms of preconditioning, the nodal preconditioner and the full tangent preconditioner. The
nodal preconditioner is constructed by simply computing and assembling the 3×3 block diagonal
entry of the gradient of the residual, Equation (13.12). In this most general case, the precondition
will contain contributions from both the internal force and external force. Sierra/SolidMechanics
at this point only includes the contribution to the nodal preconditioner from the internal force:

[
MnPC

I
]

=

[∫
ϕh

t (Ω)

[
NI,i
(
ϕ−1

t (x)
)

CNI, j
(
ϕ−1

t (x)
)]

dv

]
, (13.40)

where the term C in Equation (13.40) is the instantaneous tangent material properties describing
the material. For the many nonlinear material models supported by the Solid Mechanics module,
exact material tangents would be onerous. A simple but effective alternative is to assume an
equivalent hypo-elastic material response for every material model where the hypo-elastic bulk
and shear moduli are conservatively set to the largest values that the material model may obtain.
The formation of the nodal preconditioner is therefore simple, and need only be performed once
per load step.

The full tangent preconditioner is constructed by computing the tangent stiffness matrix. As
mentioned in section 13.4, the tangent stiffness is obtained via probing Equation (13.16), the
nonlinear system of equations.
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13.7. Parallel Linear Equation Solving

FETI is now a well established approach for solving a linear system of equations on parallel
MPI-based computer architectures. Its inception and early development is described in [11].
Prevalent in the literature is a description of the FETI algorithm as the foundation for a parallel
implementation of Newton’s method and its typical requirement for direct equation solving
capability. The dual-primal unified FETI method which forms the basis of the Sierra/SM’s FETI
solver was introduced in [12, 13].

The Sierra/SM module generalizes the use of FETI to include not just a means to provide
Newton’s method, but also as a preconditioner for nonlinear preconditioned conjugate gradient.
The basic notion of FETI is embodied in its name, Finite Element Tearing and Interconnecting,
resulting in a separability of the linear system of equations to sub-problems, one for each
processor.
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13.8. Enforcing Constraints within Solvers

Theoretically, constraint enforcement is reasonably straightforward. However, performance
and/or robustness difficulties reveal themselves in the practical use of solvers where there are
many constraints and/or a changing active constraint set. It is in the application of the methods for
treating constraints within the solver where difficulties start. Mathematically, there are two broad
categories of constraints, equality constraints and inequality constraints. Again, with the aid of
the simple beam example we have used throughout this chapter, Figure 13-12 shows where one
would encounter such constraints in practice.

Figure 13-12. Simple beam example with constraints.

At the fixed end of the cantilever beam, where the displacements are required to be zero, we pose
an equality constraint,

h(d) = 0. (13.41)

Equation (13.41) is written in matrix notation and can alternatively be written in index notation
as

hL(di) = 0 , L = 1,ncon , i = 1,ndofpn, (13.42)

where h is the constraint operator. The constraint operator is simply the collection by row of all
the equality constraints (in this case, ncon = 2). Notice that for the fixed end of the beam, the
constraint operator is very simple. All of the constraints are linear with respect to the
displacements dI=1

1 and dI=1
2 . The form of the equality constraint operator may be linear, αidi = 0,

or nonlinear. However, the essential feature is that the unknowns can be written on the left-hand
side of the equation.

Returning to our simple beam example, the ellipse presents itself as an obstacle to the motion of
the tip of the beam. It constrains node 2 to be outside the ellipse that has major axis a, minor axis
b, is centered at (0,c) and is rotated by angle α with respect to the horizontal axis. Given these
specifications for the location and orientation of the obstacle, we write the following inequality
constraint

g(d) ≥ 0, (13.43)
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in matrix notation, and alternatively in index notation as

gL (di) ≥ 0 , L = 1,ncon , i = 1,ndofpn. (13.44)

Figure 13-13 (a) and (b) is a graphical depiction of the energy error contours as they are modified
when using a Lagrange multiplier method and a penalty method, respectively.

Figure 13-13. Energy error contours for simple beam example with constraints.

Figure 13-14 is a graphical depiction of the energy error contours as they are modified when using
an augmented Lagrangian (mixed Lagrangian, penalty) method. As the tip of the beam is
penetrating the ellipse (violating the kinematic constraint), a penalty force is generated according
to

f
(
dk+ j/ j∗

)
=

1
2
(
dk+ j/ j∗ −d∗

)T r
(
dk+ j/ j∗

)
+λT

k H
(
dk+ j/ j∗

)
+

1
2
εggT (dk+ j/ j∗

)
g
(
dk+ j/ j∗

)
, (13.45)

in which it is apparent that an augmented Lagrange method is a combination of a Lagrange
multiplier method and a penalty method. The advantage of this approach is that the penalty εg can
be soft, thus avoiding the ill-conditioning associated with penalty methods that must rely on
overly stiff penalty parameters for acceptable constraint enforcement.

The soft penalty parameter is indicated by the energy error contours increasing only moderately.
The iteration counter j refers to the nonlinear CG iteration. It proceeds from j = 1,2, . . . to j∗,
where the well-conditioned model problem is converged. However, because of the soft penalty
parameter, there is a significant constraint violation. Introducing an outer loop and the concept of
nested iterations, repeated solutions of the well-conditioned problem are solved while the
multiplier, λk , is updated in each of the outer iterations, k = 1,2, . . . .

Figure 13-15 shows a graphical depiction of the updates of the Lagrange multiplier. The iteration
counter k refers to the outer Lagrange multiplier update. Although not immediate obvious, once
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Figure 13-14. Energy error contours for simple beam example with constraints.

the multiplier is updated, dis-equilibrium is introduced (especially in the early updates) and a new
model problem must be solved. Eventually, as the multiplier converges, the constraint error tends
to zero as well as the corresponding dis-equilibrium.

Figure 13-15. Energy error contours for simple beam example with constraints.
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13.9. Multi-Level Iterative Solver

The multi-level solver concept is based on a strategy where an attribute and/or nonlinearity is
controlled within the nonlinear solver. It is important to recognize that complete linearization (as
in a Newton Raphson approach) is not necessary and in many cases not optimal. Furthermore,
there are several cases where nonlinearities are not even the source of the poor convergence
behavior. The essential concept of the strategy is to identify the feature that makes convergence
difficult to achieve and to control it in a manner that encourages the nonlinear core solver to
converge to the greatest extent possible.

The control is accomplished by holding fixed a variable that would ordinarily be free to change
during the iteration, by reducing the stiffness of dilatational modes of deformation, or by
restricting the search directions to span only a selected sub-space. The core CG solver is used to
solve a model problem - a problem where the control is active. When the core CG solver is
converged, an update on the controlled variable is performed, the residual is recalculated, and a
new model problem is solved. The approach has similarities to a Newton Raphson algorithm, as
shown in Figure 13-16.

Figure 13-16. A schematic of a single-level multi-level solver.

The generality of the multi-level solver is apparent in the case where multiple controls are active.
Multiple controls can occur at a single-level or be nested at different levels - hence the name
multi-level solver. Figure 13-17 depicts a 2-level multi-level solver.

As depicted in Figures 13-16 and 13-17, the iterative solver by its nature solves the model
problem and/or the nested problem within some specified tolerance (as opposed to nearly exact
solutions obtained by a direct solver). The inexactness of these solves is most often not an issue,
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Figure 13-17. A schematic of a two-level multi-level solver.

however there are some cases where a certain amount of precision is required.
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14. ELEMENT BASICS

14.1. Properties of Shape Functions

In this chapter we explore the basic issues associated with the design of finite elements, which are
the building blocks of the methods we have discussed. In particular we will discuss how
definitions and manipulations are done at the local level to produce the elemental quantities, like
me, fint

e , and ke, that are needed for assembly and solution of the global equations of motion. We
concentrate in this chapter on one-field problems, i.e., where only the deformation mapping ϕt is
discretized. It will turn out that many nonlinear solid mechanics applications of interest, including
nearly incompressible elasticity and metal plasticity, require more sophisticated approximations
in which other variables (like pressure) must be explicitly included in the formulation.

To start, we discuss in general terms the requirements usually placed upon shape function
definitions. It should be noted that these conditions are sufficient but not necessary, so that many
formulations exist that violate one or more of them. However, it is also fair to say that most finite
elements in wide use satisfy the conditions we will discuss.

The first condition relates to convergence of the finite element method in general, and the
implication on properties of shape functions for elements. We begin by defining m, which will
denote the highest order shape function spatial derivative present in the expression for the
stiffness matrix. For the class of problems we have considered so far, we find from Chapter 13
that the element stiffness takes the form

ke
pq

(
dei

n+1

)
=
∂ f int

p

∂de
q

(
dei

n+1

)
(14.1)

The internal force vector required in Equation (14.1) was given generically in Chapter 10,
equations (10.43) and (10.44), as:

f int,e
p =

∫
ϕh

t (Ωe)

 3∑
j=1

Na, j
(
ϕ−1

t (x)
)

T h
i j

dv (14.2)

Performing the differentiation indicated in Equation (14.1) will produce no higher than first-order
derivatives of the shape functions; therefore m = 1.

