SAND2022-11323R

Development of the uncertainty quantification toolkit’s python interface and surrogate
construction tutorial

The uncertainty quantification toolkit (UQTK) is a collection of c++
libraries that assess the confidence of numerical models. Surrogate
approximations, often polynomial chaos expansions (PCEs), lessen the
computational cost of these assessments. I developed a Python interface in UQTk
for regression and Bayesian compressive sensing to add to the existing Galerkin
projection method. These methods receive an object containing the polynomial
basis information and NumPy arrays of sample points, call c++ methods, and
return the PCE coefficients in a NumPy array. To demonstrate these methods, |
wrote a tutorial in which I use them to construct surrogates for Genz functions and
calculate the resulting error. I performed two test cases: creating a 6™-order
polynomial surrogate for a 2-dimensional Genz oscillatory function and an 8-
order polynomial surrogate for a 4-dimensional oscillatory Genz function. In both
cases, Galerkin projection performed best overall, regression performed best in
overdetermined systems, and Bayesian compressive sensing performed best in

underdetermined systems.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

L. INTRODUCTION

Uncertainty quantification (UQ) is a process aimed at assessing the confidence of
numerical models, which involves surrogate construction to approximate complex models, global
sensitivity analysis to determine the most influential parameters, estimation of these parameters,
and forward propagation of these parameters through the model to produce probability density
functions of the model outputs.!

One of the first steps of UQ, surrogate construction, helps a numerically complex model
to be run many times by creating a computationally cheap approximation.> A surrogate can be a
polynomial chaos expansion (PCE), a series of orthogonal polynomials of random variables of
increasing order. In the PCE in equation 1, the orthogonal polynomials, 1., are functions of
random variable, &, multiplied by coefficients, c;. Terms of increasing order are summed, and K
is determined by a truncation rule. The series approximates the model output value, y.

K—1

) y =) cahl®

k=0

The UQ Toolkit (UQTk) has capabilities to accomplish many UQ tasks, including
surrogate construction, through its c++ libraries and Python interface.> The methods of UQTK’s
Python interface were spread across separate scripts and folders, so my project was to gather
existing methods relating to surrogate construction into /PyUQTk/PyPCE/pce tools.py and write
new ones, including regression and Bayesian compressive sensing.

I also wrote a tutorial to demonstrate how to use these methods in a surrogate
construction workflow for Genz functions (with domains of [-1,1]). Genz functions are often
used for algorithm testing in various dimensions; for example, Figure 1 depicts a 2-dimensional
Oscillatory Genz function. As I tested my methods and surrogate construction workflow, I used
PCEs of orders and dimensions up to eight.

! Bert Debusschere, Khachik Sargsyan, Cosmin Safta, and Kenny Chowdhary, “Uncertainty Quantification
Toolkit (UQTXk),” in Handbook of Uncertainty Quantification, (Springer International Publishing Switzerland,
2017), pp. 1807-1827.

2 Khachik Sargsyan, “Surrogate Models for Uncertainty Propagation and Sensitivity Analysis,” in
Handbook of Uncertainty Quantification, (Springer International Publishing Switzerland, 2017), pp. 673-695.

3 Khachik Sargsyan, Cosmin Safta, Luke Boll, Katherine Johnston, Mohammad Khalil, Kenny Chowdhary,
Prashant Rai, Tiernan Casey, Xiaoshu Zeng, Bert Debusschere, in UQTk Version 3.1.2 User Manual, (Sandia
National Laboratories, 2022).

Oscillatory Integrand Family

d
f(x) = cos | 27u, + Eaia:i

i=1
Figure 1: A 2-dimensional oscillatory Genz function with a domain of [0,1].4

11 PYTHON INTERFACE
A. UQTkRegression

The first method for PCE surrogate construction that I added to pce_tools.py is
UQTkRegression, which interfaces with the c++ code and performs standard regression. This
method solves Ax = b, where A is a matrix of the evaluated basis of the polynomial expansion, b
is a vector of model evaluations, and x is a vector of coefficients. This method accepts an object
of the PCSet class (which contains the basis information), a NumPy array of sample points, and a
NumPy array of model evaluations at the sample points. It returns a NumPy array of the
coefficients for the PCE.

