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EXECUTIVE SUMMARY

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S.
Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology
(FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel
(SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are
design concept development and disposal system modeling. These priorities are directly addressed
in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged
with developing a geologic repository system modeling and analysis capability, and the associated
software, GDSA Framework, for evaluating disposal system performance for nuclear waste in
geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the
Used Fuel Disposition (UFD) campaign.

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-22SN01030408) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and
Applications in GDSA Framework (FY2022) (M3SF-22SN010304082). It presents high level
objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates
uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY22,
and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA
capability of GDSA Framework. This work was closely coordinated with the other Sandia National
Laboratory GDSA work packages: the GDSA Framework Development work package (SF-
22SN01030409), the GDSA Repository Systems Analysis work package (SF-22SN01030410),
and the GDSA PFLOTRAN Development work package (SF-22SN01030411). This report builds
on developments reported in previous GDSA Framework milestones, particularly M3SF-
21SN010304042.
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1. INTRODUCTION

This report presents high level objectives and strategy for development of uncertainty and
sensitivity analysis tools in Geologic Disposal Safety Assessment (GDSA) Framework, a software
toolkit for probabilistic post-closure performance assessment (PA) of systems for deep geologic
disposal of nuclear waste. GDSA Framework is supported by the Spent Fuel and Waste Science
and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear
Energy (NE) and its predecessor the Used Fuel Disposition (UFD) campaign.

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-22SN01030408) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and
Applications in GDSA Framework (FY2022) (M3SF-22SN010304082). It presents high level
objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates
uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY22,
and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA
capability of GDSA Framework.

This work was closely coordinated with the other Sandia National Laboratory GDSA work
packages: the GDSA Framework Development work package (SF-22SN01030409), the GDSA
Repository Systems Analysis work package (SF-22SN01030410), and the GDSA PFLOTRAN
Development work package (SF-22SN01030411). This report builds on developments reported in
previous GDSA Framework milestones, particularly M3SF-21SN010304042 [1], M3SF-
20SN010304032 [2], and M3SF-19SN010304032 [3].

Geologic repository performance assessment in the U.S. involves a code base that includes
coupled, multiphysics modeling at high resolution. Due to the high cost of these models which
require high performance computers to run, relatively few simulation samples are available for
analysis. This highlights the need to consider surrogate models to sample and explore the input
parameter space more extensively. However, this must be done in a careful way so that surrogate
accuracy can be tracked and understood in the context of UQ/SA results. Variance-based
sensitivity indices are now a standard practice in the sensitivity analysis community but require
many evaluations of the predictive model. Much research has focused on accurately calculating
variance-based sensitivity indices while keeping the computational cost reasonable. We note that
other sensitivity analysis methods [3] may be better than variance-based methods at identifying
patterns of behavior or trends. Another recent approach is to employ “multifidelity” UQ in which
many low-fidelity simulation runs (e.g., coarser mesh, simpler physics) augment a small number
of high-fidelity runs [1, 2]. Keeping abreast of improvements to existing UQ/SA methods as well
as employing new methods is critical to performing sensitivity and uncertainty analysis of new
repository systems which will involve large parameter spaces and computationally expensive
simulations. The repository community must maintain awareness of and leadership in UQ/SA
methods to best inform our assessment of costly computational models.

1.1 Overview of this Report

This report provides documentation of the UQ/SA work performed in FY 2022. The outline of this
report is as follows:
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e Chapter 2 provides results using a new uncertainty quantification method involving models at
multiple levels of fidelity, hence the name “Multifidelity Uncertainty Quantification.” The
main idea in multifidelity UQ is to extract information from a limited number of high-fidelity
model evaluations and complement them with a much larger number of lower fidelity
evaluations. The final result is an estimator of the mean or statistic of the response (e.g.
percentile) with a lower variance: a more accurate and reliable estimator can be obtained at
lower computational cost. In 2020, we demonstrated the use of multifidelity UQ on a simplified
1-D test problem [2]. This year, we provide a more realistic example using a simplified
crystalline reference case. We demonstrate various options for estimation of a mean quantity,
along with the relative costs and variance.

e Chapter 3 focuses on identifying biases that may arise in our sensitivity analysis results
(specifically, the Sobol’ variance-based indices) due to the use of surrogate models in the
sensitivity index calculations. This chapter shows that much of the variance of certain
quantities of interest (Qols) is due to the spatial heterogeneity and not due to variance of
epistemic input parameters. However, it is quite difficult to capture that spatial heterogeneity
(coming from various discrete fracture network realizations) using graph metrics or other
proxies. This chapter dives deeply into the surrogate accuracy and resulting influence on the
sensitivity calculations.

e Chapter 4 discusses the discrete fracture networks (DFN) that were generated this year. The
focus of this chapter is a comparison of the correlated-constant vs. correlated depth-dependent
transmissivity relationship for the crystalline reference case DFNs. One hundred DFNs were
generated for each transmissivity relationship and the resulting Qols are compared. These
results are documented in Chapter 4.

e In Chapter 5, we extend the sensitivity analysis of the crystalline reference case performed in
FY21. We investigated the effects of DFNs (spatial heterogeneity) as well as epistemic
parameters on an updated version of the crystalline reference case. Many quantities of interest
are extracted from the PELOTRAN results, including peak concentrations of '?°I in the aquifer
at each time step along with the location of the peaks, fraction of tracers remaining at various
time points, mean travel time from the repository to various locations, median residence time
of a tracer within the repository, and total water fluxes in various directions.

This year, we added another type of uncertainty to the crystalline reference case analysis:
model form uncertainty. We consider two alternatives to the Fuel Matrix Degradation (FMD)
model. One is a fractional dissolution rate (FDR) model and the other involves an Artificial
Neural Network (ANN) surrogate approximating the FMD model. An entire set of 1000
PFLOTRAN simulations (25 DFNs x 40 epistemic parameters) were run using the FDR model
and then repeated for the ANN FMD model. The results and comparisons are discussed in
Chapter 5.

e Chapter 6 presents an overview of an initial sensitivity analysis study using the DECOVALEX
crystalline case. These results are very preliminary but are provided to show a different case
study as well as the generalizability of the GDSA Workflow and sensitivity analysis framework.

e Chapter 7 provides a summary.

e Chapter 8 lists the references.
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1.2 GDSA Framework

GDSA Framework (Figure 1-1) capabilities include multi-physics simulation of coupled
processes affecting deep geologic repository performance, uncertainty and sensitivity analysis,
pre- and post-processing, and visualization. For a given performance assessment, these tools will
be linked to a version-controlled parameter database and an automated run-control system. The
overall objectives of GDSA Framework development are to:

e create a framework that is flexible enough to take advantage of future advances in
hardware, software, simulation, and analysis methods;

e Jleverage existing high-performance computing capabilities (e.g., meshing, simulation,
analysis, and visualization);

e enable increasingly coupled, mechanistic multi-physics modeling;
e provide analysis methods for prioritization of SFWST Disposal Research R&D activities;
e provide transparent implementation of simulation and analysis methods;

e develop and distribute in an open-source environment so that software is freely available
to stakeholders ( [1, 2, 3, 4, 5, 6, 7]).

Next Gen c tational S .
omputational Suppor
Workflow Input Uncertainty
)}) DAKOTA Parameters Sampling and Processing Visualization
Sensitivity Analysis VeraCrust
Parameter
e e
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Figure 1-1. The GDSA Framework
One objective of the UQ/SA capability in GDSA Framework is to make standard sampling-
based methods of uncertainty propagation, sensitivity analysis, and uncertainty quantification

typically used within U.S. nuclear waste disposal programs (e.g., DOE 2008 [8], DOE 2014 [9],
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RESS2000 [10], RESS2014 [11]) available. Another objective is to enable future adoption of
new methods consistent with the current standard of practice in the UQ/SA community which are
appropriate for high-dimensional, highly coupled, nonlinear problems resulting from the
implementation of mechanistic multi-physics simulations. Having a consistent, common
framework which enables a user to perform a range of sensitivity analysis and UQ approaches for
a particular problem or set of simulations allows for reproducibility, comparative analyses, use of
verified algorithms, and documentation of best practices. These are important goals for
performance assessments.

The following sections highlight the key components of GDSA Framework. More information
about each can be found by following the links at https://pa.sandia.gov.

1.2.1 PFLOTRAN

PFLOTRAN is an open source, state-of-the-art, massively parallel subsurface flow and
reactive transport simulator ( [12, 13, 14]) written in object-oriented Fortran 2003. PFLOTRAN
models subsurface flow using a porous medium continuum approach, which includes capabilities
for multicomponent systems, multiphase flow and transport, heat conduction and convection,
biogeochemical reactions, geomechanics, and radionuclide decay and ingrowth. The code is
developed under a GNU Lesser General Public License, which allows third parties to interface
proprietary software with the code. The availability and continuing development of PFLOTRAN
for GDSA are due to an ongoing collaborative effort of several DOE laboratories led by Sandia.
PFLOTRAN development for GDSA Framework is described by Mariner et al. ( [4, 5, 6]) and
Sevougian et al. 2018 [15]. PFLOTRAN installation instructions are available at
https://www.pflotran.org/.

1.2.2 Dakota

Dakota is an open-source toolkit of algorithms that contains both state-of-the-art research and
robust, usable software for optimization and uncertainty quantification (UQ). It is available at:
https://dakota.sandia.gov [16]. The Dakota software has parametric analysis methods that enable
design exploration, model calibration, optimization, uncertainty quantification, and sensitivity
analysis with computational models. Dakota is a C++ code which has been under development at
Sandia since 1994. It has been primarily sponsored by DOE’s Advanced Simulation and
Computing (ASC) program. Dakota supports computationally expensive simulations which
require high performance computing and parallel execution. Thus, a focus of the algorithm
development in Dakota has been on methods that are as efficient as possible and minimize the
number of runs required of a high-fidelity simulation model.

Dakota contains the uncertainty quantification and sensitivity analysis methods typically used
in the U.S. repository program. Dakota implements Latin Hypercube Sampling (LHS) with
correlation control on input parameters. It calculates moments on responses of interest as well as
correlation matrices (simple, partial, and rank correlations) between inputs and outputs. Dakota
allows nested studies to perform an “outer loop” epistemic sampling and an “inner loop” aleatory
sampling to generate ensembles of distributions. Dakota includes additional capabilities, such as
the use of surrogate models, adaptive sampling approaches, and multifidelity UQ methods. Dakota
returns tables of input and output amenable to further processing and visualization with additional
tools developed within GDSA Framework or by an individual user.
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A graphical depiction of Dakota interfacing with a computational model such as a repository
simulation in PFLOTRAN is shown in Figure 1-2. Based on the type of study being performed
(optimization, uncertainty quantification, etc.), Dakota chooses the next set of parameters at which
to evaluate the simulator and runs the simulator, which returns the performance metrics of interest
back to Dakota. Dakota then generates the next set of parameters according to the algorithm being
used for the study and keeps iterating until the specified number of samples is reached.

DAKOTA

+ Optimization
+ Sensitivity Analysis

’ « Parameter Estimation

+ Uncertainty Quantification

Performance

Parameters .
Metrics

Computational Model

* Repository Simulator —
\ + Black Box Code
(mechanics, circuits, high energy |

physics, biology, chemistry)

» Semi-intrusive Code
(Matlab, Python, multiphysics codes)

Figure 1-2. Dakota interfacing to a computational model such as a repository simulator

The UQ/SA methods in Dakota have evolved as the standard of practice evolves. Over the past
ten years, the Dakota team has invested in methods which calculate the Sobol’ variance-based
sensitivity indices in an efficient manner. These indices estimate the proportion of variance in a
quantity of interest that can be attributed to variance in each uncertain input parameter. Currently,
a Dakota user can calculate these by extensive sampling of the simulation code, by using surrogate
methods such as regression or Gaussian process models, by the use of polynomial chaos
expansions, and by using multifidelity methods. Dakota is an actively maintained and developed
code with formal releases issued twice per year. Dakota uses formal software quality development
processes including advanced version control, unit and regression testing, agile programming
practices, and software quality assessment.
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1.2.3 Automated Analysis Workflow Development for GDSA

Uncertainty Quantification analysis workflows are not trivial to define and get running, even
when using tools such as Dakota to generate nested studies involving sampling loops over both
aleatory and epistemic samples. The analyst has to spend a significant amount of time writing
scripts to interface the sample values to PFLOTRAN, extract the results, and put the entire
workflow on a high-performance computing platform. Further, as the number of quantities of
interest increases and many vectors of results are generated for each simulation, plotting and
aggregating the results in a variety of ways (e.g., averaging over epistemic or aleatory slices as a
function of time) becomes very involved. To address this, the Crystalline Reference Case
Uncertainty Analysis (UA) Nested Workflow was developed. This workflow couples Dakota,
PFLOTRAN, and NGW (the Next-Generation Workflow software) to present the user with a
unified graphical user interface (GUI) where the actual workflow can be dictated and automated
in an easy-to-use graphical format. This workflow also allows greater reproducibility and
traceability of the actual files and scripts used for a particular study.

The Crystalline Reference Case UA Nested Workflow that was developed in FY20 and
expanded and used in FY21 was leveraged for the studies presented in this report. Details regarding
the development and use of the workflow for past analyses are given in [1, 2, 32]. The portability
and automation provided by the workflow significantly speed up the overall analysis. A journal
article [17] is currently in preparation to summarize the development of the Crystalline Reference
Case UA Nested Workflow and the successful adaptation and application of this workflow through
time to performance assessment problems. This journal article will describe the use of the Next-
Generation Workflow (NGW) software within the Dakota GUI to support performance assessment
analyses with complex treatments of UQ/SA.

Modifying the workflow from the crystalline reference case (presented in Chapter 5) to the
DECOVALEX case (presented in Chapter 6) required editing of various input files defining the
parameters and associated input files to PFELOTRAN. It also required updating run directories and
job submission scripts, extracting the outputs for DECOVALEX, and including these outputs in
the workflow. We are developing guidelines about what changes are required to use the workflow
with a new case study. Having both case studies (the crystalline reference case and the
DECOVALEX case) was helpful to generalize the workflow.

1.2.4 GDSA Software Strategy

The software strategy for GDSA is to leverage and use open-source software that is actively
maintained and developed whenever possible. That is why the GDSA Framework utilizes
PFLOTRAN, Dakota, dfnWorks, and visualization tools such as Paraview. Another goal is to
support HPC computing, which is a primary focus for all of the software tools listed above. In
addition, the GDSA Framework should have the flexibility to develop and adopt new capabilities
as state-of-the-art hardware, software, and methodology evolves. Again, the codes chosen for
GDSA exhibit this flexibility and are constantly evolving and adopting to utilize new software and
hardware capabilities. Much of the interfacing between the codes is currently performed with
Python and other scripting tools. There will be tighter integration as GDSA Framework and the
GDSA workflow progresses.

1-6



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)
August 2022

2. UQ METHODOLOGY: MULTIFIDELITY METHODS

Surrogate-based and sample-based multifidelity methods have the potential to increase the
fidelity and efficiency of probabilistic post-closure performance assessment of geologic
repositories for nuclear waste. These methods reduce computational cost while still producing high
quality estimates of repository performance. With single-fidelity modeling, reducing computation
cost typically results in lower quality estimates. Multifidelity methods avoid most or all of the
reduction in quality by fusing estimates from cheaper, lower-fidelity models with more
computationally costly, higher-fidelity models. Intuitively, these methods use the lower-fidelity,
cheap models to increase the precision of statistical estimates (e.g. mean value of a quantity of
interest), while the high-fidelity model is used to increase the accuracy of statistical estimates.

Last year, the potential utility of surrogate-based multifidelity methods was explored in the
context of a simplified model of a repository in sparsely fractured crystalline rock. The simplified
model exhibits many of the features of the Crystalline Reference Case (CRC) but is much less
costly to evaluate (~3 minutes on 36 cores vs ~30 minutes on 512 cores, ~1/100" the cost). Full
details of this investigation can be found in [1]. Surrogate-based methods are attractive for
uncertainty analyses where statistics other than moments of a quantity of interest (e.g. mean,
variance) must be computed, e.g. a percentile or a probability distribution. However, the
multifidelity variants of commonly used surrogate models such as polynomial chaos expansions
and Gaussian processes suffer some of the same challenges as their traditional single-fidelity
counterparts: namely, loss of accuracy from discontinuities in model outputs and the need to
explicitly represent each source of uncertainty in a model as an input to the surrogate. These
challenges were identified and discussed in detail in [1].

Sampling-based approaches are robust to discontinuity and do not require sources of
uncertainty to be explicitly represented as long as they can be sampled. However, their
applicability is currently limited to single statistics, e.g. moments of the quantity of interest [18,
19, 20], Sobol’ indices [21], or percentile estimates [22]—there is not currently any practical
multifidelity sampling-based method to compute a probability distribution. Typically, sampling-
based multifidelity methods achieve increased efficiency by reducing the variance of statistical
estimators, such as a sample mean. This reduction in the variance of the estimator means that the
error in the sample estimator will, on average, be lower relative to an estimator computed using
only the high-fidelity model. Because mean estimates are of interest for PA, this year the potential
utility of sampling-based multifidelity methods was explored in the context of the simplified
crystalline repository model. A brief summary of this model is provided here; complete details of
its specification are provided in [1].

2.1 Simplified repository model in crystalline rock

For the purposes of this preliminary feasibility study, a simplified model of a repository in
crystalline rock was developed which mimics the CRC as closely as possible while significantly
reducing the computational cost of the model (by about 100x). This enabled the assessment of
sampling-based methods for PA problems in crystalline rock without the computational overhead
of running the CRC. The model is a simplification of the CRC, which is detailed extensively in [1,
2, 3]. A detailed description of the simplified model is provided in [1], but relevant features of the
problem are summarized here.
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The model represents a repository embedded in a sparsely fractured granite; the spatial
heterogeneity induced by fractures is represented using a discrete fracture network (DFN), which
is generated by randomly sampling fractures of varying size, orientation, and location. The
parameterization of the probability distributions for fracture size, orientation, and location are
derived from the well-characterized Forsmark site in Sweden [23]. The model simplifies from the
CRC by simulating a single waste package in the repository (rather the hundreds), ignores thermal
effects, is a smaller computational domain, and runs to 100,000 years rather than 1,000,000 years.
However, it retains the strong spatial heterogeneity characteristic of the CRC, and most of the
uncertain parameters are shared between the two models (the way waste package breach time
uncertainty is parameterized is simplified here because there is only one). One additional
difference between the simplified model and the CRC is sampling structure; here a new DFN is
generated for each sample evaluation, while the CRC employs a nested sampling structure, where
a DFN is fixed for a small number (typically 25) of epistemic samples.

A diagram of the computational domain is shown in Figure 2-1. The waste package is located
in the buffer region; a leak occurs at a random time during the simulation, which is sampled from
an uncertainty distribution. The repository region constitutes the buffer region and the disturbed
rock zone. Surrounding the repository is the spatially heterogeneous sparsely fractured crystalline
rock (spatial heterogeneity ignored for the diagram). Finally, a glacial aquifer sits at the top of the
computational domain. The maximum concentration of the radionuclide %I, released from the
waste package, is tracked in the aquifer region.