The three general convergence requirements we need to mention are as follows:

• The global shape function NJ should have global continuity of the order m−1. In
mathematical terms, they should be Cm−1 on Ωh.

• The restriction of the global shape functions to individual elements (i.e., the {NJ}) should be
Cm on the element interiors.
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• The elemental shape functions {NJ} should be complete.

The first two of these requirements are fairly simple to understand. The first, Cm−1 continuity
requirement, simply means that all derivatives up to m−1 of the shape functions should not
undergo jumps as element boundaries are crossed. In the current case this means that all NJ
should be C0 continuous. Since the approximation to the configuration mapping ϕh

t is a linear
combination of these shape functions, we see that the physical restriction placed by this condition
amounts to no more that a requirement that the displacement be single-valued throughout the
domain (i.e., gaps and interpenetrations at element boundaries may not occur).

The second requirement on element interiors simply states that the shape functions should be
sufficiently smooth so that the element stiffness expressions are integrable. Physically speaking,
the first derivatives of the configuration mapping produces strain measures, so we simply require
that the strains be well-behaved on element interiors by this restriction. Note that global
smoothness of the strains (and therefore stresses) is not required. This point is of some
importance in the reporting of results, as we discuss later.

The third requirement, the completeness requirement, is somewhat more involved to explain and
yet corresponds fairly directly to physical ideas. We say that a given element is complete when
setting the element degrees of freedom according to a given low-order polynomial forces the
solution ϕh

t to be interpolated according to the same polynomial point wise in the element. The
degree of polynomials for which we place this requirement is referred to as the degree of
completeness for the element.

In the current case where we deal with solid continua, the usual degree of completeness demanded
is 1. This means that all global solutions representable by polynomials, up to and including order
1, should be exactly representable by the element. It is worthwhile to consider an example of this
point. Suppose we are in three dimensions and set element degrees of freedom via

de
a = c0 + c1Xe

aex + c2Ye
aey + c3Ze

aez, (14.3)

where c0, c1, c2, c3 are arbitrary constants and Xe
a, Ye

a , Ze
a are the reference coordinates for local

node number a. The completeness condition requires that

ϕh
t
(
Xe) =

nen∑
a=1

Na(Xe)de
a =
(
c0 + c1Xeex + c2Yeey + c3Zeez

)
(14.4)

hold for all Xe ∈Ωe and for all values of the arbitrary constants.

14.1.1. Element patch test

As mentioned above, the completeness requirement has a physical interpretation as well. In solid
mechanics we have already pointed out that the first spatial derivatives of the displacements
produce strains. Since we require that an element be able to reproduce arbitrary global solutions
that are linear polynomials, this also implies that any state where the first derivatives (i.e., strains)
are constant should be exactly representable. Thus a complete element should be able to exactly
represent any uniform strain state. A practical way to test for this condition is to impose a
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boundary value problem on an arbitrary patch of elements having a constant strain (and thus
stress) solution and then demand exactness of the numerical solution. Such a test is called a
“patch test” and has become one of the standard benchmarks by which any new proposed element
formulation is tested and evaluated.

A particularly useful instantiation of the patch test is to prescribe a combined rigid body rotation
and stretch, making use of all of the constants c0, c1, ..., as depicted graphically in Figure 14-1.
Here a piecewise combination of global linear function are specified.

Figure 14-1. Element Patch test in 2D
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14.2. Parameterization

With these three criteria in hand for element definitions, we proceed to define a recipe through
which element definitions and manipulations can be systematically performed. The most basic
definition to be made toward this end is the concept of the local (or parent) parameterization of an
element. In effect we seek to define a local coordinate system that will be the same for every
element in a problem, which contributes in great part to the modularity we will desire for element
level operations.

We will denote a vector of these local variables by r, with r being a 2-vector in two dimensions
and a 3-vector in three dimensions. Specifically, we define r as

r =

[
r
s

]
two dimensions,

 r
s
t

 three dimensions (14.5)

The local variables r, s, and t are all assumed to range between −1 and 1, so that the domain
definition is likewise standardized among all elements of the same type in a given problem. The
domain of r is often referred to as the parent domain. As shown in Figure 14-2, the two
dimension parent domain is a bi-unit square, and in three dimensions a bi-unit cube.

Figure 14-2. Local parameterization and coordinate mappings in two and three
dimensions

Of course, for this alternative element coordinate system to be of practical use, its relationship
with the global coordinate system must be defined. This is accomplished through a shape function
expansion via

Xe(r) =

nen∑
a=1

Ña(r)Xe
a, (14.6)
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where Xe is the global (reference) coordinate mapping covering element e and where Xe
a are the

element nodal (reference) coordinates, as before. Note also in Equation (14.6) that the shape
functions have been written using the parent coordinates as the independent variables. This is the
reason for the superposed tilde on the shape function. One could think of r as a material point
label within the element, so that Xe and r are two reference coordinate systems for the element
that are related according to Equation (14.6). The most important generic class of finite elements
is comprised of isoparametric elements. Such elements are defined by utilizing the same shape
functions for definition of deformation ϕh

t (Xe) as for the element coordinates Xe. One can show
that, providing all element shape functions sum to one at any point in the element, an
isoparametric element automatically satisfies the completeness condition. Furthermore, provided
the shape functions are also suitably smooth on the element interior and match neighboring
element descriptions on element boundaries, all three of the conditions required for convergence
are met by isoparametric shape functions.

There are important implications of the isoparametric approach for the Lagrangian description of
large deformation solid mechanics. The implications are related to the restrictions imposed on the
mapping from the parent domain to the physical domain. So that we may distinguish carefully
between mappings taking r as an argument and those taking X, we will use the superposed tildes
for the former, as in Equation (14.6). If an element is isoparametric, then by definition the
configuration mapping over an element is given by

ϕ̃h
t (r) =

nen∑
I=1

ÑI(r)de
I , (14.7)

where the shape functions ÑI(r) are exactly the same as in Equation (14.6). However, it should
also be the case that the function ϕ̃h

t (r) should be obtainable from the composition of ϕ̃h
t (Xe)

defined according to Equation (14.4) with Xe(r) defined according to Equation (14.6). Thus we
can write:

nen∑
I=1

ÑI(r)de
I = ϕ̃h

t (r) =

nen∑
I=1

NI
(
Xe(r)

)
de

I . (14.8)

Comparing the leftmost and rightmost expressions of Equation (14.8) and realizing that the
equality must hold for any given combination of the element degrees of freedom de

I , we are led to
conclude that the alternative shape function expressions ÑI(r) and NI (Xe) must be related by
composition via

ÑI = NI ◦Xe. (14.9)

Thus we have the option of defining the shape functions over whatever domain is convenient, and
since the parent domain is the one that is standardized, we typically begin with an expression for
ÑI and then derive the implied expression for NI according to

NI = ÑI ◦
(
Xe)−1

. (14.10)

Equation (14.10) reveals the important implications as a practical condition on the inverse
mapping (Xe)−1 of Xe. It must be well behaved for the shape function NI to make sense.

Fortunately, according to the implicit function theorem, the inverse function to Equation (14.6) is
smooth and one-to-one provided the Jacobian of the indicated transformation is nonzero. This
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essentially amounts to a geometric restriction on elements in the reference domain. In two
dimensions, e.g., the implication is that all interior angles in each 4-noded element must be less
than 180 degrees.

Finally, let us consider shape functions that take the current coordinates, xe = ϕh
t (Xe). Such an

expression is needed in Equation (14.2) where the spatial derivatives in the current configuration
are needed:

N̂I,i =
∂

∂xe
i
N̂I (14.11)

where we have temporarily introduced the additional notation N̂ to indicate that the shape
function takes the current coordinate.

Following similar reasoning as above, one can conclude that the functions N̂ must obey

NI = N̂I ◦
(
ϕ̃h

t
)−1

(14.12)

Again for the needed function
(
ϕ̃h

t
)−1 to be well-behaved, the Jacobian of the transformation

(Equation (14.7) must be non-zero. This amounts to:

det
[
∂ϕ̃h

t
∂r

]
= det

[
∂ϕ̃h

t
∂Xe

]
det
[
∂Xe

∂r

]
, 0 (14.13)

Provided the original element definitions are not overly distorted, the second term on the right
hand side of Equation (14.13) will be non-zero. Thus the well-posedness of the spatial shape
functions ÑI requires that det

[
∂ϕ̃h

t
∂Xe

]
be non-zero. Notice, though, that this is an approximation of

the determinant, J, of the deformation gradient, as defined in Chapter 5. According to
Equation (5.11), J must be positive point wise for the concept of volume change to have any
physical meaning. Thus, provided the approximated deformation mapping remains kinematically
admissible (i.e., J > 0), the spatially defined shape functions are guaranteed to be well-behaved.

