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Crossed-field diodes (CFDs) are used in multiple high-power applications
and are characterized by an applied magnetic field orthogonal to the electric field,
induced by the applied voltage across the anode-cathode gap. In vacuum, the Hull
cutoff magnetic field (HCMF) represents the maximum applied magnetic field for
which an electron from the cathode can reach the anode. This study investigates the
effects of non-vacuum conditions on electron trajectories by introducing electron
mobility, which represents particle collisions. We used numerical solutions of the
electron force law and particle-in-cell simulations (XPDP1) to assess electron
motion for various electron mobilities. For magnetic fields above the HCMF in
vacuum, reducing the electron mobility increases the time for an electron emitted
from the cathode to reach the anode. Reducing mobility below 22 C s/kg eliminates
the HCMF for any magnetic field, meaning that an emitted electron will always
cross the gap. We derived the magnetic field, mobility, and electron transit time
corresponding to this condition by solving for the condition when the electron
velocity in the direction across the anode-cathode gap going to zero at the anode.
A parametric study of these conditions using theory and XPDP1 is performed under
different gap distances, voltages, and magnetic fields.

Crossed-field devices, where a magnetic field is introduced orthogonal to a device’s electric field,
have many applications such as crossed-field amplifiers [1], high-power microwave sources [2],

and magnetically insulated transmission lines for pulsed-power systems [2]. In a standard diode at
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vacuum, an electron emitted from the cathode will travel directly across the gap. Introducing a
magnetic field causes the electron to curve as it crosses the gap. The emitted electron will cross
the gap until a sufficiently strong magnetic field is applied such that the electron just barely reaches
the anode with zero velocity across the gap. This magnetic field is referred to as the Hull cutoff

magnetic field By[3].

For magnetic field B > By, an electron emitted from the cathode will not reach the anode
and will instead return to the cathode in a cycloidal orbit. Such a diode is referred to as
magnetically insulated. Many practical devices, such as the U. S. Navy’s Aegis radar system,
operate at B > By[4].

Interestingly, magnetic insulation may be eliminated by system perturbations. For instance,
tilting the applied magnetic field introduces a velocity component parallel to the electric field such
that an emitted electron always reaches the anode regardless of magnetic field strength [5]. Recent
simulation and theory studies also demonstrated that introducing a series resistor altered electron
trajectories and the maximum current in the crossed-field gap for B = By [6]. Introducing ions in
the gap also changes electron behavior in a crossed-field gap [7]. Particle-in-cell simulations show
that introducing pressure into a crossed-field gap eliminates the Hull cutoff, although the time for
the electrons to cross the gap may be quite long (>10-¢ s) depending on application [2].

Practical vacuum electronics devices do not operate in perfect vacuum, so recent studies
have examined the implications of collisions on the maximum current permissible in a diode,
defined as the space-charge limited current (SCLC). One studied unified SCLC in vacuum, given
by the Child-Langmuir (CL) law, with the SCLC with collisions, given by the Mott-Gurney (MG)
law [8] by incorporating collisions into electron motion by introducing electron mobility as a

friction term. Subsequent analysis introduced field emission by using the Fowler-Nordheim (FN)



law as the source current density to demonstrate transitions between CL, MG, and FN [9] before
introducing a series resistor [10], thermionic emission through the Richardson-Laue-Dushman
(RLD) equation [11], and photoemission through the Fowler-DuBridge (FD) equation [12]. This
technique, referred to as “nexus theory”, has recently been applied to a crossed-field device to
demonstrate the transitions between RLD, FN, and limiting current for a crossed-field diode [13].
The limiting current for a crossed-field diode differs from CL and also differs between non-
magnetically insulated (B < By) [14] and magnetically insulated (B > By) [15][16] conditions.
Applying nexus theory to a crossed-field diode required separately accounting for each of these
cases.

Because introducing collisions into a crossed-field diode eliminates magnetic insulation,
introducing electron mobility into the force law as done for the non-magnetic case will complicate
behavior. The closest analog is the tilted magnetic field, where the tilt causes the electrons to loop
around as the traverse the diode [5]. Understanding the implications of electron mobility on
electron trajectories and magnetic insulation is critical prior to assessing potential implications on
limiting current.

In this paper, we start from the electron force law for a crossed-field gap with collisions
and solve for the traditional Hull cutoff condition corresponding to the electron reaching the anode
with the velocity in the direction along the electric field as zero. We demonstrate that while this
traditional Hull cutoff condition still exists for sufficiently large mobility, it does not indicate the
onset of magnetic insulation as in vacuum, but instead represents a bifurcation in the transit time
from a smooth increase with increasing B for B < Byand a rapid increase with increasing B for
B > By.