/ Glacial aquifer

Repository

] '\_—Disturbed rock zone

(DRZ)
Buffer/leak

Fractured granite (rock)

1000 m
X

Figure 2-1. A vertical slice of the computational domain, taken at y=500 m

2.2 Sampling-based multifidelity methods

Sampling-based multifidelity methods such as multilevel Monte Carlo (MLMC) [19],
multifidelity Monte Carlo (MFMC) [18], and approximate control variate Monte Carlo (ACVMC)
[20] leverage evaluations from multiple models of varying accuracy and cost to achieve increased
efficiency of statistical estimates. For example, the standard Monte Carlo estimator of the mean of
a quantity of interest Q would be computed as

Pl .
0=5). 0% (1)
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This estimator has variance V(Q)/N; this means the standard error of the estimator decays

slowly, at a rate of VN. For two models (Q high fidelity, costly; Q; low fidelity, cheaper), the
MLMC mean estimator is defined as

~ 1M 1 Na . ; ~ _
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This estimator is unbiased, but its variance is
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The first part of this variance can be driven down by evaluating Q; many times—this is
possible because it is cheap to evaluate. The second part of the variance will be small if the variance
of the discrepancy between the models is small; this can occur if the variations in Q and Q; are
very similar as functions of the uncertain inputs, e.g. as model predictions converge with mesh
refinement. If these conditions hold, the MLMC estimator can achieve orders-of-magnitude
smaller variance relative to MC for the same computational cost. It can be extended to more than
two models by adding a series of telescoping discrepancies between models to (2). MFMC and
approximate control variate (ACV) methods operate similarly to MLMC; they exploit correlations
between models to achieve a similar variance reduction. MFMC exploits recursive correlation
between models in a hierarchy, while ACV relaxes the assumption of a hierarchy and exploits the
correlation between all models in an ensemble. See [20] for a detailed definition of each of these
methods, how they are related, and how they differ. Each of these estimators is implemented in
the most recent release (6.16) of Dakota [16].

For each of these estimators it is possible to derive an optimization problem for the optimal
number of samples to allocate to each model in the ensemble. The objective function is different
for each estimator, but they all contain variances and/or correlations which must be estimated
numerically. This is typically done using a small number of samples shared between all models,
called a pilot study. See [20] for further discussion on allocation strategies.

A typical sampling-based multifidelity procedure entails an initial pilot study, wherein a small
number of samples are evaluated for all models in the ensemble, and these are used to compute
sample correlations, which feed into the optimal sample allocation and projected estimator
variance for a given budget. Following the pilot study, the sample allocation obtained from the
pilot study can either be used directly for a UA simulation campaign, or an iterative procedure can
be followed wherein additional sample evaluations from all models are obtained to improve the
accuracy of the sample correlations before embarking on the simulation campaign. Both options
are available in Dakota. The second option was taken here.

Multifidelity sampling-based methods are generally more effective when there is a significant
difference in cost and high correlation between models. However, each sampling-based
multifidelity method exploits the relationships between models in an ensemble and combines
samples from the models in a different way. Because of this, any one of the methods can
outperform the others (in terms of variance reduction), depending on the nature of the model
ensemble. The pilot study can be used to project the performance of each of the sampling-based
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multifidelity estimators for a given budget, so it is recommended to compare the projected
performance of the estimators before embarking on a costly simulation campaign. This approach
was taken here.

2.3 Results

The potential utility of sampling-based multifidelity methods such as multilevel Monte Carlo
(MLMC) [19], multifidelity Monte Carlo (MFMC) [18], and approximate control variate Monte
Carlo (ACVMC) [20] was explored here for the mean log-base-10 peak (maximum over time and
space) '#I concentration in the aquifer. A model ensemble was defined in terms of the spatial
discretization applied to the computational domain. A uniform hexahedral mesh of 10, 20, and 40
m edge length was applied.

A 25-sample pilot study was performed; the sample correlations between models for this study
are reported in Table 2-1. This study was also used to compute the average computational cost,
measured in core time, for each of the mesh sizes, reported in Table 2-2. The correlations and
relative costs for this model ensemble are good, but additional modifications could be made to
improve them even further; e.g. modifying timestep algorithm settings to make the coarser spatial
discretizations even cheaper. Because this is an exploratory study, we did not explore such
modifications; however, it will be a key area of investigation when these methods are deployed to
the CRC.

Table 2-1. Correlations between mesh sizes for the logio peak '*°I concentration in the aquifer

Mesh size [m] 10 20 40
10 1.00 0.98 0.91
20 0.98 1.00 0.95
40 0.91 0.95 1.00

Table 2-2. Absolute and relative model costs

Mesh size [m] Core time [s] Relative cost
10 83498 1.0
20 917 1.1e-2
40 83 9.9¢-4

The performance of MFMC and ACVMC were considered here relative to MC. MLMC was
not considered here despite the fact that the model ensemble arises from varying numerical
discretizations of the same equation, a common use case for the method, because the previous
year’s analysis of the model ensemble indicated there was a lack of convergence as the mesh was
refined for the peak %I, which is expected to lead to suboptimal performance for the method. (This
lack of convergence is hypothesized to arise from the false connections that create spurious flow
pathways between the repository and the aquifer region. Adaptive meshing could mitigate this
issue and will be considered in future studies.)

The pilot study was used to obtain and compare the projected estimator variances of MFMC
and ACV MFMC (a multifidelity variant of ACV) for a computational budget equivalent to 500
high-fidelity simulations. These are reported in Table 2-3.
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Table 2-3. Projected estimator variances for single-fidelity and multifidelity sampling-based
methods
Method Projected estimator variance MC varance /
Projected variance
MC 2.00e-2 1.0
MFMC 2.11e-3 9.5
ACV MFMC 2.41e-3 8.3

The greatest projected variance reduction is achieved with MFMC, with a variance reduction
of almost 10x. An iterated study with a computational budget of 500 equivalent high-fidelity
evaluations was performed using MFMC, where the sample correlations between models are
updated with additional shared evaluations between models. This iteration resulted in 409 shared
samples between models to compute sample correlations and projected MFMC estimator variance.
This updated projected variance reduction relative to MC dropped to 7.6x, which is lower than was
projected with the smaller pilot sample size, but it is still a nonnegligible reduction in variance. A
summary of the number of evaluations for each model and a comparison of the approximate
variances for MC and MFMC are presented in Table 2-4 (variances are approximate since sample
variances and correlations must be substituted in analytical expressions for estimator variance).

Table 2-4. The number of evaluations per model, computational cost, and estimator variance
for MC and MFMC methods

Method Numbe'r of Computational cost Estimator variance
evaluations
MC Q10: 500 500 3.63e-3
MFMC Q10: 409
Q20: 4780 499.8 4.89e-4
Q40: 38507

This is a positive result; however, with a good model ensemble, multifidelity sampling-based
methods can achieve a much greater reduction in variance for the same computational cost—often
multiple orders of magnitude. Given the limited exploration of possible ways to derive lower-
fidelity models for this problem, it is likely that even better variance reduction could be achieved
by exploring other methods besides simply coarsening the spatial discretization to make the lower-
fidelity models cheaper and/or more correlated with the highest fidelity. For instance, time step
algorithm settings could be modified to make the coarser spatial discretizations even cheaper to
run, though this will also impact accuracy. For more complex PA cases, models with simplified
physics could be used as lower-fidelity models in the ensemble. Since this problem is meant only
to inform the feasibility of multifidelity methods for the repository PA application area, further
exploration of the potential lower-fidelity models was not considered here.
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2.4 Conclusions

Multifidelity surrogate-based and sampling-based methods were explored in the context of a
simplified crystalline repository model. These methods show promise to improve the efficiency of
uncertainty analyses for PA, but additional tuning of model ensembles and surrogate construction
algorithms will be needed to realize their full potential. Additional numerical studies for sampling-
based methods and a detailed discussion of the surrogate-based method’s results are documented
in a forthcoming journal article, which is in preparation [24]. A draft may be available from the
authors upon request. Future research directions will focus on deploying multifidelity sampling-
based methods to the CRC and other reference cases.

As shown in Table 2-4, the reduction in the variance of the mean estimator was shown with a
MFMC approach using samples from multiple fidelity runs with a total computational cost that
was the same as the cost of the original high fidelity samples. Note that another way the increased
precision in the multifidelity sampling-based estimators can be exploited is to maintain the same
accuracy in the estimator, but at a reduced cost. In this situation, the goal would not be to reduce
the estimator variance but to achieve it with a number of samples across fidelities that have a total
computational cost which is less than the cost of the high fidelity samples (e.g. 500 high fidelity
samples in the case study in Section 2.3). This cost savings can thus enable even higher fidelity
models to be developed and incorporated in probabilistic PAs. This will be considered in future
investigations.
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3. SENSITIVITY ANALYSIS METHODOLOGY: ASSESSMENT OF
SURROGATES

Previous sensitivity analyses with the GDSA Framework have utilized linear methods and
variance decomposition [1, 2, 3, 4, 5]. Linear methods are appealing because they are relatively
easy to apply and interpret whereas variance decomposition is appealing because it offers more
flexibility in detecting significant nonlinear relationships. However, variance decomposition is
also more complicated to apply and interpret than linear methods.

As described in [3], there are multiple ways to perform variance decomposition. Application
in the GDSA Framework has focused on estimating Sobol’ indices [25]. These indices describe
the proportion of variance in a quantity of interest that can be attributed to variance in each input
parameter. It can be calculated using a large number of simulations with a specific sampling
structure [26]. This process is feasible for computationally inexpensive models but is not always
feasible for computationally expensive models.

Previous analyses with the GDSA Framework have overcome this challenge using surrogate
models [1, 2, 3]. Surrogate models are computationally inexpensive models that can be trained to
estimate the behavior of a computationally expensive model. Sobol’ indices can then be estimated
by exercising the efficient surrogate model many times. The accuracy of the Sobol’ indices
estimated using a surrogate model depends on the quality of this surrogate.

Surrogate models have previously proven successful at identifying the variables driving
uncertainty in Qols for GDSA Framework simulations [1, 2, 3]. These results were consistent with
our phenomenological understanding of the modeled systems and with patterns identified in scatter
plots. However, we have also noted that further study on surrogate quality is required [1].

This year’s work on sensitivity analysis aimed to further investigate surrogate model quality
and the factors that interfere with surrogate quality. For the crystalline reference case, in particular,
the separation of spatial and parameter uncertainties presents a challenge for surrogate models for
two reasons: 1) the spatial uncertainty is not defined parametrically, so spatial uncertainty cannot
be directly included in the surrogate model construction, and 2) the nested sampling structure
(Section 5.1.1) results in repeated samples within the spatial loop, which may bias surrogates.

To investigate these issues, we structured an analysis to compare Sobol’ indices calculated by
directly sampling the model (Section 3.1) and Sobol’ indices estimated using surrogate modeling
(Section 3.1). Comparison between the calculated indices and the estimated indices indicates the
quality of the surrogate. This would not be possible with the crystalline reference case (CRC); it
is costly, requiring ~256 core hours per simulation in its current form, so a numerical study
resolving the Sobol’ indices to adequate accuracy with several thousand samples would not be
computationally feasible. Instead, we performed this analysis with the coarsest mesh for the
simplified crystalline model which is described briefly in Section 2.1 and in detail in [1]. This
model requires ~30 seconds on one core to run, so is it computationally feasible to obtain the
computed Sobol’ indices for this model, which provides a unique opportunity to make this
comparison. However, it still retains the features in the CRC which are challenging to surrogates,
namely the spatial uncertainty which is not defined parametrically but instead manifests through a
sampled DFN. This year we focused on the first challenge of unparameterized spatial

3-1



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)
August 2022

heterogeneity and its impact on surrogate accuracy. Understanding the effect of sampling structure
and sample size on surrogate accuracy will be the subject of future work.

Another advantage of using the simplified model is that the DFNs are also relatively
inexpensive to generate and use. The procedure for calculating Sobol’ indices requires an initial
sample set with unique spatial and variable samples for each realization. This sample is then
modified to construct the remaining samples for the calculation, as described in Section 3.1, which
introduces repeated values to each dimension in the set. As a result of this procedure, there is a
smaller sample set with all unique samples, and a larger sample set with repeated values.
Constructing the surrogate on the smaller set allows it to be constructed with unique DFN samples
for each parametric sample, removing the issue of repeated sampling in the spatial loop which
biases the surrogate. This allows for an isolated study of the impact unparameterized spatial
uncertainty has on surrogate quality.

Section 2.1 describes the simplified case. Section 3.1 describes how it was used to calculate
Sobol’ indices, Section 3.1 describes the sampling, and Section 3.3 details each of the analyses
and their results. This chapter ends with a brief summary discussion in Section 3.4.

3.1 Uncertain random variables

The uncertain random variables are similar to the full-scale crystalline reference case, except
for the way uncertainty in waste package breach is modeled. Since there is only one waste package
in the simplified model, a single uncertain breach time is simulated, rather than a distribution over
the degradation of the canister, which is sampled for each waste package in the full-scale
crystalline reference case. The range of values for the breach time was selected so that the waste
package would breach in the first part of the simulation; it is not based on any physical information.
The uncertain random variables and their distributions are reported in Table 3-1. The U notation
describes a uniform distribution with upper and lower bounds. The log U notation describes a log-
uniform distribution with upper and lower bounds. A log-uniform distribution is uniform in log
space.

These parameters are explained in more detail in [6], where Chapter 4 of [6] provides literature
references for each particular aspect (e.g. buffer, waste package, etc.) Most of these parameters
have a nominal value obtained from the literature. The uncertainties around these estimates were
best estimates provided by the authors of [6]. These are meant to be reasonable uncertainty
estimates given limited information and should only be taken as illustrative for the purposes of
demonstrating the UQ/SA analyses in this report. For an actual performance assessment, these
parameters would need to be updated and re-examined with site-specific information.
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Table 3-1. Uncertain parameters in the simplified crystalline problem

Parameter Description Distribution
rateUNF Waste form bulk dissolution rate [yr'] | logU[1078,107°]
kGlacial Glacial aquifer permeability [m?] log U[10715,10713]

permDRZ DRZ permeability [m?] log U[1071%,10716]

permBuffer Buffer permeability [m?] logU[1072°,10717]
pBuffer Buffer porosity [-] U[0.3,0.5]
wpBreachTime Waste package breach time [yr] U[2500,10000]

Additionally, for the direct sampling-based sensitivity analysis, the float seed random variable
distributed as U[0,1] is included in the set of random variables. The float seed provides a seed
value to the DFN random number generator.

For some of the studies reported below, spatial uncertainties represented by graph metrics were
also included. Their distributions were determined using the procedure reported in [1]. They were
included because of their nonnegligible correlation with performance quantities of interest. The
graph metrics investigated are [1]: nIntersections (the number of intersections in the DFN), NIwR
(the number of fractures intersecting the repository region), and STT (the shortest travel time
between repository and aquifer along one of the flow pathways between them; it is computed
relative to the median over all DFNs and is log-base-10 transformed).

3.2 Sobol’ Index Calculation

The Sobol’ indices incorporating spatial heterogeneity were computed using a Saltelli
sampling-based method [26] implemented in Dakota [16]. The benefit of this approach relative to
a surrogate-based approach is that the effect of spatial heterogeneity does not have to be
parameterized as an input as it would for a surrogate; it is sufficient that it can be sampled (by
generating a DFN) and fixed (by fixing the seed for the DFN random number generator). To this
end, the set of uncertain parameters for the simplified model was augmented with a uniform
random variable with range [0,1]. This variable, called the float seed, was multiplied by 10° and
rounded to the nearest integer to provide an integer seed to the DFN generation algorithm.

The Saltelli sampling-based method for computing Sobol’ indices employs a so-called “pick
and freeze” procedure. This procedure is briefly explained here, but a more detailed description of
the approach is available in [26]. First, two sets of independent, identically distributed input sample
sets of size N are generated. Let these be denoted X, X' € RN*4 where d is the number of random
inputs. Sobol’ indices associated with the k" random input are computed using model evaluations
f(X), f(X"),and f(X}), where X}, =[x, X5, ..., Xk, ..., Xy] (note that the k" column is taken
from X while all other columns are taken from X"). The structured sampling associated with X},
enables the computation of the conditional expectations necessary for the Sobol’ indices. A full
set of Sobol’ indices for all random variables thus requires 2N model evaluations (for f(X) and
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f(X')) and dN evaluations (for f(X}),k =1,...,d). Thus, for a user-specified N, (d + 2)N
model evaluations are required to compute the Sobol’ indices. Note that 2N independent samples
are generated as a result of this sampling procedure.

An adequately converged set of sampling-based Sobol’ indices were computed to serve as a
reference for comparison for the surrogate-based indices. These computed indices are referred to
as the “calculated” values in the Section 3.3 analyses because they are inherently more accurate
than surrogate-based indices and are treated as the true values that the surrogate models are used
to estimate. The convergence of the indices was assessed by generating five replicate sets of indices
for a given sample size and inspecting the variation in the indices using box plots. First, a sample
size of 1,000 was considered. For each replicate study, this resulted in (7+2)1,000=9,000 model
evaluations. This brought the total number of model evaluations for the five replicate studies to
45,000; there are 5 replicates, each with 9,000 model evaluations. A scatterplot of the five replicate
sets of Sobol’ indices are presented in Figure 3-1 for the peak '*I concentration in the aquifer.
Note that the bounds on the total effect indices overlap significantly for kGlacial and float seed,
which makes it challenging to confidently rank the variables by importance.

Peak 12°| concentration in the aquifer [m]

Main effects Total effects
permBuffer 4 « 1
permDRZ 1 * 1
kGlacial LI R -

rateUNF 4 = 1

float_seed 4 LI e o A L -
wpBreachTime q « 1°
pBuffer = 1=

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8

Figure 3-1. Scatterplots for the five replicate sets of Sobol' indices computed for sample size
1,000

Based on these results, Sobol’ indices were computed using five additional replicates each with
a sample size of 5,000 to drive down the variation in the Sobol’ indices. A scatterplot of the five
replicate studies is shown in Figure 3-2 for the peak '*’I concentration in the aquifer. There is still
some spread in the Sobol’ indices for kGlacial and float seed, but there is no longer an overlap in
their values, so ranking of the importance of the variables is possible. For this reason, the 5,000
sample size case was considered adequately converged for use as a reference for comparison with
the surrogate-based indices. A similar check was performed for the other performance Qols, but
discussion of the process focused on a single Qol where there was overlap for 1000 samples for
simplicity.

3-4



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)
August 2022

Peak 12°| concentration in the aquifer [m]

Main effects Total effects

permBuffer 4 «
permDRZ 4 =
kGlacial 4 - g . -
rateUNF - e
float_seed 4 ¢ we o | - T

wpBreachTime 4

pBuffer { =
0.0

0.2 0.4 00 02 04 06 08 10
Figure 3-2. Scatterplots for the five replicate sets of Sobol’ indices computed for sample

size 5,000

It should be noted that the computational costs to obtain these Sobol’ indices were significant.
A sample size of 5,000 corresponds to (7+2)5,000=45,000 model evaluations for each replicate
study; a set of five replicate studies corresponds to 225,000 model evaluations. The low
computational cost of the coarsest simplified crystalline repository model (only ~30 seconds on
one core) made this computationally feasible (though impractical), but such a numerical campaign
would not be possible for production level models like the crystalline reference case. Because this
sampling method uses 2N unique samples, each of the five replicates produced 10,000 unique
samples to be used in the surrogate model construction.

3.2.1 Extracting Samples for Surrogate Analysis

This year, analysis focused on the challenges to surrogate accuracy associated with
unparameterized spatial heterogeneity. To isolate the issues associated with this and mitigate its
conflation with accuracy of the surrogate from too few samples, the surrogates were constructed
with a large number of samples extracted from the Saltelli-based sampling used for the computed
Sobol’ indices. The independent samples produced as a part of the Saltelli-based sampling were
extracted as build points for the subsequent surrogate analyses. These samples were pulled both
from the 1,000 and 5,000 sample size cases. For a single replicate study, recall that there are 2N
independent input/output samples. However, each of the replicate studies constitutes an
independent set of samples, so these can be concatenated together to create a larger independent
sample set. The number of independent samples extracted from each of the sample sizes used in
the Saltelli-based sampling are presented in Table 3-2.