With this discussion as background, we now turn our attention to definition of the shape functions
according to the parent domain. To keep the notation complexity to a minimum, we will drop the
explicit distinction between NI , ÑI , and N̂I , referring to all these objects as simply NI .
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15. ELEMENT FORMULATIONS

This chapter covers the various elements that the Solid Mechanics module has available. We first
discuss all of the solid elements, then the shell elements, and finally the beam elements.

15.1. Uniform Gradient Hex8 Solid Element

This element has proven to be the workhorse solid element for Solid Mechanics. The hex8 is an
eight-node hexahedron element with a topology and a node numbering convention shown in
Figure 15-1. It also is referred to as the mean-quadrature Hex8 because of the particular manner
in which it generates a mean-quadrature representation of the gradient (and divergence) operator.
The approach adapted for developing a mean strain rate quadrature for the eight-node hexahedron
is that given by Reference [1]. While the approach and notation is cumbersome, it provides the
structure needed to achieve a closed-form solution for the integration of an arbitrary hexahedron
and an explicit and unambiguous identification of the orthogonal hourglass modes.

Figure 15-1. Isoparametric coordinate representation of the eight-noded hex ele-
ment
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15.1.1. Kinematics

The eight-node solid hexahedron element relates the spatial coordinates xi to the nodal
coordinates xi

I through the isoparametric shape functions NI as follows:

xi = xi
IN

I(ξi). (15.1)

In accordance with index notation convention, repeated subscripts imply summation over the
range of that subscript. The lower case subscripts have a range of three, representing the spatial
coordinate directions. Upper case subscripts have a range of eight, corresponding to element
nodes.

The same shape functions are used to define the element displacement field in terms of the nodal
displacements uiI:

ui = uiIN I(ξi). (15.2)

Since these shape functions apply to both spatial coordinates and displacement, their material
derivative (represented by a superposed dot) must vanish. Hence, the velocity field is given by:

vi = viIN I(ξi). (15.3)

The velocity gradient vi, j is defined as follows:

vi, j = viIN I
, j. (15.4)

By convention, a comma preceding a lower case subscript denotes differentiation with respect to
the spatial coordinates, hence vi, j denotes ∂vi/∂x j.

The shape functions N I map a unit cube in the isoparametric coordinates ξi to a general
hexahedron in the spatial coordinates xi. The unit cube is centered at the origin in ξi-space so that
the shape functions may be conveniently expanded in terms of an orthogonal set of base vectors,
given in Table 15-1, as follows:

N I(ξi) =
1
8

ΣI +
1
4
ξiΛI

i +
1
2
ξ2ξ3ΓI

1 +
1
2
ξ1ξ3ΓI

2 +
1
2
ξ1ξ2ΓI

3 + ξ1ξ2ξ3ΓI
4. (15.5)

The above vectors represent the deformation modes of a unit cube, as shown in Figure 15-2. The
first vector, ΣI accounts for rigid body translation. The linear base vectors ΛI

i may be readily
combined to define three uniform normal strain rate modes, three uniform shear strain rate modes,
and three rigid body rotation rates for the unit cube. The last four vectors ΓI

α (Greek subscripts
have a range of four) give rise to modes with linear strain variations which are neglected by mean
strain quadrature. These vectors define the hourglass patterns for a unit cube. Hence the modes ΓI

α

are referred to as the hourglass base vectors.

15.1.2. Mean Quadrature

The variational statement gives the following relationship for the element nodal forces f iI due to
the divergence of the stress field,

viI f iI =

∫
V

ti jdi jdv. (15.6)
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Node ξ1 ξ2 ξ3 ΣI ΛI
1 ΛI

2 ΛI
3 ΓI

1 ΓI
2 ΓI

3 ΓI
4

1 −1
2 −1

2 −1
2 1 -1 -1 -1 1 1 1 -1

2 1
2 −1

2 −1
2 1 1 -1 -1 1 -1 -1 1

3 1
2

1
2 −1

2 1 1 1 -1 -1 -1 1 -1
4 −1

2
1
2 −1

2 1 -1 1 -1 -1 1 -1 1
5 −1

2 −1
2

1
2 1 -1 -1 1 -1 -1 1 1

6 1
2 −1

2
1
2 1 1 -1 1 -1 1 -1 -1

7 1
2

1
2

1
2 1 1 1 1 1 1 1 1

8 −1
2

1
2

1
2 1 -1 1 1 1 -1 -1 -1

Table 15-1. Deformation modes of the eight-noded hex element

Figure 15-2. Deformation modes of the eight-noded hex element

The integral in Equation (15.6) is evaluated using a constant stress, thereby considering only a
mean strain rate within the element:

viI f iI =

∫
V

ti jdi jdv = Vt̄ i jv̄i, j. (15.7)

The assumed constant stress field is represented by t̄ i j, which will be referred to as the mean
stress tensor. It is assumed that the mean stress depends only on the mean strain. Mean
kinematic quantities are defined by integrating over the element as follows:

v̄i, j =
1
V

∫
V

vi, jdv. (15.8)
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The gradient operator BI
i is defined by

BI
i =

∫
V

N I
, jdv. (15.9)

The mean velocity gradient, applying Equation (15.9) is then given by

v̄i, j =
1
V

viI BI
j. (15.10)

The nodal forces are then given by
f iI = t̄ i jBI

j. (15.11)

Computing nodal forces by this integration scheme requires evaluation of the gradient operator BI
j

and volume. These two tasks can be linked together by using the relationship xi
, j = δi

j. Therefore
Equation (15.9) yields

xi
I BI

j =

∫
V

(
xi

IN
I)
, j dv = Vδi

j. (15.12)

Consequently, the gradient operator BI
i may alternatively be expressed by

BI
j =

∂V
∂xi

I
. (15.13)

To integrate the element volume in closed form, the Jacobian of the isoparametric transformation
is used transform the integral over the unit cube,

V =

∫
V

dV =

1/2∫
−1/2

1/2∫
−1/2

1/2∫
−1/2

Jdξ1dξ2dξ3. (15.14)

The Jacobian J is the determinant of the transformation operator ∂xi/∂ξ j and may be expressed
as

J = ei jk ∂x1

∂ξi
∂x2

∂ξ j
∂x3

∂ξk . (15.15)

Using Equations (15.1), (15.14), and (15.15), the element volume may be expressed in the
following form:

V = x1
I x2

J x3
KDIJK , (15.16)

where

DIJK = ei jk

1/2∫
−1/2

1/2∫
−1/2

1/2∫
−1/2

J
∂N I

∂ξi
∂NJ

∂ξ j
∂NK

∂ξk dξ1dξ2dξ3. (15.17)

Observe that the coefficient array DIJK is identical for all hexahedra. Furthermore, it possesses
the alternator properties given by

DIJK = DJKI = DKIJ = −DIKJ = −DJIK = −DKJI . (15.18)
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BI
i Nodal Indices

B1
i 2 3 4 5 6 7 8

B2
i 3 4 1 6 7 8 5

B3
i 4 1 2 7 8 5 6

B4
i 1 2 3 8 5 6 7

B5
i 8 7 6 1 4 3 2

B6
i 5 8 7 2 1 4 3

B7
i 6 5 8 3 2 1 4

B8
i 7 6 5 4 3 2 1

Table 15-2. Permutation of Nodal Indices for use in Equation (15.21)

Therefore, applying Equations (15.13) and (15.14) to the expression (15.16) yields the following
closed-form expression for evaluation the components of the gradient operator, BI

i :BI
1

BI
2

BI
3

 =

x2
J x3

K
x3

J x1
K

x1
J x2

K

DIJK . (15.19)

Looking at the form of Equation (15.19), it is evident that evaluating each component of DIJK

involves integrating a polynomial which is at most bi-quadratic. However, since the integration is
over a symmetric region, any term with a linear dependence will vanish. The only terms which
survive the integration will be the constant, square, double square, and triple square terms.
Furthermore, the alternator properties cause half of these remaining terms to drop out. The
resulting expression for DIJK is

DIJK =
1

192
ei jk (3ΛI

i Λ
J
j Λ

K
k +ΛI

i Γ
J
kΓK

j +ΓI
kΛ

J
j Γ

K
i +ΓI

jΓ
J
i ΛK

k
)
. (15.20)

The expression in Equation (15.20) is evaluated using Table 15-1, after which practical formula
for computing the gradient operator BI

i and volume are developed.

The gradient operator component B1
x is given explicitly by

B1
x =
[
y2(z63− z45) + y3z24 + y4(z38− z52) + y5(z86− z24) + y6z52 + y8z45

]
/12, (15.21)

where {xi
I} = {xI ,yI ,zI} and zIJ = zI − zJ . To obtain the balance of the gradient operator

components BI
x, the nodal index permutations contained in Table 15-2 are used. To obtain the

components BI
y and BI

z, the coordinate permutations contained in Table 15-3 are used.