Results



Theoretical analysis and results. Consider a one-dimensional planar diode system,
which, in Cartesian coordinates, locates the cathode at x = 0 and the anode at x = D, as shown in
Figure 1. There is an external magnetic field, B= B,z, applied into the system. The cathode is
held at a potential ¢ = 0 and the anode held at ¢p = V, resulting in an electric field E=E &x=V/D

X since we assume a sufficiently low injection current to avoid space-charge buildup.
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Figure 1. Cathode-anode system showing external magnetic field B= B,z, gap distance D,
voltage V, and electric field E,x = V/Dx.
From the Lorentz force law, the force F on the electron is given by

F=q(E+ 9x B). (1)

Equating (1) with Newton’s Second law yields two differential equations,

"_ erix _ eB; , n — eBzxr (2)
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where e and m are the electron charge and mass, respectively. Solving the differential equations
using initial conditions x(0) = 0 and x'(0) = 0, where Q = eB/m s the cyclotron frequency,

yields
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The Hull cutoff condition is defined by an electron reaching the anode at x = D at time t = t with
zero velocity in the x-direction, given symbolically as

x(t) =D, v, =x'(t) = 0. 4

By = /ZmV_ (5)
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Because devices cannot always achieve perfect vacuum conditions, we will incorporate electron

Combining (3) and (4) gives

collisions with neutral particle by introducing the electron mobility p as a “frictional” component

in an electron’s trajectory. We can write Poisson’s equation as

d’¢ _p
7= e (6)
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and continuity as
J=pv, (7)
where p is the electron charge density, and the electron force law becomes
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To eliminate parameters and facilitate analysis, we define
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where the terms with bars are nondimensional.



Combining equations (1), (6), and (7), and nondimensionalizing with equation (8) through yields
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Hull cutoff initial conditions (5) are applied and the differential equations are solved for

nondimensional electron position and velocity:
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The initial vacuum result is then recovered when p—oo, giving

lim X(t) =V — V cos (%) (14)
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Figure 2. (a) Nondimensional electron velocity as a function of transit time (?) at u = 21 m?V—1
s~L. (b) Nondimensional electron velocity as a function of transit time at y = 22 m?V—1s~1,



Using the derived results, as seen in equations (12) and (13), we assessed how changing fi
changes the traditional Hull cutoff condition. Figure 2 compares different electron mobility values
and how they impact electron trajectory. On the left, an electron mobility value of 21 m2V—1s—1
eliminates “traditional” magnetic insulation and the electron do reach the anode at zero velocity
during their first pass. On the right, and electron mobility value of 22 m?V—1s~1 attains the
“traditional” Hull cutoff condition of reaching the anode with x'(7) = 0. Inspection of these plots
shows that there must be an extreme case for which magnetic insulation is maintained. To derive
this extreme case, the nondimensional electron velocity equation (13) is simplified and rewritten

as

_'[f] _eVERy {ef/ﬁ ++/#% + 12 sin [f + arctan ( — ;7—1)]} (15)
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This equation actually contains within itself two conditions for achieving the extreme case of
reaching and anode with x'(7) = 0 on its first pass. The first condition arises by matching the
exponential component of the nondimensional electron velocity with the magnitude of the
sinusoidal component to yield
et/F = /g% + 12, (16)
The second condition equates the phase of the sinusoidal term to its maximum negative value
t+arctan(—p1) = 3;” (17)
The third condition for the Hull cutoff is the standard transit time condition, given by
x[t] =1 (18)
Through this simplification of the nondimensional electron velocity, three equations are derived
and are used to solve for the three unknowns of this extreme case for the Modified Hull cutoff
condition: nondimensional electron mobility, transit time, and magnetic field as defined below.

n=3.70217,t=4.9762
7



B=0.176146T
u=21.0177 m?v-1s—1

Where dimensional electron mobility was derived using the scaling parameters defined earlier.

Simulation analysis and results. Along with theory derivation, simulations were also utilized to
examine anode-cathode gap conditions. Specifically, simulations were conducted using constant
electron mobility and varying magnetic field values along with those conducted using constant
magnetic field and varying electron mobility values. Using the one-dimensional (1-D), three-
dimensional velocity (3-v) particle-in-cell simulation code (XPDP1) [17] with the incorporation
of electron mobility, we determined the electron transit time and electron trajectories. Analysis
demonstrated that electron mobility and magnetic field have a strong influence on transit time,
especially at magnetic fields above the Hull Cutoff and low mobility values. These findings are
consistent with XPDP1 simulations displaying increased transit times with increasing pressure

(which corresponds to decreasing electron mobility) [2].
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Figure 3. (a) Dimensionless transit time t as a function of electron mobility u with constant
magnetic field B. (b) Dimensionless transit time (t) as a function of magnetic field B with constant
electron mobility p.

Figure 3 displays plots at constant magnetic field and constant electron mobility to display

the influence on transit time along with the “jump” that occurs at low electron mobility and high



magnetic field. This large increase in transit time is due to looping electron trajectories that occur
at high magnetic fields above the Hull cutoff, which prolong the electron excursion. These plots
also suggest a possible “bifurcation” or “transition” point located at the Modified Hull cutoff due
to the onset of electron loops. Additionally, the electron trajectories and transit times obtained

using XPDP1 simulations and theory agreed well, as shown in Fig. 4.
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Figure 4. (a) Theoretically calculated and (b) simulated nondimensional electron velocity as a
function of nondimensional electron position.

Conclusion

In summary, we demonstrated that introducing a finite electron mobility caused an electron
emitted from the cathode to reach the anode; however, the traditional Hull cutoff condition still
plays a significant role in characterizing the transit time of the electron. We derived a condition
for electron mobility below which the electrons must loop before satisfying the traditional Hull
cutoff condition, leading to a significant increase in transit time for magnetic fields above the
threshold. This behavior is consistent with previous XPDP1 simulations demonstrating increasing
transit times with increasing pressure (corresponding to decreasing electron mobility) [2]. Future
studies include performing a parametric study of the modified Hull cutoff condition using theory
and varying gap distances, voltages, and magnetic fields. Fluid models, such as SOMAFOAM
[18], may further elucidate behavior at higher pressures or larger gaps in a more computationally

efficient manner than particle-in-cell simulations.
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