Table 3-2. The number of independent input/output samples extracted from each sample
size for the Saltelli-based sampling procedures

Saltelli-based sample size

Number of independent
input/output samples (single
replicate study)

Number input/output samples
(combining 5 replicates)

1,000

2,000

5(2,000)=10,000

5,000

10,000

5(10,000)=50,000
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3.3 Surrogate Analysis

Multiple small studies were performed with simulations from the simplified crystalline
reference case to prioritize the factors that affect surrogate quality. We have noted previously [1,
2] that the inclusion of spatial heterogeneity creates challenges for surrogate modeling with the
full-scale crystalline reference case (see Section 5). However, there are additional characteristics
of data sets for the crystalline reference case or surrogate models that may impact surrogate quality,
such as non-monotonic behavior, differing scales between variables and Qols, surrogate modeling
form, etc. The studies described in this section aim to investigate these factors individually to
qualitatively inform our future approaches to improve surrogate quality for the full-scale model.

The types of analyses performed with the simplified case are described in Table 3-3. The
sample sizes described in this table are the samples used in the surrogate model construction and
Sobol’ index estimation; a larger sample was used to construct the sample required for Sobol index
calculation.

Results in this section are provided as plots showing the Sobol’ indices estimated using the
surrogates and those that were calculated as described in Section 3.1. The calculated indices are
treated as the true values that the surrogate models are intended to predict. Main effect indices are
plotted on the left frame in the figures. These indices describe the proportion of variance in the
Qol that the surrogate model attributes to each individual input variable on its own. The total effect
indices are plotted in the right frame in the figures. These indices describe the proportion of
variance in the Qol that the surrogate model attributes to each individual input variable on its own
and through its interactions with other variables. Total indices that are significantly larger than
main effects indices indicate significant interaction effects.

Table 3-3. Analysis performed to investigate surrogate model quality for sensitivity analysis

Analysis Description
Samples*: 10,000

Spatial Variable: Not Included

Analysis Question(s)

Surrogate Choice

Does our choice of surrogate

Surrogate Models: Mars

Analysis Surrogate Models: Polynomial Chaos model have a significant effect on
Section 3.3.1 Expansion (PCE), Polynomial, Multiple sensitivity analysis results?
Adaptive Regression Splines (MARS),
Neural Network (NN)
Float Seed Analysis Samples™: 10,000 Can surrogate models attribute
. Spatial Variable: Float Seed spatial variability to a random
Section 3.3.3

seed?

Y-Location Analysis
Section 3.3.2

Samples*; 10,000

Spatial Variable: Y-Location of Peak '2°|

Surrogate Model: Mars

Can y-location of peak '°| be used

as a proxy variable to summarize

spatial heterogeneity in sensitivity
analysis?

Graph Metric
Analysis
Section 3.3.4

Samples*: 10,000

Spatial Variables: nintersections, NIwR,
STT

Surrogate Model: Mars

Do graph metrics improve
surrogate quality? Are they
sufficient for summarizing spatial
heterogeneity?

Samples*: 10,000
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Transformation Spatial Variables: nintersections, NIwR, Can transformations improve
Analysis STT surrogate model performance?

Section 3.3.5 Surrogate Model: Mars
Samples*: 10,000 x 5 replicates

Replicate Analysis | Spatial Variables: nintersections, NIwR,
Section 3.3.6 STT

Surrogate Model: Mars

Are sensitivity analysis results
consistent across replicates?
Should they be?

* These sample sizes refer to the number of realizations used for surrogate model construction, 2N (see Section
3.1)

3.3.1 Surrogate Choice Analysis

The surrogate choice analysis compares four different surrogate models that were trained to
the same data set. The models include quadratic polynomial (Poly2), second order polynomial
chaos expansion (PCE2), multiple adaptive regression splines (MARS), and neural network (NN)
models, all applied within Dakota [16]. This analysis was performed on simulations that include
spatial heterogeneity, but no variables characterizing the spatial heterogeneity were included in the
surrogate model construction. This means that the data includes uncertainty that cannot be fully
described by the surrogate models. Comparing the surrogates in this context is interesting because
different models may have different propensities to over-fit. In other words, some models may be
more likely than others to misattribute variation from spatial heterogeneity to epistemic variables
or combinations of epistemic variables. Overfitting could lead to misleading sensitivity analysis
results with our current imperfect characterization of spatial heterogeneity; other potential
differences between surrogate model options were not addressed in this analysis.

The sensitivity analysis results from the surrogate choice analysis for the ratio between the
aquifer to east boundary flux and the rock to east boundary flux at 100,000 years are plotted in
Figure 3-3 and the corresponding scatter plots of input variables versus this Qol are plotted in
Figure 3-4. This is an example of a quantity of interest with a fairly straightforward sensitivity
analysis. As we can see in the scatter plots, there is a very clear trend between the glacial till
permeability (kGlacial) and this flux ratio. However, there is some variation in this linear trend,
which is due to spatial heterogeneity. In the absence of any variable characterizing this
heterogeneity, all four models attribute the variation solely to kGlacial, estimating main and total
effect indices near 1.0. In context, we would conclude that the sensitivity analysis identifies the
most important epistemic variable, but all models over-estimate the sensitivity indices because
they estimate that epistemic variables describe 100% of the variance even though it is not possible
to explain 100% of the variance without attributing any to spatial heterogeneity.
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Figure 3-3. Sensitivity analysis results for the ratio of aquifer to east boundary flux and
rock to east boundary flux at 100,000 years from the surrogate choice analysis
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Figure 3-4. Scatterplots of ratio of aquifer to east boundary flux and rock to east boundary
flux at 100,000 years versus the uncertain parameters

The sensitivity analysis results from the surrogate choice analysis for the peak '*I

concentration are plotted in Figure 3-5 with the corresponding scatterplots in Figure 3-6. This
analysis is similar to that for the previous Qol except that more uncertainty in the peak '*°I is due
to spatial heterogeneity, yet all models still assign almost all of the variance to kGlacial; since no
variables representing spatial heterogeneity were included in the surrogate construction, this means
the surrogate is overfitting by assigning that variance to kGlacial. The neural network model is
unique in that it spreads more of the variability over variable interactions than the other models.
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Figure 3-5. Sensitivity analysis results for the peak '°I concentration [M] in the aquifer
from the surrogate choice analysis
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Figure 3-6. Scatterplots of the peak '’ concentration [M] versus the uncertain parameters

The sensitivity analysis results from the surrogate choice analysis for the y-location of the peak
1291 concentration and corresponding scatter plots are shown in Figure 3-7 and Figure 3-8,
respectively. Note that the scatter plots do not have any discernable trends. In the sensitivity
analysis results, the polynomial and neural network models both assign some significant variance
to individual variables on their own. Neither the MARS model nor the PCE model attribute any
significant variance to the epistemic variables. This may suggest that these models are less prone
to overfitting with respect to main effects indices. However, the analysis was also run with the
smaller sample size (2Nggmpres = 2000). When trained to less data, the PCE model overfit both
main and total effects indices, and the MARS model overfit total effects indices. Hence, all of the
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models are, to some extent, vulnerable to overfitting and the occurrence overfitting depends on the
size of the training data set. This analysis demonstrates the potential for overfitting regardless of
model choice with the sample size limitations imposed on a PA by computational costs.

The scatterplots for this the y-location of peak '*’I concentration show that it is largely
independent of the uncertain input variables. Figure 3-9 shows a grid of scatterplots. Each plot
frame is the scatterplot of an input variable versus another input variable, and all plots are colored
by the corresponding values for the y-location. The purpose of a plot like this is to identify any
two-way interaction effects; if any of the plot frames show a pattern with respect to color, then the
two variables in that plot frame have a conjoint influence on the y-location.

The lack of patterns within the color scale for all plots in the grid shows there are no clear two-
way interactions between input variables that drive the behavior of the y-location Qol. Because of
this independence, we considered the possibility that the y-location may be a good proxy for the
input spatial heterogeneity. Phenomenologically, it makes sense that the location of the peak
concentration should be impacted by the spatial heterogeneity within the fracture network, as well
as the spatial variability in waste package breach times. Even though it is not an uncertain input to
the repository model, we considered using y-location as an input in the sensitivity analysis to
incorporate spatial heterogeneity in the surrogate model construction (see Section 3.3.2).

Overall, the surrogate models in this study performed similarly. They provided similar results
for clearly important variables and tended to overfit when not provided with variables
characterizing spatial heterogeneity. The MARS model may be slightly less prone to overfitting
with respect to the main index estimation based on the results for y-location. For the sample sizes
used in this study, the polynomial, PCE, and MARS models have roughly the same computation
cost, and the NN model is less efficient in terms of its training cost. This analysis does not heavily
favor one model over the other, but a single model (MARS) was chosen for the remaining studies
to simplify those comparisons because it was less prone to overfitting with sufficient sample size
in this analysis.
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Figure 3-9. Plot matrix of the uncertain parameters plotted versus each other and colored
by the y-location [m] of peak '*°I

3.3.2 Y-Location Analysis

As discussed in the previous section, the y-location of the peak *’I concentration appears to
be independent of the uncertain input variables but should be influenced by the spatial
heterogeneity. This led us to consider using the y-location as a proxy variable for spatial
heterogeneity in the simplified crystalline reference case. For this study, we included the y-location
in the surrogate construction and then plotted the sensitivity analysis results with the calculated
Sobol indices (see Section 3.1). The calculated Sobol’ indices for the float seed are plotted for the
y-location because these are the indices that the analysis aims to estimate using the proxy variable.
Recall from Section 3.1 that float _seed defines the random seed for DFN generation and the value
of float seed is used in the Sobol” “calculated” values but not in the surrogate-based approach.
Hence, the Sobol’ indices for float _seed are the Sobol’ indices characterizing the effects of spatial
heterogeneity. They are plotted with the y-location Sobol’ indices in this analysis so we can
evaluate whether using y-location results in a Sobol’ surrogate-based index estimate similar to the
calculated Sobol’ indices for spatial heterogeneity. Calculated values from five replicates are
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shown, which enables comparison between the estimates and the level of variation seen in
calculated values.

The sensitivity analysis results for the ratio between the aquifer to east boundary flux and the
rock to east boundary flux at 100,000 years are plotted in Figure 3-10. The inputs are plotted versus
this Qol in Figure 3-4, and y-location is plotted versus this Qol in Figure 3-11. Analysis of the
scatterplots in Figure 3-4 suggests that kGlacial should be the most important variable driving
uncertainty in this Qol, but influence from spatial heterogeneity is also expected. The calculated
values in Figure 3-10 show this to be the case. Over 10% of the variance is attributed to float seed
from the Sobol’ index calculation. However, the surrogate model does not attribute any of this
variance to the y-location, and the scatterplot in Figure 3-11 supports this conclusion. This analysis
showed that, at least for this Qol, the y-location of peak '*’I is not a viable proxy to represent
spatial heterogeneity in sensitivity analyses.

Sensitivity analysis results are presented for the median residence time in Figure 3-12.
Scatterplots for comparison are plotted in Figure 3-13. and Figure 3-14.. This analysis is similar
to that for the previous Qol, except that much more of the variance should be attributed to the
spatial heterogeneity. The calculated indices attribute more than 90% of the variance to spatial
heterogeneity. However, the surrogate model attributed almost all of the variance to the buffer
porosity (pBuffer). In this case, the scatterplot versus y-location (Figure 3-14.) also suggests there
is no meaningful trend. The y-location is not a useful proxy for spatial heterogeneity for this Qol.

Results from the sensitivity analysis for '?°I concentration are plotted in Figure 3-15.
(scatterplots in Figure 3-6 and Figure 3-16). We are particularly interested in characterizing the
effects of spatial heterogeneity for this Qol because it is our performance metric for the full-scale
crystalline reference case at this stage in development. Even for this Qol, however, the y-location
does not capture much of the influence from spatial heterogeneity. Overall, the y-location did not
prove to be a useful proxy for spatial heterogeneity for any of the Qols.
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values plotted with y-location are the calculated values for the float seed
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3.3.3 Float Seed Analysis

The float seed analysis was performed to test whether the surrogate model could attribute
spatial variability to, essentially, a noise variable. In the Sobol’ index calculation (Section 3.1),
float seed is used just for indexing; the actual values of float seed are not incorporated in the
Sobol’ index calculation. Because the float seed value is not used directly in the repository
simulation, the surrogate models were not expected to attribute any variance to the seed. To
perform this analysis, float seed was included as a parameter in the surrogate model construction
and subsequent Sobol index estimation.

Sensitivity analysis results from the float seed analysis for the time of peak '?°I concentration
[M] are plotted in Figure 3-17. The results for the ratio between the rock to aquifer flux and the
aquifer to east boundary flux are plotted in Figure 3-18. In both cases, the calculated indices
attribute a large proportion of the variance to float seed. The surrogate model analysis attributes
none of the variance to the float seed for the time of peak but does attribute some to float_seed for
the flux ratio Qol; the total effect index for the float seed in this case is relatively high. It is not
clear why the surrogate behaves slightly differently in each case; however, the surrogate
overestimates the main and total effect indices for the other variables so this may be due to random
variation in overfitting behavior.

Sensitivity analysis results from the float seed analysis for the ratio between the rock to aquifer
flux and the rock to east boundary flux at 100,000 years is plotted in Figure 3-19. This is an
interesting case of overfitting; the total effect index for float seed is quite high, but so are the total
effect indices for some of the epistemic variables, such as permDRZ, which was calculated to have
a total effect index of zero.
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Figure 3-18. Sensitivity analysis results for the ratio between rock to aquifer flux and
aquifer to east boundary flux at 100,000 years from the float seed analysis

The float seed analysis was also performed with the smaller initial sample size (see Section
3.1) of 2Nsgmpies = 2,000. The sensitivity results from this analysis for the y-location are plotted
in Figure 3-20. When 10,000 samples were used, however, all of the main and total effect indices
were estimated to be zero. This example shows what overfitting can look like; there may be
suspicion of overfitting when most variables have large total effects indices and small main effects
indices. However, a larger sample size resolved the overfitting issue in this case.
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Figure 3-19. Sensitivity analysis results for the ratio between the rock to aquifer flux and
the rock to east boundary flux from the float seed analysis
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Figure 3-20. Sensitivity analysis results for the y-location [m] of the peak '*’I concentration
in the aquifer from the float seed analysis with a smaller sample size (2,000)

3.3.4 Graph Metric Analysis

The y-location quantity did not prove to be a useful proxy for spatial heterogeneity (Section
3.3.2) and the float seed does not have a meaningful relationship to Qols that can be modeled by
a surrogate (Section 3.3.3). So far, the only method we have found successful for incorporating
spatial heterogeneity in the sensitivity analysis is through the use of graph metrics [1, 2]. These
previous analyses have shown that there are meaningful relationships between the graph metrics
and many Qols, and the surrogate models are able to detect this influence. However, it has never
been feasible to calculate the Sobol’ indices without use of a surrogate for the full-scale crystalline
reference case. This comparison is possible for the simplified crystalline reference case.

The graph metric analysis compares the Sobol’ indices estimated for the graph metrics to the
Sobol’ indices calculated for float seed (see Section 3.1). This is not a direct comparison because
there are three separate graph metrics and only one float seed. For plots, the float seed Sobol’
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indices are repeated so they can be plotted against each of the graph metrics. It would not make
sense to plot the float seed Sobol’ indices versus the sum of the graph metric indices because the
interactions included in the total effects indices would be double-counted. For example, an
interaction effect between STT and nlntersections would be counted in the total effect index for
both the STT and nIntersections. Thus, the comparison is somewhat qualitative.

Sensitivity analysis results for the y-location of peak !*I are plotted in Figure 3-21. In this
case, the surrogate model still misattributes a significant portion of the variance to some of the
parameter uncertainties via interactions (between rateUNF, wpBreachTime, and pBuffer).
However, it assigns significant variance to the STT and nIntersections graph metrics. Even if we
were to add the total effects indices for these graph metrics (which would be an overestimate of
their combined effect if they interact with each other), the total effect index estimate would still be
significantly lower than the calculated value for spatial heterogeneity, which is repeated in the plot
for each graph metric. The scatterplots for this comparison are shown in Figure 3-22; the trend for
STT is slightly more pronounced than the trends for NIwR and nlntersections, so the surrogate
accurately attributes most of the effect from spatial heterogeneity to the correct graph metric.
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Figure 3-21. Sensitivity results for the y-location [m] of the peak '*’I concentration from the
graph metric analysis; the calculated indices for float seed are repeated in the plots for
each graph metric
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Figure 3-22. Scatter plots of the y-location [m] of peak '*I versus all of the uncertain
parameters and the graph metrics

The sensitivity analysis results for the ratio between the aquifer to east boundary flux and the
rock to east boundary flux at 100,000 years from the graph metric analysis are plotted in Figure
3-23 with corresponding scatterplots in Figure 3-24. This is an interesting case because there is a
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very clear trend with kGlacial which the surrogate correctly detects, however the surrogate does
not attribute significant variance to the graph metrics. This may be due to the dominance of
kGlacial, but the scatterplots suggest that the graph metrics do not characterize the effect of spatial
heterogeneity on this Qol.

Sensitivity analysis results for the ratio between the rock to aquifer flux and the aquifer to east
boundary flux are plotted in Figure 3-25 with scatterplots in Figure 3-26. For this Qol, the
calculated Sobol’ indices show that spatial heterogeneity is the dominant uncertainty, but that
kGlacial also has high significance based on its interactions; the main effect index calculated for
kGlacial is low, but the total effect index is high. The surrogate model in this case matches the
relative ranking of the uncertainties from the calculated indices. The surrogate model also ranks
the spatial heterogeneity as dominant, but still attributes significant variability to the glacial till
permeability (kGlacial). The trends identified by these indices can be seen in Figure 3-26; variation
in the flux ratio decreases for very low/high values of all of the graph metrics and decreases
consistently with kGlacial.

Finally, sensitivity analysis results and corresponding scatterplots for the peak '*1

concentration in the aquifer are plotted in Figure 3-27 and Figure 3-28, respectively. Surrogate
model quality for this Qol is a priority because it is our primary Qol for evaluating repository
performance at this stage in our study of the full-scale crystalline reference case. Unfortunately,
the surrogate model failed to detect the importance of the graph metrics in this analysis, even
though some minor trends are evident in the scatterplots. The trend between peak '*I is clearly
linear (in log-log space), but with substantial variation around that linear trend. Therefore, it makes
sense that interaction effects would be significant and that there would be some interaction effects
with kGlacial.