It is worth noting at this point the difference between the mean quadrature (alt. mean strain rate,
mean stress) approach and one-point Gauss quadrature. The latter method would effectively
neglect the last three terms of Equation (15.21). In a parallelepiped, the nodal coordinates contain
no component of the hourglass base vectors, consequently, only the first term of Equation (15.21)
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BI
i Coordinates

BI
x y z

BI
y z x

BI
z z y

Table 15-3. Permutation of Nodal Coordinates for use in Equation (15.21)

is necessary to compute the gradient operator and volume. In such a case, one-point quadrature is
equivalent to the mean quadrature formula. However, for a general hexahedron shape, one-point
quadrature does not correctly assess a state of uniform stress and strain, thus, may not be
convergent [Zienkiewicz, 1977]. In view of the requirements of the Iron’s patch test, it is likely
that Equation (15.20) is unique.

15.1.3. Orthogonal Hourglass Control

The mean stress - mean strain rate formulation considers only the linear part of the velocity field.
The remaining portion of the velocity field is the so-called hourglass field. Excitation of these
modes may lead to sever, unresisted mesh distortion. A method for isolating the hourglass modes
so that they may be treated independently of the rigid body and uniform strain modes is required.
This is accomplished by developing an hourglass gradient operator connected with hourglass
restoring forces. The linear velocity field on which the mean strain rates are based is given by

vLIN
i = viI

(
1
8

ΣI +
1
V

(x j−
1
8

x j
JΣJ)BI

j

)
. (15.22)

The hourglass velocity field vHG
i may be defined by removing the linear portion of the velocity

field. Thus,
vHG

i = vi− vLIN
i , (15.23)

or in terms of the nodal velocities,

vHG
i = viI − vi0ΣI −

1
V

(
x j

I − x j
0ΣI

)
viJ BJ

j , (15.24)

where vi0 = 1
8viIΣI and xi

0 = 1
8 xi

IΣI .

The hourglass velocity field, Equation (15.24), is in the improper null space of the gradient
operator BI

i . The linear velocity field, Equation (15.22), spans 12 degrees of freedom: 3 rates of
rigid body translation, 3 rates of rigid body rotation, and 6 uniform strain rates, which means that
the hourglass subspace is remaining 12 degrees of freedom.

An hourglass gradient operator is constructed from the hourglass basis vectors ΛI
α as follows:

GI
α =

V
δ

[
ΛI

1, ΛI
2, ΛI

3, ΛI
4

]
, (15.25)

155



where δ is a generalized element dimension developed below. This scaling provides the hourglass
gradient operator with the same dimensional characteristics as the uniform gradient operator.
While GI

α is orthogonal to BI
i , the following property:

BI
i G

I
α , 0, (15.26)

means that GI
α used with the full velocity field viI will couple the hourglass behavior to the

uniform strain rate behavior. Thus, hourglass strain rates q̇iα are developed with GI
α operating on

only the hourglass velocities vHG
iI ,

q̇iα =
1
V

vHG
iI GI

α. (15.27)

Alternatively, an unrestricted operator may be developed by requiring is to satisfy the following
condition:

viIγ
I
α = vHG

iI GI
α. (15.28)

Using the hourglass velocity, Equation (15.24), provides

viIγ
I
α =
[
viI − vi0ΣI −

1
V

(
x j

I − x j
0ΣI

)
viJ BJ

j

]
GI
α, (15.29)

which, when rearranged and using the orthogonality of the mode shapes ΣI and ΓI
α (i.e., ΣIΓI

α = 0)
gives

viIγ
I
α = viI

(
GI
α−

1
V

x j
JGJ

αBI
j

)
. (15.30)

The condition for the unrestricted operator is satisfied if the hourglass operator γI
α is defined as

γI
α =

V
δ

(
ΓI
α−

1
V

x j
JΓJ

αBI
j

)
, (15.31)

and the hourglass strain rates are defined as

q̇iα =
1
V

viIγ
I
α. (15.32)

To control the hourglass modes, generalized forces Qiα are defined which are conjugate to q̇iα, so
that the work rate is given by

viI f iI
HG = VQiαq̇iα. (15.33)

Utilizing Equation (15.31), the contribution to the nodal forces due to hourglass resistance is
given be

f iI
HG = QiαγI

α. (15.34)

The hourglass restoring forces are calculated from

Q̌iα = ε 2µtanδ
i jδαβq̇ jβ, (15.35)

where 2µtan is the tangent shear stiffness obtained from the deviatoric constitutive behavior of the
mean stress and mean strain rate in the element, and ε is a scaling parameter. The scaling ε assures
the level of the hourglass restoring forces remains below that of the mean deviatoric stress state.
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The deviatoric behavior is used since the hourglass modes are constant volume, higher order
straining modes of the element. The tangent modulus assures that the evolution of the hourglass
restoring forces parallels that of the mean deviatoric stress state.

The invariant time derivative of the generalized forces Qiα accounts for the finite rotations
expected in use of the element in applications. The derivative is given by

Q̌iα = Q̇iα−ωi jQ jα, (15.36)

where ωi j is the spin tensor.

The hourglass restoring forces are added to those obtained from the divergence of the mean stress
state so that the complete result is

f iI =
(
t̄ i jBI

j + QiαγI
α

)
. (15.37)

15.1.4. Linear Hyperelastic Hourglass Control

The traditional hourglass formulation is in rate form, and as such is not guaranteed to be
energetically reversible and may not result in symmetric contributions to the finite element
stiffness matrix. Here we describe a hyperelastic hourglass formulation that overcomes these
limitations and also allows us to define Lagrangian hourglass strains which are valuable for
extending the formulation to nonlinear hourglass response, as discussed in the next section.

Consider an element’s total hourglass energy defined as follows:

ψe(x) = Vεµtan

(
4∑
α=1

ε2
α

)
, (15.38)

where V is the reference volume of the element, x is the element’s current nodal coordinates, and
εα is a measure of the hourglass strain for hourglass mode α. The hourglass strain here is based
on an hourglass operator defined in the model/reference coordinates (this is in contrast to the total
and incremental hourglass formulations which use hourglass operators in the current
configuration). The hourglass strains are given by

εα =

√√√√ 3∑
i=1

εiαεiα (no sum over α),

with hourglass strain vector ε:

εiα =

8∑
I=1

HI
αxI

i ,

where HI
α is the unrestricted hourglass operator defined in the reference configuration:

HI
α =

1
δ

[
ΓI
α−

1
V

XJ
j Γ

J
αBI

j

]
,
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where B is the gradient operator with respect to the reference configuration, and X is the
element’s reference coordinates. Note that this definition of the unrestricted hourglass is
analogous to γI

α from Section 15.1.3, but includes a factor of 1
V to simplify notation. The value of

δ, a characteristic element length scale, is chosen so that the hyperelastic hourglass forces match
the classical formulation at small stains. The proposed hourglass energy is objective due to the
definition of the hourglass strain, which is invariant to rigid body rotations of the current
coordinates, x. The resulting hourglass forces follow from work conjugacy:

f iI
HG = −

dψe

dxI
i
.

Being derived from an objective potential energy, these forces are objective, path independent.
The resulting stiffness matrix is guaranteed to be symmetric and hourglass deformations are
elastically reversible. Because we are assuming an energy which is quadratic in the hourglass
strain, the resulting forces are linear with hourglass displacement. In addition, the unrestricted
hourglass operator H has both rigid body modes and affine deformation modes in its null-space,
meaning the hourglass forces will be orthogonal to affine motions of the element.

An extension to a non-linear hyperelastic hourglass formulation is described below.

15.1.5. Nonlinear Hyperelastic Hourglass Control

An additional limitation of the traditional hourglass control is that the hourglass resistance is
typically formulated to be (incrementally) linearly proportional to hourglass deformation
increments. A hyperelastic hourglass control formulation can overcome this limitation by using a
nonlinear hyperelastic energy which is a function of the four hourglass strains. We use a
generalized definition of the energy function from Equation (15.38):

ψ̂e(x) = Vεµtanε
2
0

(
4∑
α=1

[
em

(
εα
ε0

)]2
)
,

where ε0 is called the transition strain, and em(·) is a function which takes a strain and returns an
alternative Seth-Hill strain measure. In particular, it is defined by

em(ε) =
1
m

(
(ε+ 1)m−1

)
,

if ε is a strain, em(ε) satisfies all the requirements of a strain measure. In particular, it satisfies
em(0) = 0, e′m(0) = 1. As a result, at small strains, em ≈ ε for any m. A value of m = 2 corresponds
to a Green-Lagrange strain measure, while m = 1 is an identity map. The variable ε0 is called the
transition strain because it sets the strain level at which the nonlinearity of the strain measure
begins to become dominant. For a very large transition strain, the hourglass force response will
remain linear up to large hourglass strains as the term εα

ε0
remains small. For small transition

strains, the nonlinearity become noticeable earlier. The hourglass energy for this model scales as
ε2m as strains get large, meaning the hourglass force scales as the hourglass displacement to the
2m−1 power at large deformations.