First, UQTkRegression converts the sample points into an UQTk array, which is a data
type that the UQTk c++ libraries read. Then, it calls EvalBasisAtCustomPoints using the basis
information from the PCSet object and the sample points. This produces a UQTk array of the
evaluated basis, which is then converted into a NumPy array. The NumPy arrays of the sample
points, the model evaluations, and the evaluated basis are given to linalg.lstsq, a NumPy
regression method. The produced coefficients are then returned. It can be cumbersome to convert
data types and evaluate the basis matrix for the regression task, and UQTkRegression streamlines
this process. The code for UQTkRegression is shown in Figure 2.

To assess the performance of this method, I ran tests using Genz functions for different
numbers of input sample points and different numbers of dimensions. Figure 3 depicts the root
mean square error of a 4 order Gaussian Genz function, showing that the error decreases when

4 Simon Surjanovic and Derek Bingham, “Oscillatory Integrand Family,” in Virtual Library of Simulation
Experiments: Test Functions and Datasets, (Simon Fraser University, 2013),
https://www.sfu.ca/~ssurjano/oscil.html.

the system becomes overdetermined until it flattens out around the number of sample points
equal to 120% of the basis terms.

I also wrote a script that creates a PCE approximation for a Legendre polynomial with
pre-determined series of coefficients. Regression determines the coefficients, and the script
compares the given coefficients to the regression-determined coefficients. If identical, the
method is functional. This test is run with other UQTk compilation tests.

pc_model, f_evaluations, samplepts):

Obtain PC coefficients b sion

Note: Need to generalize

about bas

or) with func
[nsam,]

array wit

Outp
1D Numpy array

|)>1:
ndim=samplepts. [1]
sam_uqtk=ugtkarray.num g rtra (samplepts))

sam_uqtk=uqtkarray.db
fo 1 1n (nsam)

]
)

(sam_uqtk, psi_ugtk)

psi_np = uqtkarray. py (psi_uqtk)

c_k, resids, rank, s . li . 1 (psi_np, f_evaluations, rcond=None)

Figure 2: The code for UQTkRegression in pce tools.py

Regression with different numbers of sample points
for Genz Gaussian Model with PC Order 4

101 i
10°
w 107!
72
=
o
1072
—— 1-dimensional
2-dimensional
—— 3-dimensional
—— 4-dimensional
_3 | == 5-dimensional
10 —— &-dimensional \
7-dimensional —f\\
—— &-dimensional
0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25

Fraction of the number of basis terms

Figure 3: Root mean square error in the regression-constructed 4"-order surrogate for Gaussian
Genz functions with one to eight dimensions and varying sample points. The x-axis is the
percentage of the number of basis terms to use as sample points. The graph shows the error
flattening out around 120% of the number of basis terms, so this would be the ideal number of
sample points to use.

B. UQTkBCS

UQTKkBCS implements Bayesian compressive sensing, which uses regression and
Bayesian inference to determine coefficients while encouraging sparsity.®> This method accepts
an object of the PCSet class, a NumPy array of sample points, a NumPy array of model
evaluations at the sample points, a NumPy array of the data noise, the stopping threshold (as a
float, list, or NumPy array), a flag to indicate if the conservative growth method is used, the
number of up-iterations, the number of folds for stopping threshold cross-validation, and a flag
for print statements. By default, a non-conservative growth process, no up-iterations, and 5 folds
for cross-validation are used, and print statements are silenced. UQTkBCS returns a NumPy
array of coefficients and PCSet object with new basis.

UQTKBCS first chooses whether to optimize the stopping threshold, eta. If eta is an array
or list, then the eta that produces the lowest error is selected by UQTkOptimizeEta, which

3 Khachik Sargsyan, Cosmin Safta, Habib N. Najm, Bert J. Debusschere, Daniel Ricciuto, Peter Thornton,
“Dimensionality Reduction for Complex Models via Bayesian Compressive Sensing,” International Journal for
Uncertainty Quantification 4 (1), 63—93 (2014), https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821.

performs cross-validation with the specified number of folds. If the input for eta is a single float,
then optimization is skipped, and the given value is used.

Next, the remaining input arrays are converted to UQTk arrays, and another Python
method UQTkEvalBCS is called. This method calls the c++ implementation of BCS without
adaptive functioning.

Next, if up-iterations are used, the script shrinks the basis to only the coefficients that the
first iterations of BCS selected. Then, higher order terms are added to the basis terms in those
selected areas with either a conservative or non-conservative approach. This process is repeated
for each up-iteration. The final basis (as a PCSet object) and the coefficients (as a NumPy array)
are returned. UQTkBCS allows for a user to easily call multiple iterations of BCS. The code is
shown in Figure 4.