Figure 3-29 shows interaction scatterplots for the graph metrics with kGlacial. Each plot frame
shows the scatterplot for kGlacial versus the peak '*°I concentration, colored by one of the graph
metrics. Despite the substantial interaction effects suggested by the strong calculated total effect
indices for float_seed (plotted with the graph metrics) and kGlacial in Figure 3-27, the interaction
scatter plots do not have any distinctive patterns with respect to color. This suggests that there are
underlying interactions between the spatial heterogeneity and the glacial till permeability that are
not captured by the graph metrics. The surrogate in this case is not necessarily a poor fit; it is
limited by the extent to which the graph metrics reflect the effects of spatial heterogeneity. The
poor predictions for the Sobol’ indices from the surrogate for this Qol reflect a need to refine the
graph metrics of investigate alternative approaches for assessing the effects of spatial
heterogeneity.
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Figure 3-23. Sensitivity results for the ratio between the aquifer to east boundary flux and
the rock to east boundary flux at 100,000 years from the graph metric analysis; the
calculated indices for float_seed are repeated in the plots for each graph metric
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Figure 3-25. Sensitivity results for the ratio between the rock to aquifer flux and the
aquifer to east boundary flux at 100,000 years from the graph metric analysis; the
calculated indices for float_seed are repeated in the plots for each graph metric
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Figure 3-26. Scatterplots of the ratio between the rock to aquifer flux and the aquifer to
east boundary flux at 100,000 years versus the uncertain parameters
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Figure 3-27. Sensitivity results for the peak '>’I concentration in the aquifer [M] from the
graph metric analysis; the calculated indices for float seed are repeated in the plots for
each graph metric
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Figure 3-28. Scatterplots of the peak '°I concentration in the aquifer [M] versus the
uncertain parameters and graph metrics
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Figure 3-29. Interaction scatterplots for the graph metrics and kGlacial for peak '*°1
concentration in the aquifer [M]

Overall, the graph metrics in this analysis showed utility in characterizing the spatial
heterogeneity and its effect on Qols for some, but not all, of the Qols. There are important
relationships that cannot be reflected in the surrogate because they are not reflected in the graph
metrics. This is the case for %I, which is sensitive to spatial heterogeneity, for which the graph
metrics do not reflect a significant interaction between spatial heterogeneity and glacial till
permeability. Because of the importance of '*I for understanding repository performance in the
full-scale reference case, this motivates further development of the graph metrics or alternative
methods to better detail the effects of spatial heterogeneity.

When calculating a graph metric, all of the spatial heterogeneity is reduced to a single value
for that realization, resulting in a reduction of information. We use multiple graph metrics to try
and include information that is likely important, but even multiple graph metrics cannot
characterize all of the important features of the DFNs. For the full-scale crystalline model, even
more information is lost because the graph metrics do not describe any of the spatial heterogeneity
introduced by the assignment of individual waste package degradation rates to each canister. As a
result, we cannot expect graph metrics to ever perfectly summarize spatial heterogeneity, and it
may be the case that they cannot sufficiently summarize the effects of spatial heterogeneity to truly
understand the relative importance between spatial and parametric uncertainties.

Alternatives to the graph metrics should be considered for sensitivity analysis. The simplified
crystalline reference cased used in this study made it feasible to calculate Sobol’ indices with a
large number of model evaluations, which reduces sample-size uncertainty in the calculated Sobol’
indices. However, the same method could still be used with the full-scale model to calculate Sobol’
indices for the spatial heterogeneity with a much smaller number of model evaluations. This would
result in more accurate estimates of the relative importance of spatial heterogeneity versus
parameter uncertainty, but with much lower precision than could be accomplished with the
simplified case. If the precision is too low, however, then the increased representativeness of the
Sobol’ indices for spatial heterogeneity would not be useful; this would essentially just trade the
surrogate model uncertainty that currently interferes with interpretation for sample-size
uncertainty, which would interfere with interpretation just as much. Whether Sobol’ index
calculation is a viable alternative for the full-scale crystalline case will depend on what precision
can be accomplished with the relatively small number of model evaluations that are feasible for
the full-scale model.
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3.3.5 Transformation Analysis

Transformations can also be considered as a tool for improving surrogate modeling. Scaling
and log transformations have been applied for '*°I concentrations in previous GDSA Framework
sensitivity analysis with the shale reference case [3, 5] and unsaturated alluvium reference case
[4]. Log transformations can be useful for reducing differences in scale between input variances
and output variances. Similarly, the scaling applied to the alluvium reference case [4] was
necessary because the '2° concentrations were so low that substantial variation still resulted in
negligible variance numerically. Scaling the concentrations by a constant factor enabled sensitivity
analysis to identify the input variables driving variation in '?°I despite the low overall values for
the concentration.

This analysis investigates two potential transformations for '>’I concentration to see if they
improve the ability of the surrogate to estimate the Sobol’ indices. Graph metrics were included in
this analysis because they are, to date, the best method we have for characterizing the spatial
heterogeneity. The first transformation we applied is a rank transformation. In this case, it was
applied to all of the input variables, the graph metrics, and the '?° concentration. This kind of
transformation can be useful for identifying non-linear and non-monotonic relationships and
removes any concerns about the variables being on different scales. The sensitivity analysis results
from this transformation are plotted in Figure 3-30. The results are strikingly similar to those in
Figure 3-27; the rank transformation did not improve the ability of the surrogate to account for the
variance. As discussed in the previous section, the graph metrics may not reflect all of the
important impacts of the spatial heterogeneity. This is not a problem we would expect the rank
transformation to solve, but the relatively unchanged results support our conclusion that spatial
heterogeneity is the dominant challenge for surrogate modeling with this Qol.
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Figure 3-30. Sensitivity analysis results for the peak '°T concentration [M] in the aquifer
from the transformation analysis, with rank transformation applied to all inputs and the
Qol; the calculated indices for float_seed are repeated in the plots for each graph metric

The second transformation we applied to the peak '*I concentration was a logio
transformation. This transformation was only applied to the Qol, and the results are plotted in
Figure 3-31. As in the previous case, this transformation resulted in no appreciable change to the
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quality of the surrogate model; the sensitivity analysis results are very close and the conclusions
unchanged.
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Figure 3-31. Sensitivity analysis results for the peak '*I concentration [M] in the aquifer
from the transformation analysis, with a log10 transformation applied to the Qol; the
calculated indices for float seed are repeated in the plots for each graph metric

This transformation analysis was limited to the peak '*°I concentration because this Qol is a
priority in our performance assessment analysis and presents a challenge for sensitivity analysis.
Transformations did not provide any benefit for this Qol because the central challenge to
estimating Sobol’ indices is the non-parametric definition of spatial heterogeneity for the
crystalline reference case. This does not mean that transformations could not be useful in the
future; transformations may be able to improve the surrogate modeling for the peak '*’I
concentration once we are able to incorporate all of the effects from spatial heterogeneity.

3.3.6 Replicate Analysis

The consistency of our surrogate modeling is another concern for the full-scale crystalline
reference case. Because the model is computationally expensive, we have not previously been able
to perform a replicate analysis to understand how much surrogate model results differ between
replicates. This is possible, however, with the simplified crystalline case.

For this analysis, we used all five replicates with sample size 10,000 from Section 3.1. The
replicates are the same size but have different independent samples from one another. The replicate
analysis was performed by fitting the MARS surrogate to each replicate independently and using
each surrogate to estimate the Sobol’ indices. We do not expect the surrogates for each replicate
to give identical estimates of the Sobol’ indices because even the calculations are not identical for
each replicate. However, a high-quality surrogate should show about the same amount of variation
between Sobol’ index estimates as we see between the calculated values.

The replicate analysis results for the ratio between the rock to aquifer flux and the aquifer to
east boundary flux at 100,000 years are plotted in Figure 3-32. These results show significant
variation between the surrogates with respect to the Sobol’ index estimates for graph metrics.
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There is somewhat less variation and reasonable agreement to the calculated indices for the total
effect indices for kGlacial for replicates 1,2,3, and 5. However, replicate 4 estimates a substantially
larger total effect index for kGlacial.

The scatterplots for this Qol (Figure 3-26) may hint at why the surrogate model differs so much
between replicates. There is substantial symmetry around the abscissa in the plot against kGlacial
and this type of symmetry presents a challenge for a surrogate of any form.

The replicate analysis results for the ratio between the rock to aquifer flux and the rock to east
boundary flux at 100,000 years are plotted in Figure 3-33. The behavior here is similar to the
previous flux ratio Qol, except that we see many more significant total effects indices when the
calculated total effects index is zero. This type of result suggests some overfitting, so these results
would still be viewed suspiciously in an analysis that did not include replicates [1, 2]. There does
appear to be agreement, however, between the surrogates and the calculations in attributing
significant variance to spatial heterogeneity. There is also large variation in the calculated main
effects indices for the float seed (plotted with the graph metrics), so the variation between
replicates in the main effect Sobol’ indices for the graph metrics is reasonable.
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Figure 3-32. Sensitivity analysis results for the ratio between the rock to aquifer flux and
the aquifer to east boundary flux from the replicate analysis; the calculated indices for
float_seed are repeated in the plots for each graph metric
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Figure 3-33. Sensitivity analysis results for the ratio between the rock to aquifer flux and
the rock to east boundary flux from the replicate analysis; the calculated indices for

float_seed are repeated in the plots for each graph metric

3-30



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)
August 2022

Results from the replicate analysis for the median residence time are plotted in Figure 3-34.
The results from these replicates are very consistent with each other, both between the estimates
from the surrogates and between the calculated indices. These results suggest that the graph metrics
characterize some of the significant effects from spatial heterogeneity for this Qol, which can be
reliably detected by the MARS surrogate. The graph metrics are not sufficient to characterize all
of the effects from spatial heterogeneity, however, which is why the indices for the graph metrics
are still substantially underestimated and the indices for kGlacial are consistently overestimated.

The replicate results for the time of peak '*°I concentration are plotted in Figure 3-35. These
results are similar to the previous Qol in that they identify some importance of the spatial
heterogeneity consistently, but also consistently underestimate its importance relative to the other
uncertainties. Here, however, there is very good agreement across all replicates for the total effects
indices for pBuffer and wpBreachTime and good agreement across all replicates for the total effects
indices for kGlacial and rateUNF. The ranking of relative importance between these input
variables would be roughly the same, regardless of which calculation was used or which surrogate
replicate was used to estimate Sobol” indices. The weakness for the surrogate across all replicates
for this Qol is due to the incompleteness in the graph metric characterization of spatial
heterogeneity; this is another sensitivity analysis that may be improved in the future by advances
to our treatment of the spatial heterogeneity.

Replicate analysis results for the peak '*’I concentration analysis are shown in Figure 3-36.
The results are consistent with what we saw for this Qol in the other analyses from this chapter.
Regardless of which tactic we use, the surrogate model for peak '?° concentration fails to
accurately attribute variance to the spatial heterogeneity, and this is consistent across replicates.
This highlights the need to advance our treatment of spatial heterogeneity for sensitivity analysis
in support of performance assessment.
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Figure 3-34. Sensitivity analysis results for the median residence time [yr] from the
replicate analysis; the calculated indices for float seed are repeated in the plots for each
graph metric
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Figure 3-35. Sensitivity analysis results for the time [yr] of peak '*’I concentration from the
replicate analysis; the calculated indices for float seed are repeated in the plots for each
graph metric
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Figure 3-36. Sensitivity analysis results for the peak '?°I concentration [M] in the aquifer
from the replicate analysis; the calculated indices for float_seed are repeated in the plots
for each graph metric

3.4 Discussion

The analyses discussed in this chapter showed that the surrogate choice has some effect on
sensitivity analysis results, but it is minimal for most Qols. All surrogate models included in these
studies demonstrated overfitting behavior. Our analysis showed that y-location of peak '*I is not
a viable proxy for spatial heterogeneity in sensitivity analysis; while y-location does not depend
significantly on the uncertain input variables, it still does not reflect the significant impacts from
spatial heterogeneity. Graph metrics still proved to be our best tool to date for improving surrogate
model performance but are demonstrably incomplete tools. Improvement of our surrogate
modeling for peak '*°I concentration was evasive, but these studies in combination show that
improvement in our treatment of spatial heterogeneity is the most promising avenue for
accomplishing better surrogate models.

The biggest gap affecting surrogate quality is our treatment of spatial heterogeneity. We use
surrogate modeling to reduce the computational cost of sensitivity analysis, but this requires that
the spatial heterogeneity is characterized parametrically. Such parametric characterizations
necessarily lose information, and the analyses in this section show that some of the information
lost is important for understanding the relative importance of spatial and parameter uncertainties.
We may be able to refine our graph metric methodology to include more information about the
spatial heterogeneity that influences Qols, but graph metrics may not be sufficient for this type of
analysis.
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Another option would be to calculate the Sobol’ indices with the full-scale model using a
structured sampling approach as discussed in Section 3.1, but with a much smaller sample size due
to the high computational cost of full-scale model simulations. This would prevent the loss of
information that occurs when converting the spatial heterogeneity to graph metrics but would
incorporate substantial uncertainty due to the limited sample size. It is not clear yet if this strategy
would be precise enough to improve our understanding of how spatial heterogeneity influences
uncertainty in performance measures. Multifidelity sampling-based methods for Sobol’ indices
such as that in [21] can improve the precision that can be achieved with relatively few full-scale,
high-fidelity model evaluations. This will be a subject of future investigation.

This year, analysis focused on the challenges associated with unparameterized spatial
heterogeneity; future analyses will focus on the effect that limited samples and nested sampling
structure has on surrogate accuracy.
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4. DISCRETE FRACTURE NETWORKS

The past two years, we have studied the effect of discrete fracture networks on the uncertainty
and sensitivity of key quantities of interest (Qols) for the crystalline reference case [1, 2]. We
continue our investigation this year, focusing on the transmissivity relationship and its effect on
permeability fields and Qol. Some of the results in this chapter are taken from a paper submitted
to the Intermediate High-Level Radioactive Waste Management conference in Nov. 2022, [27].

Discrete fracture network (DFN) modeling has become the alternative approach to continuum
approaches for simulating flow and transport through sparsely fractured rocks in the subsurface
[28]. Continuum approaches use effective parameters to include the influence of fractures on the
flow. In contrast, a DFN approach involves a network of fractures where the geometry and
properties of individual fractures are explicitly represented as lines in two dimensions or planar
polygons in three dimensions. These generated networks are then meshed for computation. In this
work, DFNs are generated using dfnWorks, a parallelized computational suite developed by Los
Alamos National Laboratory [28]. The DFNs are then mapped to an equivalent continuous porous
medium (ECPM) for flow and transport simulation with PFLOTRAN [12].

The previous two GDSA milestone reports on uncertainty and sensitivity analysis [1, 2]
contained extensive studies of the DFN properties for a crystalline repository reference case with
host rock properties comparable to the Forsmark site in Sweden [23]. Chapter 3 of the 2020 GDSA
SA/UQ report [2] verified the implementation of DFNs to ensure the expected number of fractures
and fracture intensity values obtained were consistent with the Forsmark specification. The
conversion of the discrete fracture networks to ECPMs then led to a comparison between the
ECPM bulk properties from an analysis of Forsmark provided in the literature vs. the ECPM bulk
properties for the crystalline reference case calculated from the DFN conversion. The log of the
hydraulic conductivity field at each depth zone and for each direction were compared and found
consistent.

Chapter 3 of the 2021 GDSA SA/UQ report [1] extended the previous analysis in two ways: it
focused on a comparison of the transmissivity relationships defining the DFNs and it included
graph metrics in the analysis of the DFNs. The fracture transmissivity is used to determine the
continuum permeability field of the ECPM, as described in [29]. The initial implementation in
dfnWorks assumed a single “correlated” transmissivity relationship for the entire computational
domain. However, new parameterizations were provided for the correlated transmissivity
relationship based on depth [23] and new capabilities in dfnWorks enabled the use of the depth-
dependent correlated relationship for the crystalline reference case. Chapter 3 of the 2021 report
showed that although the correlated constant vs. correlated depth-dependent transmissivity
relationships resulted in significantly different mean permeability fields in each depth zone, many
of the Quantities of Interest such as peak total '*°I concentration were not significantly different
across the two transmissivity relationships. This comparison was based on statistical testing of
mean differences using 20 DFNs for each type of transmissivity.

This year, we expanded the study, generating and analyzing 100 discrete fracture networks for
each transmissivity relationship. The concern was that 20 DFNs were not enough to tease out some
of the differences in Qols such as peak '*’I or some of the fluxes. Having a larger sample size
results in a tighter estimate of the confidence interval around the mean, resulting in greater ability
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to distinguish statistically significant differences. Additionally, this year we tracked many Qols as
a function of time. These time-dependent outputs are presented in the Results section below.

4.1 Approach

As mentioned, in the 2021 study [1], it was found that only one quantity of interest showed a
statistically significant difference between the two transmissivity relationships. It was therefore
concluded that the type of transmissivity relationship did not have a significant impact on
repository performance characteristic for the sample of DFNs used. However, since the original
study only sampled 20 DFNs in total, there was interest in if a larger sample set might yield
different results. Therefore, the analyses described here utilize a new set of 100 randomly
generated DFNs. Note that the transmissivity relationship is the only thing that varies in these data
sets: there are 100 DFNs with the correlated constant transmissivity and 100 DFNs with the
correlated depth-dependent transmissivity. All other parameters are held constant.

The same modeling and data extraction process used for the previous study was used in this
analysis and the same Qols (listed below) were assessed to observe if there were any changes to
the initial conclusions. For more detail about the Qols, specifically the tracer implementation, see
Section 5.2.6 and Table 5-2 of this report. For a figure depicting the repository studied here, see
Figure 5-5. The Qols for this study are:

e Maximum '*I concentration in the aquifer

e Median residence time (MdRT) of a tracer in the repository in years
e Fraction of tracer still in the repository at 1 million years

e Fractional mass flux of tracer from the repository at 3 thousand years

e Ratio between the mass flow rate of water from the aquifer to east boundary and the
mass flow rate from the rock to east boundary

e Ratio between the mass flow rate of water from the rock to aquifer and the mass flow
rate of water from the rock to east boundary

This study also compares Qols to graph metrics. Graph metrics reflect the topology of the
network using a set of nodes connected by edges which can potentially be useful for a comparison
such as the one completed in this study since flow and transport is strongly channeled through the
fracture network. The graph metrics used in this study are constructed using dfnWork’s dfnGraph
utility and specific graph metrics were extracted using dfnWorks and NetworkX [2]. The graph
metrics are described in more detail in Chapter 3.2 of [1]. They include metrics such as:

e Average degree (average number of intersections a fracture is part of)
e Density

e Length of shortest path

e Number of intersections with repository

e Number of edges (intersections)

e Number of nodes (fractures)

e Shortest travel time between the repository and aquifer
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4.2 Results

The information shown in the subsequent tables and plots is representative of all 200 cases,
100 for the correlated constant relationship and 100 for the correlated depth-dependent
relationship: outliers were not removed. Interval plots were used to examine the mean values for
each type of data and the associated 95% confidence interval on the means computed over the 100
samples for each relationship. Lack of overlap in the confidence intervals indicates the correlated
depth-dependent transmissivity relationship influenced the results significantly.

To compare the correlation between Qol and graph metric, scatterplots and a Pearson
correlation was used to compare the level of correlation between a specific Qol and graph metric
for the both the correlated constant and correlated depth-dependent cases. The Pearson correlation
is simply a measure of linear correlation between two sets of data. The higher the » value, the
stronger the correlation. An » value of 1 or -1 means the two data sets are perfectly correlated
(whether it is in the positive direction or negative direction) and a » value of 0 means no correlation.
In practice, a correlation of 0.1 to 0.3 (both positive or negative) is considered to be small, a
correlation of 0.30 to 0.50 is considered to be medium, and a correlation of >0.50 is considered to
be large.

4.2.1 Qol Comparison

In the FY21 study, the only Qol to show a statistically significant difference between the two
transmissivity relationships was the ratio between the mass flow rate from the aquifer to east
boundary and the mass flow rate from the rock to east boundary. As can be seen in Figure 4-1, it
is still not accurate to say the transmissivity relationship is statistically significant for the maximum
1291 concentration in the aquifer due to the large and overlapping intervals.