Figure 15-3 shows the hourglass resistance force vs displacement for varying transition strains
and Seth-Hill exponent m.
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Figure 15-3. Nonlinear hourglass force versus displacement
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15.2. Tet4 Solid Element

This element is the standard 4-noded tetrahedral element. It is notoriously stiff and prone to
locking, but included for completeness. More information on this element can be found in [2].
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15.3. Tet10 Solid Element

The default 10-noded tetrahedral solid element is the composite tetrahedron, as given in [3],
which is an extension of the composite tetrahedron and triangle formulations in [4] and [5]. This
10-noded tetrahedron consists of 12 linear, 4-noded sub-tetrahedra. The nodal fields, including
displacement, are linear within each sub-tetrahedron and, therefore, piecewise linear within the
parent 10-noded tetrahedron. The deformation gradient and stress fields are formulated to be
linear over this 10-noded tetrahedron; the gradient operator projects the piecewise discontinuous
gradients among the 12 sub-tetrahedra into a linear basis on the parent tetrahedron.

As stated in [3], [4], and [5], there are several advantages of this composite tetrahedron
formulation over commonly used alternatives. Tetrahedral elements provide generally more
robust and efficient finite element meshing than hexahedral elements. As opposed to the
traditional formulation of the quadratic 10-noded tetrahedron, this formulation has a
well-balanced mass lumping to all 10 nodes lending to improved performance in explicit transient
dynamics, contact, and other solid mechanics capabilities that rely upon the nodal mass
distribution. Volumetric locking and unrealistic pressure oscillations are still possible for this
element when modeling isochoric deformation (plasticity) and nearly incompressible materials,
but this behavior can be alleviated further by volume-averaging the dilation over the element [3].
In Sierra/SM, this option is called VOLUME AVERAGE J = ON, which is a default setting for the
composite tetrahedron.

A 10-noded, quadratic, fully-integrated tetrahedral element is also available in Sierra/SM. For
more information on this element, refer to [2].
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15.4. Belytschko-Tsay Shell Element

The 4-noded Belytschko-Tsay shell (or BT-shell4) is the simplest of the shell elements offered.
The original reference can be found in [6]. It should be considered as the minimal 5-parameter
Mindlin-type formulation that includes a constant transverse shear contribution.
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15.5. Key-Hoff Shell Element

The 4-noded Key-Hoff shell (or KH-shell4) is slightly more involved than the BT-shell4, in that it
includes a term for a linear-varying transverse shear in its formulation. The inclusion of this term
is an improvement on the BT-shell4 because it properly models warped shell geometry - albeit in
a low-order way. The original reference for this element can be found in [7].
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15.6. Belytschko-Leviathan Shell Element

The 4-noded Belytschko-Leviathan shell (or BL-shell4) is slightly more involved than the
KH-shell4, in that it includes additional shear terms as well as additional hourglass controls. The
inclusion of the hourglass terms (also known as the physical stabilization parameter) is an
improvement on the KH-shell in that it eliminates some of the over-stiffness sometimes observed
in the KH-shell4. The BL-shell4 also includes a projection of the angular velocities and the
internal forces. The original references for this element can be found in [8] and [9].
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15.7. Shear Correction for Layered Shell Elements

For sandwich composite plates with a low modulus core, the effects of transverse shear
deformation can be significant. Thus, the results of first-order shear deformation theory, as
applied for layered shell elements in Sierra/SM, are affected by the choice of shear correction
factor (K). In reference [10], an expression is derived for the variation of transverse shear through
the thickness of a laminated plate. The expression given for the shear correction factor is:

K =

(A44−
A2

45
A55

)∫ h/2

−h/2

[∫ z
−h/2(Q̄1iβ1i + zQ̄1iδ1i)dz

]2

[
q̄44−

Q̄2
45

Q̄55

]

−1

, for i = 1,2,6. (15.39)

Here, the Ai j are the corresponding terms in the laminate extensional stiffness matrix, the Q̄i j are
the terms of the reduced stiffness matrix, βi j and δi j are terms of the compliance sub-matrices, and
h is the thickness of the section. When expressed in algebraic form, for a laminate of N layers and
a coordinate system centered at the centroidal axis of the section, the shear correction factor can
be expressed as

K =

[
A44−

A2
45

A55

]−1

∑N
k=1

1Q̄k
44−

Q̄k2
45

Q̄k
55


[

Pk(zk+1−zk)+ Rk
2 (z2

k+1−z2
k)+ Vk

3 (z3
k+1−z3

k)+ Wk
4 (z4

k+1−z4
k)+ Xk

5 (z5
k+1−z5

k)
] , (15.40)

where

Pk = T 2
k + H2

k z2
k −2TkHkzk + U2

k +
J2

k z4
k

4 −UkJkz2
k + 2TkUk −TkJkz2

k −2HkUkzk + HkJkz3
k , (15.41)

Rk = 2TkHk −2H2
k zk + 2HkUk −HkJkz2

k , (15.42)

Vk = H2
k −

J2
k z2

k
2

+ UkJk + TkJk − zkHkJk, (15.43)

Wk = HkJk, (15.44)

Xk =
J2

k
4
, (15.45)

Tk =

k−1∑
m=1

Hm(zm+1− zm), (15.46)

Uk =

k−1∑
m=1

Jm

2
(z2

m+1− z2
m), (15.47)

Hk = Q̄k
1iβ1i , for i = 1,2,6, (15.48)

and
Jk = Q̄k

1iδ1i , for i = 1,2,6. (15.49)

For the laminate cross-section geometry, see Figure 2 in reference [10]. This correction factor has
been coded into a subroutine and is used for the layered shell formulation in Sierra/SM.
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15.8. 3D Beam Element

The two-noded beam in Sierra/SM is based on conventional Timoshenko beam theory in which
the functional form of the deformation is made explicit on a cross section normal to the reference
axis. Thus, the deformation is described in terms of kinematic variables that depend on the
coordinate along the reference axis. As shown in Figure 15-4, the axis connecting node 1 and
node 2 labeled ξ1 is this reference axis. The beam is defined by a cross-section of fixed-shape
existing uniformly along the reference axis and is formulated using isoparametric coordinates.

As will be apparent, the assumptions about the deformation of the beam are those of a
Timoshenko beam theory. In particular, the transverse shear deformation is modeled. Planar
cross-sections originally perpendicular to the reference axis remain flat and undeformed though
not necessarily remain perpendicular to the reference axis under deformation.

When initially curved beams are modeled with straight beam segments, the global curvature
properties are represented by the change in orientation from one beam element to the next. In
effect, the smooth variation in curvature of the original reference axis is approximated by discrete
changes in orientation occurring at the element ends; the elements are chord approximations to
the original curved beam, much like linear shell elements when modeling a curved structure. This
approximation is the same order as the constant membrane and bending stress approximations
introduced in the element integration.

Figure 15-4. Isoparametric coordinate representation of the two-noded beam el-
ement

15.8.1. Kinematics

The motion of the beam is defined in terms of the velocity of the reference axis and the additional
rotation of the region within the cross-section defined by A(ξ2, ξ3),

vi(x j) = vi(ξ1)−εimnρ
mωn(ξ1). (15.50)
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Here, ρm is the position vector from the reference axis to a point in the cross-section A(ξ2, ξ3).
The position vector is perpendicular to the reference axis and has the units of length.

Based on Equation (15.50), the spatial gradient of the velocity is given by

vi, j(xk) = vi, j(ξ1)−εimnρ
mωn

, j(ξ1). (15.51)

[Note: In the special case when the isoparametric coordinates ξi coincide with the spatial
coordinates xi, the velocity of the beam is given by:

{vi} = {(vx + zωy− yωz), (vy− zωx), (vz + yωx)}. (15.52)

The stretching (symmetric part of the velocity gradient) is then given by

dxx = vx,x + zωy,z− yωz, x,
dyy = 0,
dzz = 0,

2dxy = −ωz + vy,x− zωx, x,
2dxz = ωy + vz,x− yωx, x,
2dyz = 0,

(15.53)

and the spin (skew-symmetric part of the velocity gradient) is given by

2ωxy = −ωz− vy,x + zωx, x,
2ωxz = ωy− vz,x− yωx, x,
2ωyz = −2ωx,

(15.54)

where it is now apparent that Timoshenko beam theory allowing transverse shear deformation is
considered, see Reference [11]. Using Timoshenko beam theory allows the rotation rates ωy and
ωz to be described separately, rather than defined by −vz,x and vy,x, respectively. Consequently,
the (separate) finite element assumptions on the velocity and rotation rates are required to be no
more than continuous represented. In the event that the slender beam limit of vanishing transverse
shear strains holds, classical beam theory is recovered, though special considerations in the
element formulation (introduced below) are needed to prevent shear locking.]

