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What is Data assimilation?3

 Definition: “an approach for fusing data (observations) with prior knowledge (e.g. 
mathematical representations of physical laws; model output) to obtain an estimate of 
the distribution of the true state of a process”

-Wikle and Berliner, Physica D, 230 (2007)

 A useful definition: Using multiple pieces of diagnostic information simultaneously to 
provide unbiased estimates of the parameters of a physical model from a single 
experiment or across an ensemble of experiments.



A canonical example:  How do we measure the fuel pressure in 
fusion experiments?4

 By assuming a uniform plasma in time and space 
we can estimate the pressure by inverting the yield 
equation



A canonical example:  How do we measure the fuel pressure in 
fusion experiments?5

Indium Activation measurement

 On Z, we measure the DD neutron yield using 
Indium activation



A canonical example:  How do we measure the fuel pressure in 
fusion experiments?6

 The burn duration is measured using the x-ray 
power history as a surrogate

 We assume the FWHM of the x-ray pulse is a good 
stand in



A canonical example:  How do we measure the fuel pressure in 
fusion experiments?7

 We estimate the volume using x-ray imaging

 Assume the column is locally cylindrically 
symmetric and use the width containing 85% of the 
area under the curve to approximate the radius of 
the column



A canonical example:  How do we measure the fuel pressure in 
fusion experiments?8

 The ion temperature is measured using neutron 
time of flight (nTOF) assuming no contribution to 
residual velocity



A canonical example:  How do we measure the fuel pressure in 
fusion experiments?9

 The average ionization of the fuel is determined by 
mix

 In this simple example we have no means of 
constraining this parameter

 Assuming the mix species is fully ionized we have

 So for 0%-10% mix of Be we get a +/-7% 
uncertainty in the pressure



Putting this all together for two MagLIF experiment illustrates how 
this approach falls short10

 With the data available this technique is not able to distinguish between these 
two experiments despite a 2x difference in yield!

z3179: YDD = 5.5e12

V = 8.06e-5 cm3

� b = 1.8 ns
Ti = 2.9 keV

P = 0.7±0.17 Gbar
Error Analysis

Dominant sources of 
error are mix and 
temperature

z3303: YDD = 3.5e12

P = 0.6±0.15 Gbar

V = 1.4e-4 cm3

� b = 1.9 ns
Ti = 2.4 keV



We can do better by leveraging the fact that all of our diagnostics 
are different transformations of the emission from the same 
plasma11
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We can do better by leveraging the fact that all of our diagnostics 
are different transformations of the emission from the same 
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Bayesian data assimilation provides a statistical framework with 
which to carry out this analysis14

Proposed Stagnation Conditions

Synthetic Data

Experimental Data

Prior Distribution

Posterior Distribution

= 

Model Parameters
Outputs/Benefits:
• most likely parameter values
• confidence intervals
• correlations
• Value of information

Bayes’ Theorem Likelihood



Comparing the same two experiments using our Bayesian model 
allows us to look deeper into the data set with more confidence15

 We are able to leverage more information from both x-ray and neutron diagnostics

 Our model requires consistency between x-rays and neutrons providing additional constraints 
and adding value to each piece of data

 The amount of information 
we can get out is currently 
limited by the complexity 
of our model

◦ The plasma model 
assumes local cylindrical 
symmetry which limits the 
analysis to  “bulk” 
properties and gross 
variations

◦ Capturing the morphology 
so that we can relate 
structure to conditions is 
the ultimate goal



With this technique we begin mining data from a large database of 
MagLIF experiments16

 By determining all of the various 
model parameters simultaneously 
we can begin to examine trends 
across experiments

 We see from this dataset that there 
are multiple ways to get the same 
yield e.g. 

◦ moderate pressure, high 
temperature

◦ High pressure, moderate 
temperature

 Central temperatures below ~2.3 
keV are always associated with low 
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We are currently developing tools to bring the power of data 
assimilation to a variety of applications on Z17

 Improving measurements of x-ray output on Z by integrating
◦ X-ray power detectors (PCD’s, XRD’s, etc.)
◦ Total x-ray yield measurements (Calorimeter, bolometer)
◦ X-ray spectra from multiple independent instruments
◦ Driven by Radiation Effects Sciences (RES) needs

 Use our knowledge of the Z circuit to constrain power delivery to the load and losses
◦ Electrical measurements at multiple points in the Z circuit
◦ Load current velocimetry constrained by the circuit model and implosion model
◦ Driven by a need for better post-shot simulation capability and understanding of powerflow for 

scaling

 Use the Bayesian formalism to design new diagnostics and optimize existing ones
◦ Output statistics give VOI which can be used to assess how much impact each diagnostic has 

on each parameter
◦ Synthetic data from simulation can be used to test new diagnostics to see which will have the 

most impact on the parameters of interest



What is the path forward?18

 In order to start the discussion on this question we held the first workshop on 
Bayesian Methods in ICF and HED on Nov. 6th at SNL

 We had presentations by
◦ Michael Glinsky (SNL)
◦ Varchas Gopalaswamy (LLE)
◦ Jim Gaffney (LLNL)
◦ Ben Tobias (LANL)

 There were ~18 attendees:  Michael Glinsky, Will Lewis, Pat Knapp, Marc 
Schaeuble, Brandon Klein(r), Alex Zylstra, Prav Patel, Jim Gaffney(r), Nino 
Landen(r), Dan Thorn, Paul Springer, Duc Cao, Varchas Gopalaswamy(r), John 
Kline, Ben Tobias, Codie Fiedler Kawaguchi, Mike Grosskopf



What is the path forward?19

 Current methods are limited in sophistication due to computational complexity of the physics 
model and inefficiency of sampling algorithms

 There is a desire to develop a software tool for Hierarchical Bayesian Data Assimilation that:

◦ Has a straightforward and flexible API 
(python based to maximize code 
portability)

◦ Allows the incorporation of custom 
models taking advantage of gradients
◦ A library of common transformations/operations 

with defined gradients
◦ Development and integration of surrogate/proxy 

models 

◦ Interfaces with a data lake structure
◦ Support for “causal analysis”, e.g. is my 

model complete? 

Raw Data

Physics 
Model

Diagnostic 
Model(s)

Prepared 
Data

processing

Likelihood Posterior 
Distribution

Heirarchical Bayesian Model

◦ State of the art optimization 
and sampling algorithms



LLESNL

Currently, each of the sites are doing pieces of our “wish list”, we 
would like to unify that effort20
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Experiment Simulation

Machine Learning

Lasers.llnl.gov

Integration of experiment, 
simulation and deep learning to 
improve predictive modeling and 
quantify prediction uncertainties

Predictive design

Data Assimilation

Using hard x-ray signatures from 
different, but complimentary 
experiments to constrain hot 
electron population in cryo-DT 
experiments 



Conclusions and future outlook21

 At Sandia we are developing a Bayesian data assimilation engine that is providing 
deeper insight into MagLIF experiments

◦ Currently limited by simple assumptions in the physics model and computational complexity of 
more physics-rich models

◦ We are expanding the data assimilation engine to other applications (x-ray output for RES, 
power coupling to loads on Z, physics-based decision making)

 A workshop was organized bringing people from all four sites (LLE, LANL, LLNL, SNL) 
together to discuss what we are doing in the area of Bayesian methods

◦ There is a lot of overlap and there could be tremendous benefit to all from a more cooperative 
approach

◦ There is a shared interest in developing a common tool to enable better transfer of information 
and tools

◦ Management of and access to data is a key issue that needs to be addressed at all sites