However, there is quite a large difference between the two transmissivity relationships for the
Qols plotted in Figure 4-2 through Figure 4-5. The repository median residence time, fraction of
tracer still in the repository, fractional mass flux from the repository and the ratio between the
mass flowrate from the rock to aquifer and the mass flow rate from the rock to east boundary all
now show a statistically significant difference between the correlated constant and correlated
depth-dependent transmissivity relationship. Based on this, it can be assumed the original set of
DFNs (which was a total of 20) was too small to draw concrete conclusions about statistical
significance. The maximum '*’I concentration still shows little significant difference with the
larger DFN sample sets, but the timing of this maximum is affected, as the other metrics shown in
Figure 4-2 through Figure 4-5 are related to timing.

One additional observation that can be made is with respect to the ratio of the mass flow rates.
As can be seen in Figure 4-5, the mass flow rate ratio for the correlated constant transmissivity
case is negative while the mass flow rate ratio for the correlated depth dependent transmissivity
case is positive. This indicates that the mass flow rate from the rock to aquifer is downward for
correlated constant and upward for correlated depth dependent. This is investigated further in
Section 4.2.3.
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Figure 4-1. Interval plot for the scalar maximum !*’I concentration [M] in the aquifer after
1 million years versus transmissivity relationship
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Figure 4-3. Interval plot for the fraction of tracer still in the repository at 1 million years
versus transmissivity relationship
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Figure 4-4. Interval plot for the fractional mass flux from the repository at 3 thousand
years versus transmissivity relationship
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Figure 4-5. Interval plot for the ratio of the mass flow rates for the rock to aquifer and the
rock to the east boundary at 1 million years versus transmissivity relationship

4.2.2 Correlation to Graph Metrics

Table 4-1 below shows the Pearson correlation between the maximum '?°I in the aquifer and
each graph metric for both transmissivity relationships. There are multiple correlations greater than
0.30 which we deem significant, however no correlation above 0.5 was observed. Additionally, it
is interesting to note that the highest correlation for the correlated constant relationship is with the
number of intersections with the repository, while the highest correlation for the correlated depth-
dependent relationship is the number of edges (intersections).

Table 4-1. Maximum '*°T in the aquifer correlation with graph metrics

Graph metric Correlated Correlated depth
constant dependent
Average degree -0.023 0.104
Density 0.087 0.274
Length of shortest 20016 -0.098
path
Number of
intersections with 0.382 0.116
repository
Number of edges -0.163 -0.325
Number of nodes -0.125 -0.307
Shortgzst travel 0.007 0.003
time

The number of intersections with repository graph metric seemed to have the best correlation
with majority of the other Qols as well. The strongest correlation was with the repository median
residence time, fraction of tracer still in the repository at 1 million years, and fractional mass flux
from the repository at 3 thousand years. This correlation is shown in Figure 4-6, Figure 4-7, and
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Figure 4-8 respectively. As can be seen in each of the figures, the absolute value of the Pearson
correlation value is higher for the correlated constant transmissivity relationship in every case.
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Figure 4-6. The time when half the tracer is gone from the repository in years and number
of intersections with repository correlation
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Figure 4-7. Fraction of tracer in repository at 1 million years and number of intersections
with repository calculation
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Figure 4-8. Fractional mass flux from repository at 3 thousand years and number of
intersections with repository correlation

4.2.3 Time-dependent Qols

Each of the Qols assessed was also observed as a function of time using the time history data
outputs. A majority of the time dependent results were very similar to the results shown in Section
4.2.1 above. For example, Figure 4-9 below shows a time-dependent main effects plot for the
maximum %I concentration in the aquifer with the correlated depth-dependent transmissivity data
shown in red and the correlated constant transmissivity data shown in blue. Figure 4-9 through
Figure 4-13 plot the mean value of a Qol for the CC vs CDD transmissivity across time along with
the respective confidence intervals in those mean values. For this analysis, the goal is to see if the
mean response (across 100 DFNs) with constant correlated transmissivity is different from the
mean response (across 100 DFNs) with correlated depth-dependent transmissivity, at all points in
time. Significant differences in the mean values for two treatment levels (e.g. two transmissivities)
is a form of main effects analysis. As can be seen in Figure 4-9, there is a large overlap of the
confidence intervals between the two transmissivity relationships. Although the confidence
intervals for the peak maximum '*I values in the aquifer are overlapping (located at approximately
400,000 years for the correlated constant case and 1 million years for the correlated depth-
dependent case), it is interesting to note that the correlated depth-dependent case seems to continue
to rise in concentration over time and it is worth further investigation.
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Figure 4-9. Main effects plot for the maximum I concentration [M] in the aquifer over
time: red is correlated depth-dependent and blue is correlated constant transmissivity

However, some additional interesting observations also came to light when observing the time
dependent Qols. In the 2021 study [1], when observing the difference in permeability, it was found
that the correlated constant transmissivity relationship had permeability values of the same order
of magnitude in the x, y, and z directions. In contrast, for the correlated depth-dependent
transmissivity relationship, the x and y directions of the permeability tensor were larger than the z
direction by two and one orders of magnitude, respectively, for depth zones one and two (the
location of the three depth zones for this reference case can be seen in Figure 5-5). Given this
information, it was expected that there was an increase in downstream flow and little increase in
vertical flow towards the aquifer for the correlated depth-dependent transmissivity relationship.
To further investigate this, the time history data for the mass flow rates was compared.

Figure 4-10 and Figure 4-11 below, which display the time dependent data and the
corresponding main effects plot for the mass flow rate from the rock to east boundary, show a
significant difference between the transmissivity relationships with no overlap of the 95%
confidence intervals. The mean mass flow rate for the correlated constant relationship is a little
less than 90,000 kg/yr and the mean mass flow rate for the correlated depth-dependent
relationships is around 1,000,000 kg/yr. This information follows the assumption made that there
would be an increase in downstream flow towards the east boundary for the correlated depth-
dependent transmissivity relationship.
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Figure 4-10. Mass flow rate [kg/yr| from the rock to east boundary over time: red is
correlated depth-dependent and blue is correlated constant transmissivity
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Figure 4-11. Main effects plot for the mass flow rate [kg/yr] from the rock to east boundary
over time: red is correlated depth-dependent and blue is correlated constant transmissivity

Figure 4-12 and Figure 4-13 represent the time dependent data and the main effects plot
respectively for the mass flow rate from the rock to the aquifer over time. As can be seen in Figure
4-12, for the correlated depth-dependent relationship (shown in red) the mass flow rates range
from 1,000,000 kg/yr to -1,000,000 kg/yr (a negative flow rate indicates a downward flow from
the aquifer to the rock). This large range is what is influencing the large 95% confidence intervals
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in Figure 4-13 and should be investigated further. However, as can be seen in Figure 4-13, the
mean mass flow rate for the correlated depth-dependent is slightly higher than the correlated
constant relationship. Additionally, the mean mass flow rate for the correlated constant
relationship is slightly negative which helps explain the difference shown in Figure 4-5.
Nonetheless, due to the large confidence interval for the correlated depth-dependent relationship,
it cannot be said that there is a statistically significant difference between the two transmissivity
relationships meaning these results also coincide with the expected effect of transmissivity
relationship on the streamwise flow rate and vertical flowrates.
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Figure 4-12. Mass flow rate [kg/yr] from the rock to aquifer over time: red is correlated
depth-dependent and blue is correlated constant transmissivity
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Figure 4-13. Main effects plot for the mass flow rate [kg/yr] from the rock to aquifer over
time: red is correlated depth-dependent and blue is correlated constant transmissivity

4.2.4 Additional mass flux analysis

To further supplement the results and information provided previously, additional mass fluxes
were extracted for the two transmissivity relationships. Rather than just observing the mass fluxes
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from the rock to the aquifer, the rock to east boundary and the aquifer to east boundary, additional
mass flux results were developed for the following locations within the domain:

e Horizontal plane between depth zones 1 and 2

e Horizontal plane between depth zones 2 and 3

e Vertical plane for each depth zone at the outflow (east boundary)

e Vertical plane in the middle of the domain (in the x-direction) for each depth zone

Figure 4-14 and Figure 4-15 summarize the information at 1 million years for the correlated
constant transmissivity relationship and the correlated depth-dependent transmissivity relationship
respectively. Each of the mass flow rate results are reported using the mean value and range for
the 100 DFNs. The mass flow rate at the vertical plane in the middle of the domain for each depth
zone is shown in orange, the mass flow rate at the vertical plane for each depth zone at the outflow
is shown in green, and the mass flow rates at the horizontal planes between the different depth
zones and the aquifer is shown in blue. Red arrows are also provided to show the relative
magnitude and direction of flow for each of the mass flow rate results.

As can be seen in the two figures below the results agree favorably with the results shown in
Section 4.2.3 as well as the permeability differences report in the previous study [1]. For depth
zone 3, the mean mass flow rates for the both the middle of the domain and at the outflow are
comparable with the correlated constant relationship being slightly higher. As for depth zone 2 and
depth zone 1, the mass flow rates for the correlated depth-dependent relationship are significantly
higher. The mass flow rate at the horizontal plane between depth zone 1 and the aquifer agree with
the results shown in Figure 4-13 and the range in mass flow rates between the rock and aquifer for
the correlated depth dependent case is drastically larger than the correlated constant transmissivity
case which is consistent with Figure 4-12. Additionally, at the horizontal plane between depth zone
1 and the aquifer, the mean flow rate for the correlated constant transmissivity case is negative
while the mean flow rate for the correlated depth dependent transmissivity case is positive but the
mean mass flow rates between the depth zones are negative for both transmissivity relationships.
These differences in the direction of flow between the transmissivity relationships, especially at
certain locations within the domain, should be looked into further.
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Figure 4-14. Specific mass flow rate information (in kg/yr) for the correlated constant case
at 1 million years
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Figure 4-15. Specific flow rate information (in kg/yr) for the correlated depth-dependent
case at 1 million years
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4.2.5 Comments on DFN analysis

In conclusion, the purpose of this study and the original study was to determine if a correlated
depth-dependent transmissivity relationship produces a significant change in the performance
quantities for the flow and transport simulations of nuclear repositories in subsurface rock. Unlike
the original study, it was found that five out of six quantities of interest assessed showed a
statistically significant difference between the two relationships. Although the maximum '*°I in
the aquifer showed no real change, it is worth noting that there was a considerable difference in
timing for the maximum '?°I concentration in the aquifer for the two transmissivity relationships.
This is worth further investigation and might be correlated to the difference in the direction and
range of flow rates seen in Section 4.2.4. In addition, the maximum '®1I in the aquifer showed no
real correlation with any graph metric for either relationship. Although we did not see strong
correlation with respect to the maximum '*I in the aquifer, the number of intersections with
repository proved to be the most useful graph metric when considering all of the Qols.
Interestingly, the strongest correlation was seen in the correlated constant relationship as well.
Additional graph metrics that are well-correlated with performance quantities of interest will be
sought in future work. Lastly, the observations made with respect to the mass flow rates
(specifically the rock to east boundary flow rate) may indicate increased flushing for the correlated
depth-dependent relationship and this behavior is worth investigating further.
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5. CRYSTALLINE REFERENCE CASE: UPDATES

For a nuclear waste repository located in crystalline rock, a major source of uncertainty in
performance assessment is the spatial heterogeneity of potential fracture flow paths through the
host rock. Conceptually, a long-lived radionuclide (or radionuclides produced within radioactive
decay chains) released from a waste package (WP) will initially migrate through the buffer material
and into the surrounding damaged rock zone (DRZ). From there it will migrate along the DRZ
until it enters a fracture that takes it farther into the host rock, where connected fractures can
provide a path to a nearby fracture zone. It might then migrate along this fracture zone and through
connected fracture zones to the biosphere. Along the flow path, the radionuclide will undergo
radioactive decay and ingrowth and diffuse into and out of dead-end pores and fractures.
Additionally, depending on its properties and the environmental conditions along the flow path, it
will adsorb and desorb from colloids and immobile mineral surfaces, chemically react with
aqueous species, possibly change oxidation state, and, if solubility-limited, precipitate and
dissolve.

This chapter presents a new uncertainty analysis of a reference case repository for commercial
spent nuclear fuel in fractured crystalline rock. The reference case is identical to that in Stein et al.
[29], Mariner et al. [6], and Sevougian et al. [30] except for the use of the correlated depth-
dependent transmissivity in the fracture network implementation (discussed in Chapter 4), the
design of the uncertainty analyses (Section 5.1), and modifications to the model domain (Section
5.2). Note that this analysis builds extensively on the crystalline reference case uncertainty
analyses performed in 2019, 2020, and 2021 which are documented in Chapter 8 of [3], Chapter 4
of [2], and Chapter 4 of [1]. In previous case studies, we have performed sensitivity analysis studies
on a generic crystalline reference case, first studying the effects of epistemic uncertain parameters
[2] and then extending this to account for the spatial heterogeneity represented by a family of
discrete fracture networks (DFNs) [1]. This work represents a further extension: analyzing the
effect of a constitutive chemistry model for nuclear fuel dissolution. In this chapter, we present
a SA case study that seeks to separate the effect of epistemic parameters, spatial heterogeneity as
represented by DFNs, and model choice as represented by the form of the FMD alternative model.

5.1 Uncertainty Analysis (UA)

The uncertainty analysis includes multiple types of uncertainty: spatial uncertainty, epistemic
parameter uncertainty, and model form uncertainty. Uncertainties described as spatial uncertainty
relate to the unknown structure of the repository and surrounding rock, as well as variation in
degradation rate between waste packages. The spatial uncertainty is not strictly categorized as
epistemic or aleatory, in part because it incorporates some of both types of uncertainties. For a
more detailed discussion on spatial uncertainty treatment, see [1]. Uncertainties described as
parameter epistemic uncertainty relate to inputs with fixed but unknown scalar values.
Uncertainties described as model-form relate to the choice of alternative models used to represent
fuel degradation.

High-fidelity fuel degradation modeling is computationally intensive, so alternative models
can provide tangible computational benefits, particularly for analyses where many simulations are
required. One alternative for such modeling utilizes a fractional dissolution rate (FDR). Another
modeling alternative utilizes machine learning to construct a surrogate model of the high-fidelity
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fuel matrix degradation (FMD) mechanistic model. Both provide computational efficiency
compared to the high-fidelity mechanistic model which is intractable at a detailed repository scale.

This chapter examines how these two modeling approaches to waste form degradation affect
performance predictions for a generic crystalline repository reference case. The surrogate model
alternative (an Artificial Neural Network or ANN), built from high-fidelity FMD training data, has
more detailed predictions of the waste form behavior over time because it incorporates degradation
rates changing with time. We examine how these FMD model alternatives influence the behavior
of the system.

Section 5.1.1 summarizes the structure and implementation of the UA, Section 5.1.2 describes
the fuel matrix degradation alternative options, and Section 5.2 describes the crystalline reference
case model set-up. SA results are presented in Section 5.3 with a summary discussion in 5.4.

5.1.1 Uncertainty Implementation

A nested sampling loop was employed in previous work with the crystalline reference case [1,
2, 3]. This is shown in Figure 5-1, where the stochastically generated DFNs in the outer loop
represent spatial heterogeneity and the epistemic parameters represent quantities such as corrosion
rates, fuel degradation rates, instant release fractions, matrix diffusion, buffer permeability, etc.
Nested sampling allows examination of uncertainty/variability within one uncertainty type. For
example, we can study the sensitivity of the epistemic parameters across the entire population of
samples or for each DFN. This nested sampling structure also can be useful for understanding the
relative importance of inherent variability versus reducible uncertainty.

DFN sampling
(25 DFNs)

r=—-= ===

Figure 5-1. Nested Sampling Loop used to sample over Discrete Fracture Networks and
then, per each DFN, over epistemic samples

The UA comprises a spatial loop of sample size 25 fracture network realizations, and a
parameter loop of sample size 40 for a total of 1000 simulations. Note that both loops involve
epistemic uncertainties, but the spatial uncertainty loop involves the spatial heterogeneity
exhibited by the 3-D variability in the fracture networks and the epistemic parameter loop involves
the parametric uncertainty associated with the epistemic parameters. Because the aleatory
uncertainty is also spatial, it is included in the spatial loop. For each DFN realization in the spatial
loop, a different random seed is used when sampling the waste package corrosion rate distribution,
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so that the order of waste package breach associated with each DFN is different (see Section 5.2.3).
The sampling loops are shown in Figure 5-2. Note that in the following figures, green coloring
represents epistemic parameters, blue represents spatial heterogeneity, and orange represents the
PFLOTRAN model.

For each DFN

Parameter Uncertainty Loop .
(Epistemic) Aleatory Uncertainty Loop

rateUIYF meanW Prate Discrete Fracture Networks
kGlacial s WP Degradation Rates
pBuffer Sampled for Each WP

permDRZ
permBuffer
IRF

Repository
Model

Figure 5-2. Sampling loops used in the Uncertainty Analysis of the Crystalline Reference
Case presented in this chapter

To address the different alternatives used for fuel degradation modeling, two separate
workflows were run in the Dakota framework. These are shown in Figure 5-3. Each workflow
utilized the same samples for the DFNs and for the epistemic samples, so the only difference
between the two is the alternative model choice for fuel matrix degradation. One of the epistemic
parameters, rateUNF, only pertains to the FDR model (left) and so is only included in the workflow
for that model.
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Figure 5-3. Two similar workflows used to run 1000 PFLOTRAN simulations each. The
workflow on the left utilizes a FDR model, where the workflow on the right utilizes an
Artificial Neural Network model for Fuel Matrix Degradation

Latin hypercube sampling of epistemically uncertain parameters is performed using Dakota
[16]. The uncertainty analysis includes pBuffer, permBuffer, permDRZ, kGlacial, rateUNF, and
IRF as epistemically uncertain inputs, and both meanWPrate and stdWPrate are also included as
epistemically uncertain inputs in the parameter loop. The uncertain parameters are listed in Table
5-1.

We note that the UA consists of 40 different epistemic sample vectors for each of the 25 spatial
realizations, resulting in 1000 unique sample vectors for the epistemic variables. This increases
coverage of the epistemic sample space compared to repeating the same epistemic samples for
each spatial realization and reduces interference from repeated values in the global sensitivity
analysis: the unique samples help with surrogate model construction for sensitivity analysis. The
cost of this approach (as compared to a case where the same 40 epistemic parameters are used for
each DFN) is that it is more difficult to quantify how much of the Qol uncertainty is due to spatial
heterogeneity versus epistemic parameter uncertainty. This particular sample design was chosen
for the coverage of epistemic parameter space. The epistemically uncertain parameters and their
distributions are listed in Table 5-1. We highlight a few things: the waste package (WP)
degradation rate varies between waste packages. That is, a mean and standard deviation of the WP
corrosion rate model are sampled for each PFLOTRAN run, and then repeated sampling of this
distribution is performed for each waste package within the run. Also, in Table 5-1, all eight
parameters listed in the Parameter loop are sampled for the simulations using the FDR model.
When the ANN surrogate is used, the rateUNF parameter is omitted because it is only used in the
FDR model; the other seven parameters are still sampled but no uncertainty is included in the ANN
surrogate.
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Table 5-1. Uncertainty distributions propagated in crystalline reference case UA

Input Description Range Units Distribution Sampling Loop
9 9
Particular realization of a Spatial loop
DFEN discrete fracture network 1-25
Aleatory sampling to
generate a fixed ordering ) . Spatial loop
Aleatory 1 of waste package 0-1 Uniform
degradation for each DFN
FDR of spent (used .
rateUNF nuclear leJ)eI ( ) 108 -10° yr log uniform Parameter loop
kGlacial Glacial till permeability 1015 - 1013 m?2 log uniform Parameter loop
pBuffer Buffer porosity 0.3-0.5 - Uniform Parameter loop
permDRZ DRZ permeability 10-19 — 10-16 m?2 log uniform Parameter loop
permBuffer Buffer permeability 1020 — 1017 m2 log uniform Parameter loop
Mean of the truncated log
normal distribution on 1 . Parameter loop
meanWPrate base normalized general -5.5 - (-4.5) log(yr") | Uniform
corrosion rate (R)
Standard deviation of the Parameter loop
stdWPrate truncated log normal 0.15-04 log(yr") Uniform
distribution
] ] Parameter loop
IRF Instant release fraction 0.038 — 0.156 Uniform

Implementation of spatial uncertainty in the PFLOTRAN model via DFN generation is
described in Section 4, as well as previous milestone reports [1, 2, 3]. However, this uncertainty
must also be incorporated into the SA. The DFNs are not defined parametrically, but the variation
in Qols due to spatial heterogeneity is significant. This spatial heterogeneity is included in SA
using graph metrics, which are used in surrogate model construction as if they were model inputs
like those in Table 5-1. The graph metrics are the shortest travel time (STT), the number of
intersections with the repository (nIntersections), and the average degree (AveDegree), which are
described in Section 4.2.2.