Returning to our description of the more general case, the two-noded beam relates the spatial
coordinates xiI through the isoparametric shape functions NI , I = 1,2 as follows:

xi = xiINI(ξ1). (15.55)

The shape functions map a unit interval in the isoparametric coordinate ξi to a general beam
segment in the spatial coordinates, xi. The unit interval is centered at the origin in the ξ1-space so
that the shape functions may be conveniently expanded in terms of an orthogonal set of base
vectors:

NI(ξ1) =
1
2

ΣI + ξ1ΛI (15.56)

where at node 1: ξ1 = −1
2 , Σ1 = 1, Λ1 = −1, and at node 2: ξ1 = +1

2 , Σ2 = 1, Λ2 = 1. As shown in
Figure 15-5, these two modes represent the deformation modes of a unit interval −1

2 ≤ ξ1 ≤
1
2 .
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Figure 15-5. Deformation modes of a unit interval

Although the velocity gradient of the two-noded beam is quite complex in description when using
a Timoshenko beam theory (Equation (15.51), the modes ΣI and ΛI combine to represent rates of
rigid body translation and rotation, and the uniform strain rates, with no hourglass mode of
deformation.

The same shape functions are used to define the reference axis displacement in terms of the nodal
displacements, uiI:

ui = uiINI(ξ1). (15.57)

Since these shape functions apply to spatial coordinates and displacements, their material
derivatives must vanish. Hence, the velocity field and rotational rate are given by

vi = viINI(ξ1),
ωi = ωiINI .(ξ1)

(15.58)

The velocity gradient and the gradient of the rotational rate are defined as follows:

vi, j = viINI, j,

ωi, j = ωiINI, j.
(15.59)

15.8.2. Mean Quadrature

In order to introduce the concept of a mean (constant) strain and stress in the beam, we need to
deal with the explicit dependence of the velocity on the coordinates ξ2 and ξ3 normal to the
reference axis. The divergence of the stress field in the variational statement is expanded for the
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beam as follows: ∫
V

ti jdi jdv

+1/2∫
−1/2

∫
A

ti jvi, j(ξ1)ldadξ1

−

+1/2∫
−1/2

∫
A

ti j
[
εimnρ

m
, jω

n(ξ1) +εimnρ
mωn

, j(ξ1)
]

ldadξ1.

(15.60)

The dependence on ξ2 and ξ3 is explicit since J specializes to

J = Aεrst
∂xr

∂ξ1
msnt = Al, (15.61)

where l is the length of the beam, A its (constant) cross-sectional area, and ms and nt are the unit
vectors along the ξ2 and ξ3 axes, respectively.

At this point, we can write the classical force and bending stress resultants N i j andMi
j as:

N i j =

∫
A

ti jda,

Mi
j =

∫
A

tinεnm jρ
mda.

(15.62)

Now, we introduce the average stresses τi j and average bending stresses µi
j as:

τi j =
1
A
N i j,

µI
j =

1
A
Mi

j.

(15.63)

Combining Equations (15.60) through (15.63) yields a reduced divergence of the stress field:

∫
V

ti jdi jdv

+1/2∫
−1/2

τi jvi, j(ξ1)lAdξ1

−

+1/2∫
−1/2

[
τi jεimnρ

m
, jω

n(ξ1) +µ j
nω

n
, j(ξ1)

]
lAdξ1.

(15.64)

The integrals in the reduced divergence of the stress field in the element are evaluated using a
mean stress, thereby considering only a state of constant axial, bending, and torsional stress
within the element. Expressing Equation (15.64) explicitly with mean kinematic quantities v̄i, j,
ω̄n and ω̄n

, j, and mean stresses τ̄i j and µ̄ j
n, yields:∫

V
ti jdi jdv = V

(
τ̄i jv̄i, j + τ̄

i jεimnρ
m
, jω̄

n + µ̄ j
nω̄

n
, j
)
, (15.65)
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where the mean kinematic quantities are defined by integrating over the element as follows:

v̄i, j =
1
V

∫
V

vi, jdv,

ω̄n =
1
V

∫
V
ωndv,

ω̄n
, j =

1
V

∫
V
ωn
, jdv.

(15.66)

The gradient operator is defined by

BiI =

+1/2∫
−1/2

NI, jJdξ1, (15.67)

and an averaging operator is defined by

AI =

+1/2∫
−1/2

NI Jdξ1. (15.68)

With these definitions, the mean velocity gradient, mean rotational rate, and mean rotational rate
gradient can be expressed in the more convenient form:

v̄i, j =
1
V

viI B jI ,

ω̄n =
1
V
ωn

I AI ,

ω̄n
, j =

1
V
ωn

I B jI .

(15.69)

Thus, the divergence of the stress field becomes:∫
V

ti jdi jdv = viI
(
τ̄i jB jI

)
−εimnρ

m
, jω

n
I
(
τ̄i jAI

)
−ωn

I
(
µ̄ j

nB jI
)
, (15.70)

where, evident by inspection of Equation (15.70), the nodal forces due to the divergence of the
stress field are then given by:

fiI = τ̄i jB jI , (15.71)

and the nodal torques by:
mnI = −εimnρ

m
, j τ̄

i jAI − µ̄
j
nB jI . (15.72)

15.8.3. Evaluation of Stress Resultants

The constant axial, bending, and torsional stress resultant assumptions result in a mean gradient
operator and an averaging operator that select mean strain rates linear over the cross-section of the
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beam. Material non-linearities, though, will result in the stress distribution over the cross to be
anything but linear, e.g., in the case of plasticity. As a consequence, the integrals for the force and
bending stress resultants are implemented using numerical quadrature over the cross-section. The
location of these integration points for the different cross-sections supported are shown in the
Sierra/SM 5.10 User’s Guide.

At each integration point, the strain rate is computed from the nodal velocities and rotation rates.
The material constitutive behavior is also incrementally evaluated. With a weighting factor and
distance from the reference axis for each integration point, the stress resultant integrals are
computed simply as a weighted-sum over all integration points. Finally, the stress resultant
integrals include the optional offset of the reference axis from the geometric centroid of the
cross-section. Details of how the cross-section is specified and how the reference axis is offset are
discussed in the Sierra/SM 5.10 User’s Guide.

15.8.4. Bending Performance

A correction of the strain energy in the bending of thick beams is necessary due to the
overestimation of the transverse shear contributions. This correction of 4

5 (Reference [11]) is
related to the discrepancy between the constant distributions of transverse shear strains implied by
the displacement assumptions of the beam and the parabolic through distribution.

In the limit of reducing cross-sectional area, a beam theory with transverse shear becomes
arbitrarily stiff in transverse shear response and the transverse shear strains should vanish.
Without any correction, the result is a 1

h2 (and 1
w2 ) growth in the transverse shear strain energy,

known as shear locking. If l is the length of the beam element, transverse shear strain energy scale
factors of 6h2

l2 (and 6w2

l2 ) provide, in the limiting case of slender beam behavior, quadratic
displacement convergence to the Kirchhoff bending result without the shear locking in the
element. Implementation of the shear locking correction factors is done by considering the
minimum of 4

5 and 6h2

l2 (and 4
5 and 6w2

l2 ), thus allowing a transition from the transverse shear
corrected thick beam to the vanishing transverse shear strains dxz, dyz (implying vz,x = ωy and
−vy,x = ωx) required for the thin slender behavior.
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15.9. 3D Spring Element

The 2-noded 3D spring element is a simple beam formulation that includes concepts embodied in
Timoshenko beam theory.
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15.10. Superelement

The superelement formulation in Sierra/SM conforms to the Craig-Bampton reduction capability
in Sierra/SD. An option in Sierra/SM is a corotational formulation, which uses the Kabsch
algorithm [12] to minimize the root mean square deviations between model coordinates and
current coordinates of the superelement connection nodes. Additionally, this superelement
formulation supports uniform gravity load and uniform initial velocity, with the latter satisfying a
zero modal velocity condition, νi = 0.
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16. CONTACT

16.1. Contact virtual work

As a starting point for the treatment of contact, its contribution to the virtual work expression can
be stated as: ∫

S 3

(
−tNδgN + tTαδg

α
T
)

da, (16.1)

where S 3 is the common surface between two continua, tN is the contact normal traction (positive
in compression) tTα is the contact tangential traction in one of two local (tangent plane) directions
α, and δgN and δgαT are the directional derivatives of the contact normal gap gN and tangential slip
gαT in the direction of ϕ̇, i.e.:

δgN :=
d

dβ

∣∣∣∣
β=0

[
gN (ϕ+βϕ̇)

]
, δgαT :=

d
dβ

∣∣∣∣
β=0

[
gαT (ϕ+βϕ̇)

]
.