I again ran tests using Genz functions to assess UQTkBCS’s performance. Figure 5
depicts the root mean square error of a 3"-order exponential Genz function over various
dimensions and sample inputs—with the error flattening around the number of sample points
equal to 150% of the basis terms.

upit=0,\

sam_uqtk: ray.numpy2uqtk(np.asfo \array(samplepts))
aluations))

r each term of the final v, sam_uqtk, sig_uqtk, eta_opt, verbose)

e up-iterations (if upit>@)

BCS with different numbers of sample points
for Genz Exponential Model with PC Order 3, Upit O

10t
100
101t
L
)]
=
o
1072
103 { == 1-dimensional
2-dimensional
—+— 3dimensional
—— 4-dimensional
—+— 5-dimensicnal _.._
10-4 —+— &-dimensional

o
o

0.8 1.0 12 1.4 1.6 1.8 2.0

Fraction of the number of basis terms

Figure 5: Root mean square error in the BCS-constructed 3"-order surrogate for exponential
Genz functions with one to six dimensions and varying sample points. Eta was given as a range
from le-1 to le-15, and sigma was given as le-8. No up-iterations were used. The x-axis is the
percentage of the number of basis terms to use as sample points. The graph shows the error
flattening out around 150% of the number of basis terms, so this would be the ideal number of
sample points to use.

1. SURROGATE CONSTRUCTION TUTORIAL

To show how to use these methods, I created Jupyter notebooks that walk through the
process of surrogate construction for a Genz function with regression, with BCS, and with
Galerkin Projection. In these tutorial notebooks, I first define the type of polynomial to use
(Legendre, Hermite, etc.), the order of the polynomial, the dimension, and other surrogate
options. Then, I instantiate an object in the PCSet class that contains the basis information. I
generate random training and testing data between -1 and 1. (Quadrature points are calculated
instead of random training samples if using Galerkin projection). Then, I perform Galerkin
projection, regression, or BCS to determine the coefficients of the PC expansion. With the
coefficients, I evaluate the PCE at the testing points, calculating the normalized root mean square
error. These tutorials are in UQTk in /examples/surrogate genz/.

I used the tutorial notebooks to construct a 6®-order Legendre PCEs for a 2-dimensional
Genz oscillatory function using regression, BCS, and Galerkin projection. Galerkin projection
used full quadrature, and regression and BCS used two collections of random samples (at 200%

and 75% the number of basis terms—overdetermined and undetermined systems, respectively.)
For BCS, I also set sigma to 1e-8 and eta to be an array from le-1 to le-15 and used conservative
basis growth and no up-iterations. Of the methods, Galerkin Projection performed best overall
with a normalized root mean square error of 1.41e-8, regression performed best in an
overdetermined system with an error of 3.21e-8, and BCS performed best in an underdetermined
system with an error of 1.52e-5.

I repeated this process with an 8t-order Legendre surrogate for a 4-dimensional
oscillatory Genz function. Again, Galerkin projection performed best overall with an error of
8.45e-9, regression performed best in an overdetermined system with an error of 2.58e-8, and
BCS performed best in an underdetermined system with an error of 3.95e-6. The normalized root
mean square error and the number of points used for each method are summarized in Table 1.

Order 6 8
Dimension 2 4

Basis Size 28 495

Galerkin Projection 1.41e-8 49 points 8.45¢-9 6561 points
Regression 4.83e-4 21 points 2.69¢-4 371 points
(underdetermined)

Regression 3.21e-8 56 points 2.58e-8 990
(overdetermined)

BCS (underdetermined) 1.52e-5 21 points 3.95e-6 371

BCS (overdetermined) 4.36e-7 56 points 1.04e-6 990

Table 1: Normalized root mean square errors and number of training points for a polynomial
chaos expansions of 6 order and 2 dimensions as well as 8" order and 4 dimensions, using
Galerkin projection, regression, and Bayesian compressive sensing.

IV. CONCLUSION
The Python methods of UQTkRegression and UQTkBCS interface with the c++
functions of UQTk, helping Python users more easily access them, and the tutorials go through
the process of surrogate construction with these methods, explaining the methods in context.
These additions to UQTk will be made available to the broader scientific community when the
UQTk 3.1.3 update is pushed to GitHub in August 2022. This updated is expected to reduce the
UQTk learning curve for end-users.

V. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525.

This work was funded by the DOE Office of Workforce Development for Teachers and
Scientists (WDTS) and the DOE Office of Science, Advanced Scientific Computing Research
(ASCR).

I would like to acknowledge my research mentor Bert Debusschere who guided me
through this project.