5.1.2 Fuel Matrix Degradation Alternatives

As mentioned above, the analyses in this chapter compare two alternative models for fuel
degradation modeling. The first alternative is a FDR model. The second modeling alternative
utilizes machine learning to construct a surrogate model of the high-fidelity fuel matrix
degradation mechanistic model. Both provide computational efficiency compared to the high-
fidelity mechanistic model which is intractable at a detailed repository scale.

5.1.2.1 Fractional Dissolution Rate

The FDR model uses a FDR and the radionuclide concentrations in the waste form to determine
the mass dissolution rate for each waste form [31, 32]. It is a fairly simple, analytic model which
is heavily dependent on the FDR of spent nuclear fuel, denoted as rateUNF.
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5.1.2.2 Artificial Neural Network (ANN) surrogate

The Fuel Matrix Degradation model [33] is a complex chemistry model for calculating spent
fuel degradation rates as a function of radiolysis, alteration layer growth, and diffusion reactants
through alteration layer. It incorporates mixed potential and analytical radiolysis models. It must
be called at each time step for each waste package, making it a very costly process model. To
combat this cost, time-series FMD training data was obtained offline from the full process model
and used to train an artificial neural network surrogate model alternative to the FMD model.

The ANN had 400K training points consisting of six inputs (fuel temp, dose rate, chemical
species concentrations) and one output (UO:2 surface flux/fuel dissolution rate) [34]. A two-layer
ANN with 64 nodes per layer was utilized, resulting in 4673 parameters (weights and bias terms)
that were estimated based on the training data. The surrogate ANN alternative to the FMD model
was called from PFLOTRAN with a similar application programming interface (API) as the full
FMD model. Examples of prediction accuracy with the ANN surrogate are shown in Figure 5-4.
Note that the mean absolute error on the testing set was 8.26e-4 mol/m?/year and there was a
relative test error of about 25%. This ANN has some error but matches the overall trend well, as
shown in Figure 5-4.

ANN Test Set 100 Truth-Prediction Pairs

— truth
prediction

UQ2 Surface Flux (mol/m2/year)

10 10° 10° 10°
Time (years)

Figure 5-4. Comparison of ANN surrogate to full process model results

5.2 Model Set-up

5.2.1 Model Domain

The current model domain which has been modified from Stein et al. [29] is 3015-m in length,
2025-m in width, and 1260-m in height, partially depicted in Figure 5-5. Overlying the host rock
is a 15-m thick overburden of glacial sediments. The repository is located at a depth of 585 m.
Forty-two disposal drifts contain 40 12-PWR waste packages each (1680 12-PWR waste packages
in total), which is half of the total from the FY20 case [2]. Drifts are backfilled with bentonite
buffer and are surrounded by a 1.67-m thick DRZ. Within the repository, grid cells are as small as
1.67-m on a side; elsewhere grid cells are 15-m on a side. The model domain contains 4,848,260
cells; of these, approximately 2.5 million are the smaller cells in and around the repository that
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allow representation of individual waste packages with surrounding buffer materials. Additional
information on the grid and dimensions may be found [29] available for download at
https://pa.sandia.gov. The WP placement and heat source calculations are discussed extensively in
[1]: this discussion is not repeated here but the interested reader is encouraged to view that report.

Inthe FY21 analysis [1], PELOTRAN’s integral flux card was used in the model to set up three
surfaces through which fluxes of all primary dependent variables could be calculated. In the first,
three coordinates were used to define a plane between the granite (rock) and glacial (aquifer)
materials within the model. The second surface defines a 2D outflow region from the aquifer
through the east boundary (downstream of the repository). The third surface defines a 2D outflow
region from the rock to the east boundary. Figure 5-5 shows the PFLOTRAN integral flux planes
within a cut-away of a single epistemic run mapped to a porous medium grid showing the full
repository and the far half of the model domain. Within this figure, the rock to aquifer plane is
colored in turquoise, the aquifer to east boundary plane in purple, and the rock to east boundary
plane in blue. Also included in the figure are labels for the location of the repository, rock, aquifer,
four observation points represented by turquoise spheres, and the location of three depth zones.

Rock to Aquifer Mass
Flow Rate Plane

Aqﬁifér (top 15,”_‘&,8.&)_ - Aquitar to

OBS_6 OBS_8 _ East

: Boundary
Depth Zones EEEEE —— “£¢ {a0 Mass Flow

Rate Plane

Rock to East
. . 7 Boundary
Dz3: “ . AR 5 = & ; Mass Flow
fom, 860 m] — | 7 : Rate Plane

Rock (everything else)

N\
i

East Boundary

Figure 5-5. FY21 PFLOTRAN integral flux planes and depth zones visualized within the
model domain

5.2.2 Discrete Fracture Networks

As described by Mariner et al. [6], the representation of fractured crystalline rock in the GDSA
reference case is simplified from the well-characterized, sparsely fractured metagranite at
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Forsmark, Sweden [23]. The fracture networks used here are a simplification derived from the
Forsmark case: they were customized for this crystalline reference case. Three depth zones are
defined (<200 m below sea level (mbsl), 200-400 mbsl, and >400 mbsl) to account for the decrease
in fracture density and fracture transmissivity with depth. Figure 5-5 shows the far half of the
model domain for one DFN. This figure cuts the geologic stratigraphy through the midline of the
repository, shown in the lower left, but shows the full repository. We note that the repository is
near the top of depth zone 3 (or 675m above the bottom of the domain as shown in Figure 5-5.)
Fractures of the DFN realization are shown in various shades of orange. Unconnected fractures are
not shown. There are four observation points at the top boundary of the host rock located on the
vertical plane that intersects the midline of the repository. They are also located where
deterministic features intersect the top boundary of the host rock. These user-defined features
represent large, mappable fracture zones, such as faults. There are three subvertical fracture zones
(in gray) and two fracture zones with a dip of approximately 30 degrees (in red). These features
are deterministic and are common to each DFN realization. Overlying the host rock is a 15-m thick
overburden of glacial sediments (not shown). For more details of the DFN construction, see [1,
2].

The crystalline host-rock reference case analyzed here [6], based on the Forsmark data set, is
modeled using some fixed features and an uncertain fracture network. The case contains five fixed
fracture zones and three depth intervals. Twenty-five discrete fracture networks were generated
with dfnWorks [28], one for each realization of the spatial uncertainty loop. The depth-dependent
transmissivity relationship was used, as described in Chapter 4. The DFNs are mapped to the
equivalent continuous porous medium domain using mapDFN.py, a code that approximates
hydraulic fracture properties by calculating and assigning permeability and porosity on a cell-by-
cell basis [29].

The fracture set properties and deterministic fracture zones employed in this study provided
sufficient fracture connectedness such that each DFN realization resulted in direct fracture
pathways from the repository to the top boundary of the fractured crystalline host rock. The
existence of connected fracture pathways was determined by dfnWorks [28].

5.2.3 Waste Package Corrosion Model

The waste package corrosion model implemented in PFLOTRAN (Mariner et al. [6], Section
3.2.1) calculates normalized thickness of the waste package wall at each time step as a function of
a base waste package corrosion rate, a canister material constant, and temperature. Waste package
breach occurs when the normalized thickness reaches zero. Details of the WP corrosion rate
modeling are provided in [1].

5.2.4 Initial Conditions

Initial conditions specified for this case study are pressure and temperature. Nominal nonzero
radionuclide concentrations are also specified as initial conditions, but this is for numerical
necessity, not to represent reality. Initial pressures and temperatures throughout the model domain
are calculated by applying a liquid flux of 0 m/s and an energy flux of 60 mW/m? to the base of
the domain and holding temperature (10°C) and pressure (approximately atmospheric) constant at
the top of the domain and allowing the simulation to run to 10° years. Pressure at the top of the
domain decreases from west (left) to east (right) with a head gradient of —0.0013 (m/m). This
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technique results in initial conditions that represent a geothermal temperature gradient and
hydrostatic pressure gradient in the vertical direction, and a horizontal pressure gradient that drives
flow from west to east.

The initial concentration of %I in all cells is 10722 mol/L. A non-zero value is necessary,
because PFLOTRAN transport equations are formulated in terms of the log of concentration. A
concentration of 1022 mol/L is approximately 60 atoms of '?°I per liter of water.

At all six faces of the model domain, pressures and temperatures are held constant at initial
values. Concentration of '?[ is held at the initial concentration at inflow boundaries. At outflow
boundaries, the concentration gradient is set to zero.

5.2.5 Timestep Size

During previous analysis of the crystalline reference case [3], oscillations in '*°I concentrations
which could impact estimates of '2°I breakthrough times were found at observation points. An
analysis was conducted to identify the cause of the oscillations and determine how the effect could
be minimized in future studies. In [3], we document a study showing the tradeoff between
maximum timestep size and computational time: Oscillations in the '*’I concentrations become
less frequent with smaller timesteps but this results in an increased computational time. From the
study, we determined that a maximum timestep of 5,000 years was acceptable for our quantities
of interest. For the PFLOTRAN runs presented in this report, a maximum timestep size of 5,000
years was also used.

5.2.6 Quantities of Interest (Qols)

We examine many Quantities of Interest (Qols) in the crystalline reference case. To clarify
different types of output metrics, see Figure 5-6.

Model
Inputs

Descriptive Metrice  Eolioincahiolits,
Intermediate calculations H . | “ |

Qols

Figure 5-6. Types of model outputs

Performance metrics are Qols used to assess repository performance. Examples of such
metrics include dose, concentrations, and radionuclide release to the biosphere over time. We
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define descriptive metrics as either Qols or quantities from intermediate calculations that describe
the system or its behavior, but do not describe repository performance. Examples include bulk
quantities related to (or affected by) the stochastically-generated discrete fracture networks such
as the number of fractures intersecting the repository or the shortest path to the aquifer. Other
descriptive metrics include time-dependent Qols such as median tracer residence time in the
repository, net water fluxes across regions, and water flux ratios (e.g., upward vs. eastward).
Finally, there are simple descriptive metrics such as number of waste packages breached.

By defining these different types of outputs, we can describe unique sensitivity analysis
structures and the questions each type of analysis seeks to address, shown in Figure 5-7. All three
types of analyses have been performed with the crystalline reference case [1, 2] and we continue
to define new descriptive metrics to support a better understanding of system behavior. This year’s
analysis builds upon these analysis types to investigate the effects of the fuel matrix degradation
model alternative choice on model behavior and performance.

Performance Which uncertain parameters drive
Model Inputs . o .
uncertainty in repository performance?
Model Inputs
o i ?
Descriptive How does thl.S system behave:
What uncertainties drive specific
Descriptive behaviors?
(Intermediate Calcs)
Model Inputs How does spatial heterogeneity affect
Performance uncertainty in performance? How does this
i contribution compare to the effects from
Descriptive parametric uncertainties?
Intermediate Calcs

Figure 5-7. Types of sensitivity analysis based on types of model outputs

The Qols used for the sensitivity analysis of the updated crystalline reference case are listed in
Table 5-2. The outputs include maximum '*I concentration in the aquifer over time and location
as well as quantities such as mean travel time, median residence time, and flow rate ratios. We
note that several quantities of interest were generated for the crystalline reference case in FY20.
These are described in [2] and we are still tracking them. We continue to develop additional Qols
that may be better indicators of repository performance, repository leakiness, retention of
conservative tracers in the repository, relative flow rates and directions through the rock, and flow
connections between the repository and aquifer. Leakiness describes water flux out of the
repository.
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Table 5-2. FY2022 Qols for crystalline reference case sensitivity analysis

# Quantities of Interest (Qols) Description
1 Peak '2°| concentration in aquifer in mol/L | Scalar with (X,Y,Z) location of peak. This is an indicator of
(M) repository performance.
2 MTT for Peak in years chlar, MTT as calcula.ted from the tracer concentration
ratio, evaluated at the time of Peak '?°| concentration
Median Residence Time MdRT of Spike in Median residence of a tracer iq the_ repository.'This is.the
3 R . time when half the tracer remains in the repository. It is an
epository I ; .
indicator of repository retention
The fraction of a tracer remaining in repository at 3000
4 Fraction of Spike in repository at 3000 yrs | years. It is an indicator of repository retention.
Fraction of Spike in repository at 1 million Wehwmmwﬁ%ammmmgmmmﬁmwm1mwm
5 years years. It is an indicator of repository retention.
. The instantaneous fractional loss rate of tracer remaining in
Fractional Mass Flux of Tracer from . . A .
. repository at 3000 years. It is an indicator of repository
6 Repository at 3000 yr (1/yr) -
retention.
Fractional Mass Flux of Tracer from The instantaneous fractional loss rate of tracer remaining in
7 Repository at 1 million years (1/yr) repository at one million years. It is an indicator of
repository retention.
This is the ratio of two water fluxes: the flux from the
Aquifer to East / Rock to East at 3000 aquifer to the east boundary normalized by the flux from
8 years the rock to the east boundary. It indicates the multiplication
factor on aquifer dominance of East side effluent at 3000yr
during thermal pulse.
This is the ratio of two water fluxes: the flux from the
Aquifer to East / Rock to East at 1 million aquifer to the east boundary normalized by the flux from
9 years the rock to the east boundary. It indicates the multiplication
factor on aquifer dominance of East side effluent at 1 Myr
near undisturbed conditions.
This is the ratio of two water fluxes: the rock to the aquifer
10 Rock to Aquifer / Rock to East at 3000 vs. the rock to the east boundary at 3000 years. It indicates
year a multiplication factor on upward vs horizontal flow at 3000
years during the thermal pulse.
This is the ratio of two water fluxes: the rock to the aquifer
11 Rock to Aquifer / Rock to East at 1 million | vs. the rock to the east boundary at 1 million years. It
years indicates a multiplication factor on upward vs horizontal
flow at 1 M years in near undisturbed conditions.
This is the vector of the ratio of two water fluxes: the rock
12 | Rock to aquifer/ Rock to East Boundary to the aquifer vs. the rock to the east boundary. The vector
is used in the time-varying sensitivity analysis.
12 | X Location of Peak '2°| (m) The egﬁemble indicates spatial variation in the x location of
peak '2°|
13 1Y Location of Peak '2°| (m) The egiemble indicates spatial variation in the y location of
peak '<°|
14 | Rock to Aquifer Flux Water flux from rock tg aquifer. (kg/yr}. This is a vector of
values calculated at different time points.
Rock to east flux normalized by the flux at | Water flux from rock to the east boundary, normalized by
15 | 1 Ma the flux at 1 Ma. This is a vector of values calculated at
different time points (note it has a value of 1 at 1Ma).
Aquifer to east flux normalized by the flux | Water flux from aquifer to the east boundary, normalized by
16 | at1 Ma the flux at 1 Ma. This is a vector of values calculated at
different time points (note it has a value of 1 at 1Ma).
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The main performance metric capability is the peak '*’I concentration, as in previous studies.
First, the entire aquifer is monitored at each time step for '*’I concentration and the maximum '*I
concentration is recorded. Then, the maximum value over all time points is determined. This is
called the peak '*I concentration in the aquifer over the course of the simulation. The location of
the peak '%°I concentration (in terms of x and y coordinates in the aquifer layer) is also recorded.
The x- and y-location of peak '*°I concentration indicate the spatial variability of the system. This
metric enables analysis of the model and development of PA tools and techniques. Peak '*’I
concentration is of interest because it will be a major contributor to dose.

The DFN-related characteristics that are potentially relevant to performance include the mean
travel time (MTT) of a conservative tracer from the repository to the aquifer, the median residence
time (MdRT) of an initial conservative tracer within the repository, fraction of a conservative tracer
remaining in the repository at certain times, fractional mass fluxes of that tracer at certain times,
and rock boundary water mass flow rates.

A more detailed description of MTT may be found in Mariner et al. (2020) [32] and Swiler et
al. (2020) [2]. The MTT measures the mean travel time of a conservative (non-decaying) tracer
from the repository to an observation point beyond the repository. For the equations defining MTT,
see equations 32-35 in [32]. Mean travel time can be directly measured using tracers. Identical
concentrations of two conservative tracers are artificially and continuously injected at a constant
rate at the starting point. The only difference between the two tracers is that one decays or ingrows
exponentially over time from injection. Because the movement of these tracers within the domain
is identical, the difference in concentration at a distant location is solely due to the mean time since
tracer injection. This measure of time is considered the mean travel time (MTT) of a conservative
tracer. Note for the Qol studied in this report, we focus on the MTT evaluated when the peak 1291
concentration occurs.

The median residence time of a conservative tracer initially present in the repository (MdRT)
is the time at which half of the original tracer amount remains in the repository. We note a
difference between MdRT and MTT: for MdRT, there is one initial concentration (“spike”) of the
conservative tracer at the beginning of the simulation and no more of it is injected into the region,
then MdRT is obtained by tracking the tracer mass remaining in the repository until half remains.
In contrast, for MTT, two tracers are continuously injected and the differences in their
concentrations at locations beyond the injection region can be used to calculate the MTT of
injected tracer. Note additionally that for FY20 the mean residence time (MRT) was tracked, which
is also computed by tracking the mass of the “spike,” but the estimated MRT is valid only if the
mass of the tracer has decreased nearly to zero in the repository. It was found that the fraction of
mass of the “spike” remaining in the repository by the end of the simulation was still around 0.25,
so the MdRT was deemed a more useful measure of repository retention for this work.

Additional metrics relating to the tracer concentrations include the fraction of the tracer
remaining in the repository at 3000 years or at 1 million years. These two times are of interest
because 3000 years is a time point during the thermal pulse from the repository and 1 million years
is the final performance time. The final tracer-related metric is the fractional mass flux of the tracer
from repository. This is also assessed at 3000 and 1 million years. It is an instantaneous fractional
loss rate of the tracer remaining in the repository at a particular point in time, in units of (1/yr).
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MdRT, the fraction of tracer remaining at certain times, and the fractional mass flux of the tracer
from the repository are all indicators of repository retention.

The final group of metrics involves ratios of water fluxes. There are two ratios which we study
in this sensitivity analysis. The first is the ratio of the aquifer-to-east-boundary flux to the rock-to-
east-boundary flux. This is the ratio of two water fluxes: the flux from the aquifer to the east
boundary normalized by the flux from the rock to the east boundary. It indicates the multiplication
factor on aquifer dominance of the East side effluent. We evaluate this flux ratio at 3000 years
during the thermal pulse which affects the rock to east boundary flux and also at one million years,
where the conditions are nearly undisturbed.