(16.2)

In Equation (16.1), the deformation is subject to the following constraints, referred to as the
Kuhn-Tucker conditions. The Kuhn-Tucker conditions are a set of constraints to be considered
representative of the mechanical contact problem in continuum mechanics, and can be written
as:

δgN ≥ 0 (a) impenetrability constraint,
tN ≥ 0 (b) no adhesion condition,

tNgn ≥ 0 (c) complementary condition,
tN ġN ≥ 0 (d) persistency condition,

(16.3)

for frictionless response and

Φ := ‖tT ‖−µtN ≤ 0 (a) slip function,

LvgT −ς
tT
‖tT ‖

= 0 (b) slip rule,

ς ≥ 0 (c) consistency parameter,
Φς = 0 (d) complementary condition,

(16.4)

for the prescription of a Coulomb friction (where µ is the friction coefficient). In Equation (16.3),
the gap gN is defined with respect to all material points Y ∈ S 3 as:

gN(X, t) = min
Y∈S 3
‖ϕ(X)−ϕ(Y)‖sign(gN), (16.5)
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where

sign(gN) =

{
−1 if ϕ(X) lies on the interior of the contacted body,
1 otherwise.

(16.6)

The tangential gap rate LvgT in Equation (16.4) is defined as follows:

LvgT =
(
ϕ (X)−ϕ

(
Ȳ(X)

))
·
(
pα⊗pα

)
, (16.7)

where pα and pα are base vectors associated with any appropriate surface coordinate system used
to describe S 3, with these base vectors being evaluated at the current contact point (Ȳ(X)) that
satisfies the minimization of Equation (16.3). Use of the notation Lv is meant to imply a Lie
derivative, which can be understood to be the time derivative of an object as viewed from an
embedded reference frame, in this case the convected frame pα frame, that moves along with the
point.
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16.2. Discretized forms of contact constraints

The question is then, how to represent these conditions in discretized form suitable for FE
solution methods. A simple example, shown in Figure 16-1, serves to demonstrate the concern
that this question embodies. Two discretizations for the interface are evident and, as this simple
example indicates, leads to an ambiguous definition of the interface.

Figure 16-1. Concerns in constraints choices for contact problems

A historical treatment of contact has focused on applying the Kuhn-Tucker condition directly to
the discretized form, leading to what we will be referring to here as a node-face treatment of
contact, or node-face contact. As we will review here in this chapter, this treatment of contact is
relatively straightforward from a conceptual standpoint, however it does have several issues - even
to the point of the overall approach being pathological in some applications.

Alternatively, more recent investigations have focused on addressing these issues, leading to what
we will be referring to here as a face-face treatment of contact, or face-face contact. These
methods consider the weak form more directly, thus leading to a variationally consistent approach
(e.g., mortar methods are an example of this approach and are, at the moment, prevalent in the
literature).

16.2.1. Node-Face contact

For node-face contact the Kuhn-Tucker conditions are assumed to apply to one side of the
contacting surfaces.Thus the gap gN is defined with respect to all nodal points YI as:

gN(XI , t) = min
YI∈S 3

‖ϕ(XI)−ϕ(Y)‖sign(gN), (16.8)

where I refers to a nodal point on one side of the interface, whose coordinates are XI , t at time t of
interest. The right-hand side of Equation (16.8) is the discrete form of Equation (16.5) but is more
commonly called the closest-point projection, which will be discussed in some detail in
Section 16.3.3.

As mentioned, there are issues associated with node-face constraints. They stem from the
application of contact constraints directly to the discretized problem. As shown in Figure 16-1,
the potential to over constrain the interface is avoided by applying the impenetrability constraint
only at selected points along the interface. In the Solid Mechanics module these points coincide
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with the nodes, as it makes it convenient to obtain contact results (normal and tangential tractions,
stick/slip results, etc.) and interpret them in post-processing.

However, this approach does not truly alleviate over-constraining. This is easily demonstrated
with an enlightening example (we will make use of this example for the discussion of node-face
contact and face-face contact, so making a proper introduction is worthwhile). Figure 16-2, shows
a beam bending problem that is being modeled with continuum elements, in this case hex8
elements. The beam is cantilevered at its left end appropriately, i.e., fixed at the neutral axis and
constrained from motion only in the x-direction elsewhere.

Figure 16-2. A continuum beam subjected to pure bending

The analytic solution to this problem is one where the neutral axis should take the displacement
corresponding to an arc of a circle. When the moment is prescribed to be M∗ the beam should
deform into a perfect circle.

When the beam is meshed with either an all coarse mesh (4 elements through its thickness) or an
all fine mesh (16 elements through its thickness), the Finite Element results appear to be quite
acceptable, producing the pure bending solution.

However, lets now combine coarse and fine discretizations to solve the problem. In this case a
mesh tying constraint is required to obtain the solution, which is seen to be fundamentally a
contact problem with adhesion and infinite frictional capacity. The combining of coarse and fine
discretizations can be done is a couple of canonical ways, as shown in Figure 16-3; one where the
interface between the discretizations is vertical and the other where is along the neutral axis.

Figure 16-3. A continuum beam that includes mesh tying subjected to pure bend-
ing

In both cases, we apply the standard rule of thumb: given the same material on both sides of the
interface, apply the contact constraints on the finer discretization. Subjecting the beam to the
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prescribed moment reveals at once the issue: kinematically enforcing a zero gap condition at each
node is exactly correct in one case, where the interface is through the depth of the beam, and
severely over constraining in the other, where the interface is along the neutral axis. As
Figure 16-4 shows, the over constraint can be severe and may produce spurious stress
distributions in the fine mesh, particularly near the neutral axis.

Figure 16-4. Results for a continuum beam that includes mesh tying subjected to
pure bending
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16.3. Contact Search

The contact search algorithm is a logical component of the overall contact capability. Much of the
reason to consider search as a separate component is due to a need to revisit and replace
algorithms as they demonstrate better performance. As problem sizes grow there is an increasing
computational cost of this aspect of computational solid mechanics, particularly on distributed
memory (parallel) computers.

As a way of introducing the concepts inherent in contact search algorithms, we recognize the
similarity of contact search to many other other problems in the simulation domain (e.g., the
video gaming industry). In this more abstract sense, a significant part of the contact search
algorithm is a proximity determination of one object with respect to another. Collision detection,
as it is also referred to, is computationally intensive but also studied thoroughly to obtain the best
performance possible. Thus the contact algorithm in Sierra/SolidMechanics is comprised of the
more general proximity search followed by the much more specific detailed detection of contact
in the context of a discrete Finite Element method.

16.3.1. Proximity search algorithms

Although various proximity search algorithms have been developed over the years, those that
have been used in Sierra/SolidMechanics are discussed. Proximity search algorithms deal with
bounding boxes. Construction of bounding boxes are straightforwardly computed as the vector of
min/max coordinates of the volume swept by the predicted motion of either nodes or faces over a
time step. Specifically, over the time step (t→ t +∆t), the axis-aligned bounding box for node I is
computed as follows:

aabb(NI) = min(ϕ(XI , t),ϕ(XI , t +∆t)) , max(ϕ(XI , t),ϕ(XI , t +∆t)). (16.9)

The resulting data of an axis aligned bounding box calculation is the absolute minimum amount
of data (min and max x,y,z coordinates) representing a contact entity. The example expressed in
Equation (16.9) is for a node; with the extension to a face being straightforwardly computed as:

aabb(FM) = min(aabb(NJ), J = nodes of face M) , max(aabb(NJ), J = nodes of face M).
(16.10)

This allows a simplification or reduction of the contact problem to the more general proximity
detection based solely on axis-aligned bounding boxes of contact entities. Many of the structural
modeling capabilities within Sierra/SM are converted to these primitives (i.e., nodes and faces).
Beams and shells, for example, do not explicitly represent volume, but a volume is inferred with
ancillary data such as thickness. These elements are converted to contact primitives by lofting the
finite element geometry explicitly to volumetric discretizations.

16.3.2. Parallel search algorithms

The strategy for computational simulation of contact on distributed memory architectures
(parallel computing) is to decompose the contact problem in a distributed manner among the
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compute nodes. Typically known as domain decomposition methods, there are several that are
directly applicable to the contact problem. Inertial decomposition and recursive coordinate
bisection (RCB) decomposition are two geometric-based algorithms that are examples. This
geometry-based decomposition approach is depicted graphically in Figure 16-5.

Figure 16-5. Simple illustration of the domain decomposition for contact prob-
lems

The proximity search algorithm thus performs with parallel scalability and serial efficiently on
each processor.

16.3.3. Contact kinematics

Recall that the output of the proximity search is a collection of bounding box pairs whose
volumes overlap. The contact entities associated with the bounding boxes are then considered for
contact in what we call a detailed search. Detailed searching is a term applied to computing the
contact kinematic quantities associated with either the node-face or face-face algorithm.

Closest point projection for node-face contact

The underpinning of the node-face contact approach is the choice of a set of points at which to
apply the Kuhn-Tucker conditions. Once this choice is made, it follows that a contact point must
be determined for each node. The closest point projection is the name given to this calculation,
which is simply the point on the opposing surface that minimizes the gap, i.e.,

gN(XI, t) = min
Y∈{facets on side A surface}

‖ϕ(XI)−ϕ(Y)‖sign(gN). (16.11)

This can be seen simply as the discrete form of the gap function expressed in Equation (16.3).
Immediately with the discrete surface not possessing C1 continuity, the closest point projection is
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Figure 16-6. Simple illustration of the non-uniqueness in the closest point pro-
jection

no longer unique. At and around edges and corners are the regions on the side A surface where
the issues arise. Figure 16-6 depicts a simple illustration of the non-uniqueness encountered.