The other flux ratio is the ratio of the rock-to-aquifer flux to the rock-to-the-east-boundary
flux. This indicates a multiplication factor on upward vs. horizontal flow. It is also evaluated at
3000 years during the thermal pulse as well as at 1M years in nearly undisturbed conditions.

Fluxes and flux ratios were also tracked over time so time-dependent sensitivity analysis could
identify the uncertainties driving changes in flow over time. This also allows for a more continuous
comparison between the pressure pulse and thermal pulse phases, rather than comparing only two
points in time. Time-dependent sensitivity analyses for select fluxes are presented in Section 5.3.
We focus on results that are impacted by the alternative FMD model; results for Qol that are not
affected by this model choice are documented in [1].

5.3 Results

This uncertainty and sensitivity analysis focused on exploration of the FY22 quantities of
interest and their utility for increasing understanding of the repository and its performance.
Sensitivity analysis results, time series plots, and scatter plots are presented for the Qols that
proved illustrative. The first set of results (Section 5.3.1) explores the impact that fuel matrix
degradation model choice has on sensitivity analysis and the second set of results (Section 5.3.2)
explores the effect of spatial heterogeneity on surrogate model construction by presenting separate
surrogate models fit to each individual spatial realization.

5.3.1 Fuel Matrix Degradation Model Choice Results

Below we compare two sets of results: one using the FDR model within the Crystalline
Reference case, and one using the Artificial Neural Network surrogate model for Fuel Matrix
Degradation within the Crystalline Reference Case. For shorthand, results are presented labeled
FDR or ANN surrogate, respectively.

As in previous analyses of the crystalline reference case, sensitivity analysis was performed
using various surrogate models to estimate main and total effect Sobol’ indices using Dakota [3,
16, 35]. Results are presented for second-order polynomial chaos expansion (PCE) surrogate
models. This section is drawn from conference paper [36]: it has been edited and includes Qols
not discussed in the conference paper.

The maximum '?’I concentration in the aquifer is plotted over time in Figure 5-8 for
simulations with the FDR model (black) and with the ANN surrogate (pink). The concentrations
are very similar between the simulations with the two alternatives to the FMD model, but some
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differences are apparent towards the end of the simulation where there is more variability in
concentrations for the FDR model simulations. The mean and standard deviation of the
concentrations at 1 million years are 3.66 X 10™° [M] and 6.74 x 10~° [M] respectively for the
FDR simulations and 3.41 X 107°[M] and 5.00 X 10™° [M] respectively for the ANN
simulations.

The difference in uncertainty between the simulations for the two FMD model options can also
be seen in the peak '*°I concentration empirical cumulative distribution functions (CDFs) plotted
in Figure 5-9. The grey curves are the empirical CDFs for each spatial realization; the red/black
curves show the empirical CDFs for the full suite of simulations with the ANN surrogate (red) and
the FDR model (black). The domains for the FDR empirical CDFs are wider, indicating that there
is more variation in peak '*’I concentrations within a spatial realization when the FDR model
option is used. The increased uncertainty in the FDR simulations is likely due to the incorporation
of uncertainty in that model via the rateUNF parameter. No analogous uncertainty is currently
included in the ANN surrogate model.

Sobol’ indices are plotted for the ANN surrogate simulations in Figure 5-10 (left). The top
results are for the analysis without the graph metrics, and the bottom results are for the analysis
with the graph metrics. These results indicate that kGlacial and IRF are the dominant parametric
uncertainties driving variation in peak '*’I concentrations. The Intersections and AveDegree
metrics are the dominant spatial uncertainties.
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Figure 5-9. Comparison of peak '?°I concentration [M] empirical CDF functions for each
spatial realization (grey) and the total population of simulations (black/red) for the ANN
and FDR simulations

These results can be compared to those for FDR simulations, plotted in Figure 5-10 (right).
For these simulations, the dominant uncertainty becomes the FDR parameter uncertainty,
rateUNF, with kGlacial and IRF having minor effects. The analysis with the graph metrics
identifies the same important spatial uncertainties as for the ANN simulations.

The analysis for peak '*’I concentration was repeated for the maximum '*I concentration at
each time step. These results are plotted in Figure 5-11 for the ANN simulations and in Figure
5-12 for the FDR simulations. Comparison of the total index results without the graph metrics (top
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middle subplot) between the ANN and FDR simulations highlights the importance of the rate UNF
uncertainty as well as the timing of importance for IRF and rateUNF.
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Figure 5-10. Sobol’ index estimates for peak '*’I concentrations [M] for the simulations
with the ANN surrogate model (left) vs. the FDR model (right)

According to these results, the /RF parameter significantly contributes to the maximum '*I

concentration regardless of which FMD model is used, though the waste package degradation rate
is more important for most of the simulation. The /RF parameter decreases in importance towards
the end of the simulation, where kGlacial becomes significant for the ANN simulations and
rateUNF becomes significant for the FDR simulations. These sensitivity analysis results at the end
of the simulation are similar to the peak %I results in Figure 5-10, which makes sense because the
peak concentration is reach at the end of the simulation for most realizations. This analysis
provides an explanation for why there is so little difference between the '2’I concentrations for the
ANN and FDR simulations in Figure 5-8 until the end of simulation; the IRF dominates '*°I release
early on, so the FMD model only begins to have a significant effect in the second half of the
simulation time. This behavior can also be observed in the total index plots with graph metrics
included (middle plot frame), but the dominance of spatial heterogeneity in these results makes it
more difficult to see.

The scatterplots of the peak '?°I concentration versus the graph metrics and uncertain inputs
are plotted in Figure 5-13 (ANN) and Figure 5-14 (FDR). The trend between IRF and peak '*’I is
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similar between the two sets of simulations but note that the trend between rateUNF and peak '*1

(Figure 5-14) is more pronounced, which is consistent with the time-dependent sensitivity analysis
results at the end of the simulation. Scatterplots of IRF and rateUNF versus peak '*I at 200,000
years and at 1,000,000 years from the FDR model simulations are plotted in Figure 5-15. These
plots show the slightly stronger trend with respect to /RF earlier and the stronger trend with respect
to rateUNF later, as seen in the sensitivity analysis results.
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Figure 5-11. Time-dependent sensitivity analysis results for the maximum '°T
concentration [M] for ANN simulations

These uncertainty and sensitivity analysis results show that, overall, the choice for FMD model
alternative only has a minor effect on '*’I concentrations. The timing for release of %I is similar
between the two models, but the mean and variance of the peak '*’I concentration are slightly
smaller at 1M years for the ANN surrogate alternative. The similar high-level behavior of the
models may be due to waste package breach and instantaneous release dominating concentrations
for much of the simulation time.
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We expect the ANN model to provide a more detailed prediction of the waste form behavior
over time because it incorporates degradation rates changing with time and accounts for the
chemistry in the local environment. Future work on the FMD model alternatives will include
uncertainty in the environmental chemistry for the ANN model. This may affect the relative effects
of the different FMD model alternatives, which could be assessed using a similar sensitivity
analysis study.
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Figure 5-12. Time-dependent sensitivity analysis results for the maximum 2’1
concentration [M] for ANN simulations

ANN

! 108 !
o
°

8 !

[N

=
&
oomomo
Do
3]
R
)
ol )

10710 10710
60 80 100 -5.5 -5 45
Intersections meanW Prate
%0 P s, © o % Qe P LB
s o(o?zgg‘on %5 TR o oumokﬁﬁ;%} i %cc%o J

Peak '] Concentration in Aquifer (M)

9 R o
10710E2 1010 0od 6 8% %

02 0.3 0.4 0.05 0.1 0.15 10718 10714 10713 10718 1078 1020 10718

stdW Prate IRF kGlacial permDRZ permBuf fer

Figure 5-13. Scatterplots of the peak '*°I concentration [M] in the aquifer versus the graph
metrics and uncertain parameters for the ANN simulations

5-20



Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)
August 2022

FDR

8
I1o"§ ni
il
4 35

108 i 108,

R
i
LA

g .”:{

80 100 3. . 36 03 04
Intersections AveDegree pBuf fer

10710 10104 ¢
05 55 45

meanW Prate

1010k

02 03
stdW Prate

0.4

Peak '?°| Concentration in Aquifer (M)

0.05

0.1 0.15 108 107 108 5 1o 5 w8 108
IRF ratell NF kGlacial permDRZ permBuf fer

Figure 5-14. Scatterplots of the peak '*°I concentration [M] in the aquifer versus the graph
metrics and uncertain parameters for the FDR simulations

o

5% [o 2 o
o o -]
3 Coo oog £

G0 A T o

at 200,000 years

Max %] Concentration in Aquifer (M)
Max 2| Concentration in Aquifer (M)
at 1,000,000 years

0.05 0.1 0.15

_x
S
S

at 200,000 years

=
<
0

-
<
i~

Max '2%| Concentration in Aquifer (M)
Max '2°| Concentration in Aquifer (M)
at 1,000,000 years

Iy
<
@

107
rateUNF

-
e
@

Figure 5-15. Scatterplots of the peak '*°I concentration [M] in the aquifer versus /IRF and
rateUNF at 200,000 years and at 1,000,000 years from the FDR simulations

There is no difference between sensitivity results from the ANN simulations and the FDR
simulation for some of the Qols. These Qols are: the fraction of tracer remaining in the repository
at 3,000 years, the fraction of tracer remaining in the repository at 1 Ma, the fractional mass flux
from the repository at 3,000 years, and the median residence time of tracer in the repository. These
results are not presented in this section because there is no change from the FY21 results [2].
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For other Qols, there were differences in the main index results between the ANN simulations
and the FDR simulations, but this is a result of overfitting and does not represent a meaningful
difference. The y-location of peak *I is a good example. Sensitivity results for this Qol are plotted
in Figure 5-16, with corresponding scatterplots from in Figure 5-17. The sensitivity analysis results
for the analyses without graph metrics for both sets of simulations (top) suggest that all of the
uncertain variables are important. However, the large total effects indices and small main effects
indices for all variables suggest overfitting. When graph metrics are included in either analysis
(bottom), they dominate the sensitivity analysis results, which is more consistent with the
scatterplots in Figure 5-17 where the horizontal striations (banding) in the scatterplots represent
the results per DFN. We saw the same behavior of apparent overfitting for Qols dominated by
spatial heterogeneity for the ratio between the rock to aquifer flux and the rock to east boundary
flux at 3,000 years and at 1 Ma (not pictured).

The sensitivity analysis results for the rock to aquifer flux at 3,000 years normalized by the
rock to aquifer flux at 1 Ma and for the x-location of peak '*I are similar in that the results are
largely unchanged, except from overfitting effects. In these cases, however, there are still
important uncertain variables; spatial heterogeneity does not fully dominate the results. The
sensitivity analysis results for the rock to aquifer flux at 3,000 years normalized by the rock to
aquifer flux at 1Ma are plotted in Figure 5-18. The importance of /RF is essentially the same for
the ANN and FDR simulations. rateUNF appears to be significant in the FDR results, but only has
a notable total effects index along with all of the other variables, suggesting this is an artifact of
overfitting. The sensitivity analysis results for the x-location of peak '*°I are plotted in Figure 5-19.
Here, the situation is similar except that the importance of both /RF and rateUNF appear to be
artifacts of overfitting, whereas kGlacial has some importance that can be seen in scatterplots
(Figure 5-20). kGlacial appears to have a slightly larger main effect in the ANN simulations than
in the FDR simulations, though this is not clear in the scatterplots. The banding in the scatterplots
with kGlacial is due to differences between the spatial realizations, but individual bands can be
identified for which there is a positive trend with kGlacial in both the ANN and FDR realizations.

As was the case for the peak '*°I concentration, the sensitivity analysis results for the time of
peak '»I and the mean travel time at peak '*I differ significantly between the ANN and FDR
realizations due to the importance of rateUNF for these Qols. The sensitivity analysis results for
the time of peak are plotted in Figure 5-21, with supporting scatterplots in Figure 5-22. The mean
waste package degradation rate is important regardless of the FMD model choice. In the FDR
simulation results, /RF' has almost no importance and this is supported by the scatterplot which
shows no discernable trend between IRF and the time of peak '?°I. These sensitivity results suggest
that rateUNF is important for the FDR simulations, and this is corroborated by the scatterplot,
which shows the variance in time of peak '*I decreasing with increasing rateUNF. In the ANN
results, however, there is a slight trend with respect to /RF, with the time of peak '*°I having more
variation as /RF increases.

The sensitivity analysis results for the mean travel time at peak '*I are plotted in Figure 5-23
with supporting scatterplots in Figure 5-24. These sensitivity analysis results are nearly identical
to those for the time of peak '*°I, with the same relationships, because these Qols are highly
correlated to each other. The correlation coefficient between these Qols is 0.97 in the FDR
simulations and 0.95 in the ANN simulations.
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Figure 5-16. Sensitivity analysis results for the y-location [m] of peak I from the ANN
simulations (left) and the FDR simulations (right)
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Figure 5-17. Scatter plots of the y-location [m] of peak '*°I versus the graph metrics and the
uncertain parameters for the ANN simulations (top) and the FDR simulations (bottom)
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Figure 5-18. Sensitivity analysis results for the ratio between the rock to aquifer flux at
3,000 years and at 1,000,000 years from the ANN simulations (left) and the FDR
simulations (right)
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Figure 5-19. Sensitivity analysis results for the x-location [m] of peak '?°I from the ANN
simulations (left) and the FDR simulations (right)
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Figure 5-20. Scatter plots of the x-location [m] of peak !*°I versus the graph metrics and the
uncertain parameters for the ANN simulations (top) and the FDR simulations (bottom)
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Figure 5-21. Sensitivity analysis results for the time [yr] of peak '?°I from the ANN

simulations (left) and the FDR simulations (right)
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Figure 5-23. Sensitivity analysis results for the mean travel time [yr| at peak '*’I from the
ANN simulations (left) and the FDR simulations (right)
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Figure 5-24. Scatter plots of the mean travel time [yr] at peak '*°I versus the graph metrics
and the uncertain parameters for the ANN simulations (top) and the FDR simulations
(bottom)

5.3.2 Spatial Realization Results

As detailed in Section 3, we use surrogate models to overcome computational cost when
estimating Sobol’ indices for sensitivity analysis. The quality of such estimates, however, depends
on the quality of the surrogate model, and spatial heterogeneity presents a significant challenge for
surrogate models that rely on parametric characterizations of uncertainty. Though graph metrics
have enabled us to incorporate some spatial heterogeneity in sensitivity analyses, the graph metrics
are incomplete tools that, necessarily, cannot fully summarize all important spatial factors.

To better understand the extent to which spatial heterogeneity affects surrogate model
construction, we fit individual surrogate models to each spatial realization. That is, we trained a
separate second order polynomial chaos expansion using the 40 samples for each spatial
realization. The R? values were calculated for each of the models, and this is the metric we used
to assess surrogate quality. This analysis was performed with the ANN simulations and focuses on
peak '?°I since it is one of the most challenging Qols to predict accurately with surrogate models
(see Section 3).

The sensitivity analysis results per spatial realization for peak '?°I concentration are plotted in
Figure 5-25. The R? values for each of the surrogate models are shown on the right-hand side of
the figure. This shows that the surrogate model can account for the majority of the variance in peak
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129 concentration when spatial heterogeneity is excluded from the data and the surrogate
construction; the average R? is about 0.95. Though the surrogate model built over all 1,000
simulations (Figure 5-10) does not account for as much of the variance as each individual surrogate
in Figure 5-25, it does identify kGlacial, IRF, and meanWPrate as the dominant parameter
uncertainties, so the conclusions regarding ranking of parametric uncertainties are the same.
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Figure 5-25. Sensitivity analysis results per-spatial realization for the peak '2°1
concentration [M] in the aquifer, for the ANN model case

The high quality of these surrogate model fits supports our conclusions from Chapter 3 that
spatial heterogeneity, rather than scale differences or non-monotonic relationships, presents the
most significant challenge for our use of surrogate modeling SA. Differences between the SA
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results for each spatial realization demonstrate that spatial heterogeneity has a significant impact
on this Qol, and that the spatial heterogeneity interacts with the parameter uncertainties.

The analysis for mean travel time also demonstrates the importance of spatial heterogeneity.
The sensitivity analysis results for mean travel time for each spatial realization are plotted in Figure
5-26. The most important variable differs between spatial realizations, with pBuffer, meanWPrate,
IRF, and kGlacial all dominating for some of the realizations. The R? values for each model are,
on average, fairly high. There are seven realizations for which the model R? is less than 0.8, and
ten realizations for which the model R? is less than 0.9. Scatterplots of the mean travel time versus
the input variable for each spatial realization are plotted in Figure 5-27 (pBuffer), Figure 5-28
(IRF), Figure 5-29 (meanWPrate) and Figure 5-30 (kGlacial). Highlighting in the plots identifies
the spatial realizations for which that variable was the most important in the sensitivity analysis.
Red markings in Figure 5-27 and Figure 5-28 denote important points for comparison as discussed
below.

In some cases, scatterplots look very similar for two different spatial realizations, but the
surrogate model did not rank the same variable as the most influential. This is the case for
realizations 14 and 23 in Figure 5-28 (/RF), for example. The plots for these two realizations have
the same y-axis and the plots look nearly identical, however IRF is the top ranked parameter for
realization 14 but only the 3™ most important variable for realization 23. The scatterplots for
realizations 14 and 23 versus pBuffer may give some insight into why the sensitivity results for
these realizations differ. In Figure 5-27, there is more spread in the points that deviate from the
dominant trend for realization 14 than for realization 23 (see the red regions in the figures). This
slight difference in points that deviate from the main trend is enough to substantially change the
sensitivity analysis results, even though the slope of the main trend between pBuffer and MTT is
stronger in both realizations than the slope of the main trend between /RF and MTT (see the red
arrows in the figures). For this particular spatial realization, the sensitivity analysis results are more
influenced by a few points than by the trend that the majority of the points follow.

This comparison does not mean that the sensitivity analysis results are incorrect; it is important
to remember that the sensitivity analysis method is a variance decomposition, not just a regression
model. Because the points with lower MTT are concentrated towards lower values of pBuffer for
realization 23 (Figure 5-27), there is higher variance in the Qol at low pBuffer values than at high
pBuffer values. For realization 14, the lower MTT points are spread over more of the range of
pBuffer so it is not clear that we would expect more variance in the MTT at certain values of
pBuffer. The sensitivity results for these realizations make sense, but the sensitivity to such a small
number of points raises an important question of whether the behavior of points that deviate from
the main trend is influenced by differences in the DFNs or whether it is a result of our limited
epistemic sample size. This is another important point for consideration as we seek to improve our
methods for incorporating spatial heterogeneity into sensitivity analysis.
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Figure 5-26. Sensitivity analysis results per-spatial realization for the mean travel time [yr]
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Figure 5-27. Scatterplots of the mean travel time [yr] for each spatial realization versus
pBuffer; blue highlighting indicates that the surrogate model ranked pBuffer as the
dominant parametric uncertainty for that spatial realization and the red marks identify
important comparisons
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Figure 5-28. Scatterplots of the mean travel time [yr] for each spatial realization versus
IRF; highlighting indicates that the surrogate model ranked /RF as the dominant
parametric uncertainty for that spatial realization and the red marks identify important
comparisons
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Figure 5-29. Scatterplots of the mean travel time [yr]| for each spatial realization versus
meanW Prate; highlighting indicates that the surrogate model ranked meanWprate as the
dominant parametric uncertainty for that spatial realization
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Figure 5-30. Scatterplots of the mean travel time [yr] for each spatial realization versus
kGlacial; highlighting indicates that the surrogate model ranked kGlacial as the dominant
parametric uncertainty for that spatial realization

5.4 Summary of Results

Comparison between the sensitivity analyses for the crystalline reference case simulations with
either the FDR alternative model or the ANN alternative model for FMD showed that the choice
of FMD model alternative has a minimal effect on Qols. Some differences were detected in the
maximum '?°I concentrations in the aquifer over time, with the FDR model alternative leading to
more variation between simulations near 1 million years. The increase in variation is likely due to
the incorporation of uncertainty in the FDR model via rateUNF; no comparable parametric
uncertainty is currently included in the ANN model. When not attributable to rateUNF’, differences
in sensitivity analysis results between simulations using either FMD alternative model were due
to overfitting behavior in the surrogate models. This overfitting behavior was shown to occur with
all of the surrogate model options investigated in Chapter 3 and is most likely to occur at smaller
sample sizes, such as the 1,000 model evaluations we can feasibly perform with this full-scale
crystalline reference case model.
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The effect of FMD model choice was also small because of the significance of the
instantaneous release fraction (/RF) up until around 200,000. Time-dependent sensitivity analysis
showed that, among the parametric uncertainties, the waste package degradation dominates early,
then /RF becomes significant, and rateUNF only gains importance after most waste packages have
breached. Both analyses included the same uncertainties for /RF, meanWPrate, and stdWPrate (as
well as spatial heterogeneity), so the dominance of these parameters for much of the simulation
resulted in similar uncertainties in the Qols towards the end of the simulation. kGlacial also gained
some importance towards the end of the simulation, but this was more pronounced in the
simulations with the ANN surrogate; rateUNF is significantly more important than kGlacial in the
simulations with the FDR model alternative.