Minimum volume overlap for face-face contact

The face-face contact approach seeks to avoid these issues by considering the volume overlap
between the discrete sides of the interface.
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17. BOUNDARY CONDITIONS

This chapter describes the theoretical and mathematical basis for some common boundary
conditions.

17.1. Distributed Force and Moment

17.1.1. Boundary Condition Purpose

The purpose of the distributed force boundary condition is to distribute a known set of forces and
moments onto a meshed body of N nodes in a smooth manner. The force distribution is
formulated to have the following properties:

• The provided force distribution exactly reproduces three XYZ net target translational forces
and three XYZ net target moments.

• The distribution avoids concentrated forces that may cause high local deformation.

• The force distribution uses translational forces only. Net moments are applied via
translational force couples.

There are likely infinitely many force distributions that meet the above properties. The distributed
force BC aims to find and apply at least one reasonable such distribution.

17.1.2. Boundary Condition Implementation

The distributed force boundary condition applies nodal forces constructed by a linear combination
of six assumed distributions. Each of these force distributions provide a contribution
predominately aligned with each of the net forces and net moments. The distributions are
essentially a weight for dividing a net global force over the N-node set.

Three translational force distributions Dx, Dy and Dz are given in Equation 17.1. The x, y, and z
subscripts denote the force direction, and x̂ = (1,0,0), ŷ = (0,1,0), and ẑ = (0,0,1). The Ith

subscript denotes the Ith node in the N-node set. mI is the mass at node I. The translational force
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distributions are unitless.

DxI =

(
mI∑N
I=1 mI

)
x̂

DyI =

(
mI∑N
I=1 mI

)
ŷ

DzI =

(
mI∑N
I=1 mI

)
ẑ

(17.1)

Note, the translational distributions have an identical shape to a gravity load. This choice to
weight the nodal forces by mass is somewhat arbitrary, but does a good job of minimizing
artificial force concentration. Also, note that a gravity load applies no net moment about the
center of mass of the node set.

The moment distributions apply a net moment about the node set center of mass. The center of
mass of the node set C is calculated by Equation 17.2. pI represents the coordinates of node I.
The three trial moment distributions D′rx, D′ry, D′rz are given by Equation 17.3. The rx, ry, and rz
subscripts denote the torques about x̂, ŷ, and ẑ.

C =

∑N
I=1 mIpI∑N

I=1 mI
(17.2)

D′rxI = mI(x̂× (pI −C))
D′ryI = mI(ŷ× (pI −C))

D′rzI = mI(ẑ× (pI −C))
(17.3)

The constructed trial moment distributions may produce a net translational force. This is
corrected by first computing the net translational force produced by each trial moment
distribution, and subtracting off a scaled translational force distribution. The corrected pure
moment distributions are given in Equation 17.4.

DrxI = D′rxI −

(
N∑

I=1

D′rxI · x̂

)
DxI −

(
N∑

I=1

D′rxI · ŷ

)
DyI −

(
N∑

I=1

D′rxI · ẑ

)
DzI

DryI = D′ryI −

(
N∑

I=1

D′ryI · x̂

)
DxI −

(
N∑

I=1

D′ryI · ŷ

)
DyI −

(
N∑

I=1

D′ryI · ẑ

)
DzI

DrzI = D′rzI −

(
N∑

I=1

D′rzI · x̂

)
DxI −

(
N∑

I=1

D′rzI · ŷ

)
DyI −

(
N∑

I=1

D′rzI · ẑ

)
DzI

(17.4)

The total forces to be applied are a weighted sum of the six force distributions Drx, Dry, Drz, Dx,
Dy, and Dz. Note the moment force Drx, Dry, and Drz distribution values have units of mass times
length while the translational force distributions Dx, Dy, Dz are unitless.
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The translational force distributions apply no moment. The corrected moment force distributions
apply no net translational force. However, a moment distribution applied in one direction may
cause a secondary moment in different direction. These moment coupling terms are computed in
Equation 17.5. The Mxy term, as an example, represents the net moment generated about ŷ, given
that a nodal force distribution Drx is applied.

Mxx =

N∑
I=1

(((pI −C)×DrxI) · x̂)

Mxy =

N∑
I=1

(((pI −C)×DrxI) · ŷ)

Mxz =

N∑
I=1

(((pI −C)×DrxI) · ẑ)

Myx =

N∑
I=1

(((pI −C)×DryI) · x̂)

Myy =

N∑
I=1

(((pI −C)×DryI) · ŷ)

Myz =

N∑
I=1

(((pI −C)×DryI) · ẑ)

Mzx =

N∑
I=1

(((pI −C)×DrzI) · x̂)

Mzy =

N∑
I=1

(((pI −C)×DrzI) · ŷ)

Mzz =

N∑
I=1

(((pI −C)×DrzI) · ẑ)

(17.5)

It is observed (but not proven) that the 3×3 moment coupling matrix M is symmetric.
Approximate symmetry of the moment coupling matrix is assumed during the solution process. If
the moment coupling matrix is not symmetric, then the net moments applied by the distributed
force and moment boundary condition may be off in an amount proportional to the lack of
symmetry.

To achieve the target net forces and moments b, Equation 17.6 is solved to find the force
distribution multipliers w. bx, by, and bz have units of force and brx, bry, and brz have units of
moment. For the units to work out, wx, wy, and wz have units of force, while wrx, wry, and wrz

185



have units of one over time squared.
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 Mxx 0.5∗ (Mxy + Myx) 0.5∗ (Mxz + Mzx)
0 0 0 0.5∗ (Mxy + Myx) Myy 0.5∗ (Myz + Mzy)
0 0 0 0.5∗ (Mxz + Mzx) 0.5∗ (Myz + Mzy) Mzz




wx
wy
wz
wrx
wry
wrz

 =


bx
by
bz
brx
bry
brz

 (17.6)

The actual final force F to apply to each node I is given by Equation 17.7.

FI = wxDxI + wyDyI + wzDzI + wrxDrxI + wryDryI + wrzDrzI (17.7)

17.1.3. Limitations and Special Cases

The distributed force and moment boundary conditions apply moments via translational force
couples to a set of nodes. Special cases of node sets exist such that the application of distributed
moments is not well-posed.

One example of these use cases is if the node set contains a single node, or a set of nodes in the
same exact position. In this scenario, no force applied to the nodes will result in any moments.
This manifests as a zero matrix for the moment coupling terms given by Equation 17.5. The
resulting zero sub-matrix in Equation 17.6 renders its solution impossible. Such a case should be
avoided. However, if encountered in the code, the distributed moments will be ignored.

A second pathological node arrangement is a collinear set of nodes. No set of forces on a
collinear node set can produce a torque around the collinear axis. Such a case will manifest as a
singular system in Equation 17.6. This node configuration should be avoided. However, if
detected, the target torque around the collinear node axis will be ignored and the other two
orthogonal moments returned correctly.
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17.2. Inertia Relief

The inertia relief boundary condition is used to balance the free body diagram of forces acting on
a body such that the net force external force acting on the body is zero. The inertia relief
boundary condition heavily leverages the distributed force and moment capability 17.1.

Inertia relief computes the net external forces Fsum and moments Msum acting on a body. These
net external forces include forces from pressures, tractions, gravity, and other boundary
conditions. Fsum and Msum are computed using Equations 17.8 and 17.9. The I index is the Ith

node in the set. Fext is the translation external force acting on a node, Mext is the external moment
acting on a node, and p represents the coordinates of the node. The moments on the body are
computed around the body center of mass C as computed in Equation 17.2.

Fsum =
∑

FextI (17.8)

Msum =
∑

((pI −C)×FextI ) + MextI ) (17.9)

In order to compute the inertia relief forces, the distributed force boundary condition is leveraged,
ultimately solving Equation 17.6 for the b given in Equation 17.10.

b =


−Fsumx

−Fsumy

−Fsumz

−Msumx

−Msumy

−Msumz

 (17.10)
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17.3. Viscous Damping

17.3.1. Rigid Body Invariant Damping

The rigid body invariant damping option heavily leverages the inertia relief boundary
condition 17.2. Rigid body invariant damping automatically applies an inertia relief boundary
condition that counterbalances just the damping forces being applied by the viscous damping BC.
This counterbalancing force ensures the total applied damping has no effect on the rigid body
motion of parts and thus only effects the vibration models of the part.
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APPENDIX A. Known Issues

References: Section 1.1: Many more references could be given in the introduction.

Epic Material Model Issues: Many, if not all, Epic materials models have no theory
documentation. We recommend searching the open literature.

Particle Methods: Particle methods, such as Smooth Particle Hydrodynamics, are
undocumented.

Representative Volume Elements: Representative volume elements are undocumented.
However a reference paper does exist.
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