Future analysis may incorporate additional uncertainty into the ANN surrogate model so that
it is more directly comparable to the FDR model. Additionally, the /RF uncertainty is fairly high,
so reductions in that uncertainty could also influence how early the FMD model alternative
becomes important. However, uncertainty in this variable is not purely epistemic. /RF should vary,
for example, due to variability in fuel burnup, so there is a limit to how much this uncertainty can
be reduced in a PA.

SA was performed on the simulations that used the ANN surrogate for each spatial realization
separately. This analysis was not aimed at comparing the effects of FMD model choice; it was
motivated by the results of Section 3, which identified spatial heterogeneity as the dominant factor
preventing high accuracy in SA. Comparison of SA results for the peak '*’I concentrations for each
spatial realization showed that, in general, the surrogate model can characterize more of the
variance in Qols when spatial heterogeneity is absent. Differences in the SA results from these
high-quality surrogates between spatial realizations showed that spatial heterogeneity has a
significant impact on the behavior of '*I in simulations and interacts significantly with the
parameter uncertainties. This conclusion motivates further advancement to our treatment of spatial
heterogeneity to improve SA accuracy in performance assessment with the GDSA Framework.
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6. DECOVALEX CASE

In this chapter, we present some early results from a sensitivity analysis of the DECOVALEX
Task F crystalline case. The Task F case has been documented in [37]: we present a brief summary
below. The results presented here differ from other analyses in that this is a sensitivity analysis:
we have varied five parameters of the DECOVALEX case and run 300 samples. We show these
preliminary results to communicate the generality of the GDSA Workflow, which was used to
generate the 300 runs (10 DFNs x 30 epistemic samples). We caveat these results because they are
very preliminary: we wish to investigate the model and results in more detail, so we caution against
over-analyzing these results. However, we present these initial results as a demonstration of what
might be possible with additional investigations of the DECOVALEX case and to generate ideas
for subsequent analyses.

6.1 Description of case study

In the DECOVALEX Task F crystalline case, the system of comparison is a generic repository
for commercial spent nuclear fuel (SNF) in a fractured crystalline host rock. The reference case
repository is located beneath a gently sloping hill in a domain 5 km in length, 2 km in width, and
~1 km in depth (Figure 6-1). Fracture intensity and fracture transmissivity decrease with depth.
The repository is located in the west (left) side of the domain at a depth of approximately 450 m,
comprises 50 deposition drifts branching off two parallel access tunnels. The deposition drifts are
spaced 40 m center-to-center; 50 deposition holes within each tunnel are spaced 6 m center-to-
center. The area of lowest elevation is located on the east (right) side of the domain, representing
the location where water would collect at the surface forming a feature such as a lake or wetland.
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Figure 6-1. Elevation profile and corresponding pressure boundary condition (top) and
depth zones in the domain (bottom)
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The crystalline host rock consists of a set of large-scale, highly fractured brittle deformation
zones (deterministic fractures) and intervening masses of competent rock containing sparse
networks of connected fractures (stochastic fractures). Stochastic and deterministic fractures were
generated using Los Alamos National Laboratory’s (LANL) software dfnWorks. Ten sets of the
stochastic fracture network were created. Fractures were then upscaled to an Equivalent
Continuous Porous Medium via the Python script mapdfn.py. The far field fractures were upscaled
to a 25 m length and the fractures in the repository were then upscaled to a 25/3 m length.

The initial reference case assumes steady state flow and transient transport of two conservative
tracers (Tracer 1 and 2) upon simultaneous breach of all the canisters in the repository. The
inventory per waste package of Tracer 1 is 0.545 g (0.00423 moles) and 100% of the mass is
instantly released at the start of the transport simulation. The inventory per waste package of Tracer
2 is 4.90 g (0.038 moles) and is released at a fractional rate of 10”/y throughout the transport
simulation. Transport of the two tracers is simulated for 100,000 years. The tracer advects out of
the top boundary while no-flow boundary conditions are applied to all other faces. Three different
surfaces of interest were defined at the top of the domain (z=1000 m): the surface of the high point
(0 m <x <1700 m), the surface of the hillslope (1700 m < x <3700 m), and the surface of the low
point (3700 m < x < 5000 m) (Figure 6-2). Preliminary results for the cumulative mass flow out of
the low point can be seen in Figure 6-3 for the 10 realizations.

High point . Hillslope  _Low point

2000 500 1000 3500 4000 4500 5000
R e e

Figure 6-2. Surfaces of interest for initial reference case
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Figure 6-3. Cumulative mass flow (left) and mass flow (right) across the low point for the

10 realizations

6.2 Results

Five parameters were varied for this study. The parameter descriptions, ranges, units, and
distributions are shown in Table 6-1.

Table 6-1. Parameter Descriptions for the DECOVALEX Sensitivity Analysis Case Study

Input Description Range Units Distribution
pBuffer Buffer porosity 0.41 —0.466 - Uniform
pBackfill Backfill porosity 0.3-0.5 - Uniform
permBuffer Buffer permeability 102 -1020 m? Log uniform
permBackfill Backfill permeability | 1022 - 10" m? Log uniform
rateUNF Fractional dissolution | 10% - 10 yr! Log uniform

rate of spent nuclear

fuel
DFN Particular realization | 1-10

of a Discrete Fracture

Network
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Seven Qols were analyzed for this study. Each of these was output at both 50,000 and 100,000
years, for a total of fourteen Qols. The seven Qols are shown in Table 6-2. Note that the first three
Qols (the water fluxes at different surface locations) had the same values at 50K and 100K years
for each DFN. For example, the low point water flux had the same values per DFN at 50K years
and 100K years. This is because the water flux remained the constant over the simulation.

Table 6-2. Quantities of Interest for DECOVALEX Sensitivity Analysis Case Study. Note that
each Qol was calculated at SOK years and 100K years

Quantity of Interest Description

Low_point Water Water flux reported over the low point surface of the
domain (kg/yr)

HillSlope Water Water flux reported over the hill slope surface of the
domain (kg/yr)

High point water Water flux reported over the high point surface of the
domain (kg/yr)

Low_point Tracer 1 Mass flow of tracer 1 over the low point surface
(mol/yr)

Low_point Tracer 2 Mass flow of tracer 2 over the low point surface
(mol/yr)

HillSlope Tracer 1 Mass flow of tracer 1 over the hill slope surface
(mol/yr)

HillSlope Tracer 2 Mass flow of tracer 2 over the hill slope surface
(mol/yr)

We now present some initial results. As mentioned above, these are very preliminary, but show
some interesting behavior. Correlations of the output Qols (shown in the rows) and the inputs
(shown in the columns) are presented in Table 6-3, which shows that four of the inputs, the porosity
and permeability of both the buffer and backfill, have near zero correlation with any of the outputs.
This means that the variation seen in these outputs is solely due to variation in the DFNs. The only
parameter that has a significant correlation is rateUNF, and that is only with respect to the Tracer
2 concentrations. This is expected behavior, as Tracer 1 is released instantly upon waste package
failure; the fractional dissolution rate of spent nuclear fuel is irrelevant for Tracer 1.
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Table 6-3. Correlations of Input Parameters (columns) and Qols (rows) for the
DECOVALEX case study. Significant correlations highlighted in yellow

Variable Name pBuffer pBackfill permBuffer permBackfill rateUNF
low_pointWater_kg_y 50kyr 0.004 0.001 0.003 0.000 -0.010
low_pointWater_kg_y_100kyr 0.004 0.001 0.003 0.000 -0.010
low_pointTracerl_mol_y_50kyr 0.003 0.003 0.000 0.006 0.002
low_pointTracerl_mol_y_100kyr 0.004 0.003 -0.002 0.001 -0.002
low_pointTracer2_mol_y 50kyr 0.011 0.005 0.008 -0.004 0.849
low_pointTracer2_mol_y_100kyr 0.009 0.009 0.006 -0.009 0.895
hillslopeWater_kg_y_50kyr -0.002 0.003 -0.006 -0.004 0.001
hillslopeWater_kg_y_100kyr -0.002 0.003 -0.006 -0.004 0.001
hillslopeTracerl_mol_y_50kyr 0.001 0.001 0.003 0.013 0.009
hillslopeTracerl_mol_y 100kyr 0.001 0.001 0.002 0.012 0.009
hillslopeTracer2_mol_y_50kyr 0.015 -0.009 0.012 0.022 0.668
hillslopeTracer2_mol_y_100kyr 0.014 -0.007 0.011 0.019 0.700
high_pointWater_kg_y_50kyr -0.001 -0.004 0.003 0.004 0.008
high_pointWater_kg_y_100kyr -0.001 -0.004 0.003 0.004 0.008

Scatterplots are now presented for various Qols vs. inputs. The purpose of these scatterplots is
to verify the correlation data shown above and to better understand the behavior of the model as

the parameters vary.

Scatterplots of the input parameters vs. the low point water fluxes are shown in Figure 6-4.
Note that the horizontal lines colored for each DFN indicate that per DFN, these low point water
fluxes are constant as the input parameters vary across their ranges: this indicates that the

parameters have negligible effect on these outputs.
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Figure 6-4. Scatterplots of inputs vs. low point water fluxes, colored by DFN

Similar scatterplots of the input parameters vs. the hillslope water and high point water fluxes
are shown in Figure 6-5 and Figure 6-6. Note that the horizontal lines colored for each DFN
indicate that per DFN, these low point water fluxes are constant as the input parameters vary across
their ranges: this indicates that the parameters have negligible effect on these outputs.
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Scatterplots of the input parameters vs. the tracer concentrations at both the low point and the
hillslope are shown in Figure 6-7 and Figure 6-8, respectively. Note that the horizontal lines
colored for each DFN indicate that per DFN, the input parameters do not have an effect on Tracer
1 concentrations either at the low point or at the hillslope. However, some of the input parameters
DO have a significant effect on Tracer 2 concentrations at both these locations. In particular, note
that the Tracer 2 concentration (per DFN) is nearly linear with respect to the rate UNF parameter
for both locations. This is corroborated by the strong correlations listed in Table 6-3.
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7. CONCLUSIONS
This report covers the main topics addressed in the GDSA UQ/SA work performed in 2022.

The report presents the results of a new uncertainty quantification method involving models at
multiple levels of fidelity applied to a simplified version of the crystalline reference case. This
simplified reference case retains many of the key qualities of the full reference case. The
multifidelity analysis showed that the variance in a key Quantity of Interest, peak '*’I
concentration, could be reduced by almost an order of magnitude using a set of runs at different
fidelities which had the same cost as 500 high fidelity runs. This year, we explored multifidelity
surrogate-based and sampling-based methods in the context of this simplified reference case.
These methods show promise to improve the efficiency of uncertainty analyses for PA, but
additional tuning of model ensembles and surrogate construction algorithms will be needed to
realize their full potential.

We also examined the possible errors and biases introduced by the use of surrogates when
calculating the Sobol’ variance-based sensitivity indices. Surrogates are typically used to calculate
these sensitivity indices given the large number of samples required to get good estimates of
conditional expectations and variances. Chapter 3 presented a comprehensive case study, again
using the simplified crystalline reference case. A Sobol’ index calculation was performed for 7
variables involving 9000 sample runs, where each run involved a DFN generated by dfnWorks
and PFLOTRAN. This entire workflow was repeated five times to generate five entire replicate
sets. This allowed detailed comparison of surrogate models within and across replicates. It also
allowed comparison of the sensitivity indices using only the samples and using surrogates based
on the samples. We take the “samples only” case as the better estimate because the direct effect
of DFNs can be obtained. Surrogates required a proxy metric for the DFN spatial heterogeneity
to be calculated and used as an independent predictor in the surrogate.

We found that surrogate choice has some effect on the sensitivity analysis results, but it is
minimal for most Qols. All surrogate models included in these studies demonstrated overfitting
behavior. A significant finding was that the calculation of the Sobol’ indices based on samples
only vs. using the surrogates resulted in significant difference in the actual sensitivity index values
and in their ranking. Typically, the sample-only calculation of the sensitivity indices ranked the
effect of spatial heterogeneity much higher than the surrogate-based calculations. This is likely
due to proxies or metrics for the DFNs that do not completely capture their spatial heterogeneity.
We considered the following proxies: y-location of peak '?°I, number of intersections between the
repository and aquifer, shortest travel time, and number of intersections in the entire discrete
fracture network. The graph metrics proved to be our best tool to date for improving surrogate
model performance but are demonstrably incomplete tools. These studies showed that
improvement in our treatment of spatial heterogeneity is the most promising avenue for
accomplishing better surrogate models.

We continue to study various aspects of the Discrete Fracture Networks. This year, we
performed a detailed study involving 100 DFNs each modeling two transmissivity relationships:
correlated constant vs. correlated depth-dependent transmissivity. The purpose was to determine
if a correlated depth-dependent transmissivity relationship produces a significant change in the
performance quantities for the flow and transport simulations of nuclear repositories in subsurface
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rock as compared to a correlated constant transmissivity. The findings showed that the main Qol,
the maximum '?°I concentration in the aquifer at 1 Ma, was not significantly different but the
timing of the peak '*I concentration did differ. Other Qols such as median residence time and
mass fluxes did show statistically significant differences between the two transmissivities. We
also observed that the maximum '*I in the aquifer showed no real correlation with any graph
metric for either relationship. The study highlighted differences with respect to the mass flow
rates (specifically the rock to east boundary flow rate) which may indicate increased flushing for
the correlated depth dependent relationship: this behavior is worth investigating further.

This year, we extended the sensitivity analysis of the crystalline reference case performed in
FY20 and FY21. The FY22 analysis uses the FY21 crystalline case and adds another dimension
to the sensitivity analysis: that of model form. The FY22 analysis addresses uncertainty from
spatial heterogeneity represented by DFNs, epistemic parameter uncertainty, and model form
uncertainty in the treatment of fuel matrix degradation (FMD). Two alternatives for FMD are
investigated: a fractional dissolution rate model and an Artificial Neural Network surrogate model
of the FMD model.

Comparison between the sensitivity analyses for the crystalline reference case simulations with
either the FDR alternative model or the ANN alternative model for FMD showed that the choice
of FMD model alternative has a minimal effect on most Qols. Some differences were detected in
the maximum '*°I concentrations in the aquifer over time, with the FDR model alternative leading
to more variation between simulations near 1 million years. The increase in variation is likely due
to the incorporation of uncertainty in the FDR model via rateUNF; no comparable parametric
uncertainty is currently included in the ANN model. The effect of FMD model choice was also
small because of the significance of the instantaneous release fraction (/RF) up until around
200,000 years. Time-dependent sensitivity analysis showed that, among the parametric
uncertainties, the waste package degradation dominates early, then /RF' and kGlacial become
significant, and rateUNF only gains importance after most waste packages have breached. Future
analysis may incorporate additional uncertainty into the ANN surrogate model so that it is more
directly comparable to the FDR model. Additionally, the IRF uncertainty is fairly high, so
reductions in that uncertainty could also influence how early the FMD model alternative becomes
important.

The sensitivity analyses of the FY22 crystalline reference case again highlighted the important
effect that spatial heterogeneity has on the Qols, including on the behavior of '?I. This spatial
heterogeneity also interacts significantly with the parameter uncertainties. Again, we saw that
spatial heterogeneity presents the most significant challenge for our use of surrogate modeling SA.
This conclusion motivates further advancement to our treatment of spatial heterogeneity to
improve SA accuracy in performance assessment with the GDSA Framework.

This year, we utilized the GDSA Workflow to perform a sensitivity analysis on the
DECOVALEX crystalline case. Preliminary results are discussed in Chapter 6. We note that these
results need further investigation, but it was interesting to see that the permeabilities and porosities
of both the buffer and the backfill had very little influence on the Qols which were water fluxes at
different surface locations and tracer concentrations. Only the rateUNF dissolution rate parameter
had a significant effect on the Tracer2 concentrations: the uncertainty in most of the Qols was
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entirely due to spatial heterogeneity as seen by the effect of the DFNs. We plan to extend this
analysis as the DECOVALEX case develops further.

Another activity continued this year was the GDSA4 Workflow. This workflow couples Dakota,
PFLOTRAN, and NGW (the Next Generation Workflow) to provide analysts with a capability to
construct, execute, and communicate end-to-end computational simulation analysis workflows.
The GDSA Workflow also allows greater reproducibility and traceability of the actual files and
scripts used for a particular study. The GDSA Workflow was extended and generalized this year to
support the DECOVALEX case study.

Finally, we continue to engage with the international community on sensitivity analysis topics.
This year, we started working on a new set of case studies which are more complex reference
cases. Each participating organization in our working group separately performs sensitivity
analyses on these case studies. Then, we meet to compare results and evaluate the performance of
different sensitivity analysis methods, with the goal of developing consensus recommendations on
some best practices for sensitivity analysis in the context of repository performance assessment.

There is a rich legacy of UQ/SA being performed in repository assessment. Development,
implementation, and demonstration of new tools and methods for uncertainty and sensitivity
analysis in GDSA Framework will maintain leadership of the repository science community in
UQ/SA methods, while also maintaining an infrastructure of proven tools. Geologic repository
performance assessment in the U.S. involves coupled, multi-physics modeling at high resolution,
large parameter spaces, and greater use of random (stochastic) field modeling. UQ/SA methods
discussed in this report, including surrogate modeling to reduce computational expense, variance-
based sensitivity analysis to quantify importance of parameter interactions in a multi-physics
system, and new multi-fidelity methods, will enable analysis methods to keep pace with the
increasing sophistication of the physics models. We seek to improve existing UQ/SA methods,
employ new methods, and maintain an infrastructure of proven tools that can be extended to
support computationally expensive analyses.

There are several possible avenues of future UQ/SA development, including better understanding
and quantification of the effect of spatial heterogeneity, the use of optimization in determining
uncertainty bounds, further work with multifidelity UQ approaches, more detailed examination of
surrogates and machine learning methods, model form uncertainty, and density-based sensitivity
analysis. Future work will involve further development of these potential topics as they align with
the GDSA Framework and the repository performance assessment needed.
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