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3 I What is Data assimilation?

Definition: “an approach for fusing data (observations) with prior knowledge (e.g.
mathematical representations of physical laws; model output) to obtain an estimate of
the distribution of the true state of a process”

-Wikle and Berliner, Physica D, 230 (2007)

A useful definition: Using multiple pieces of diagnostic information simultaneously to
provide unbiased estimates of the parameters of a physical model from a single
experiment or across an ensemble of experiments.



A canonical example: How do we measure the fuel pressure in
4 1 fusion experiments?

2Y7
Pus = (1+(Z2)) VTb;‘)(DT)
S(T) <J¥2DD

By assuming a uniform plasma in time and space
we can estimate the pressure by inverting the yield
equation



A canonical example: How do we measure the fuel pressure in
5 I fusion experiments?

% Indium Activation measurement

Pyg =

On Z, we measure the DD neutron yield using
Indium activation



A canonical example: How do we measure the fuel pressure in
6 I fusion experiments?
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The burn duration is measured using the x-ray
power history as a surrogate

We assume the FWHM of the x-ray pulse is a good
stand in



A canonical example: How do we measure the fuel pressure in

7 I fusion experiments?
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We estimate the volume using x-ray imaging

Assume the column is locally cylindrically
symmetric and use the width containing 85% of the
area under the curve to approximate the radius of
the column
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Pys = (1+(Z))
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A canonical example: How do we measure the fuel pressure in
fusion experiments?

The ion temperature is measured using neutron
time of flight (nTOF) assuming no contribution to
residual velocity
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A canonical example: How do we measure the fuel pressure in
fusion experiments?

The average ionization of the fuel is determined by
mix

In this simple example we have no means of
constraining this parameter

ASSU”CTQ th&?}j( spejlgf f(f%lznlgmzef we have

So for 0%-10% mix of Be we get a +/-7%
uncertainty in the pressure



Putting this all together for two MagLIF experiment illustrates how
this approach falls short
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With the data available this technique is not able to distinguish between these
two experiments despite a 2x difference in yield!
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are different transformations of the emission from the same
plasma

Direct Measurements Derived Quantities

nTOF

neutron
Imaging

Pressure




v LAl UU Vullul Vy TuvuliGyllily tiv 1Tdutl tdiat dil Vi Ul Uidylivotivo

are different transformations of the emission from the same
plasma

Direct Measurements Derived Quantities
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are different transformations of the emission from the same
13 I plasma

Direct Measurements Derived Quantities
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Bayesian data assimilation provides a statistical framework with
14 I which to carry out this analysis

Experimental Data
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Comparing the same two experiments using our Bayesian model
15 I allows us to look deeper into the data set with more confidence

We are able to leverage more information from both x-ray and neutron diagnostics

Our model requires consistency between x-rays and neutrons providing additional constraints

and adding value to each piece of data
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The amount of information
we can get out is currently
limited by the complexity
of our model

o The plasma model
assumes local cylindrical
symmetry which limits the
analysis to “bulk”
properties and gross
variations

o Capturing the morphology
so that we can relate
structure to conditions is
the ultimate goal



With this technique we begin mining data from a large database of
' ¥ MagLIF experiments
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By determining all of the various
model parameters simultaneously
we can begin to examine trends
across experiments

We see from this dataset that there
are multiple ways to get the same
yield e.g.
> moderate pressure, high
temperature

> High pressure, moderate
temperature

Central temperatures below ~2.3
keV are always associated with low
performance



We are currently developing tools to bring the power of data
7 % assimilation to a variety of applications on Z

Improving measurements of x-ray output on Z by integrating
o X-ray power detectors (PCD’s, XRD's, etc.)

> Total x-ray yield measurements (Calorimeter, bolometer)
o X-ray spectra from multiple independent instruments
> Driven by Radiation Effects Sciences (RES) needs

Use our knowledge of the Z circuit to constrain power delivery to the load and losses
o Electrical measurements at multiple points in the Z circuit
o Load current velocimetry constrained by the circuit model and implosion model

> Driven by a need for better post-shot simulation capability and understanding of powerflow for
scaling

Use the Bayesian formalism to design new diagnostics and optimize existing ones

> Qutput statistics give VOI which can be used to assess how much impact each diagnostic has
on each parameter

> Synthetic data from simulation can be used to test new diagnostics to see which will have the
most impact on the parameters of interest



18 I What is the path forward?

In order to start the discussion on this question we held the first workshop on
Bayesian Methods in ICF and HED on Nov. 6" at SNL

We had presentations by
> Michael Glinsky (SNL)
> Varchas Gopalaswamy (LLE)
- Jim Gaffney (LLNL)
- Ben Tobias (LANL)

There were ~18 attendees: Michael Glinsky, Will Lewis, Pat Knapp, Marc
Schaeuble, Brandon Klein(r), Alex Zylstra, Prav Patel, Jim Gaffney(r), Nino
Landen(r), Dan Thorn, Paul Springer, Duc Cao, Varchas Gopalaswamy(r), John
Kline, Ben Tobias, Codie Fiedler Kawaguchi, Mike Grosskopf



19 I What is the path forward?

Current methods are limited in sophistication due to computational complexity of the physics

model and inefficiency of sampling algorithms

There is a desire to develop a software tool for Hierarchical Bayesian Data Assimilation that:

- Has a straightforward and flexible API
(python based to maximize code
portability)

> Allows the incorporation of custom {¢M}
models taking advantage of gradients

> A library of common transformations/operations
with defined gradients

> Development and integration of surrogate/proxy

models {¢D }-

> Interfaces with a data lake structure
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Currently, each of the sites are doing pieces of our “wish list”, we

20 % would like to unify that effort

SNL
Vision:
Bayesian data assimilation at

the heart of physics informed
decisions for e.g. diagnostic

dev., facility investments, etc.

optimal machine design

MLDL of physics
model (surrogate)

LLNL

Integration of experiment,
simulation and deep learning to
improve predictive modeling and
quantify prediction uncertainties

Experiment Simulation

Machine Learning

LANL

Bayesian data analysis to provide
reduced confidence intervals and
rigorous statistical comparison
between models and data

synthetic data

O

LLE

Predictive design

Data Assimilation

Using hard x-ray signatures from
different, but complimentary
experiments to constrain hot
electron population in cryo-DT
experiments



21 I Conclusions and future outlook

At Sandia we are developing a Bayesian data assimilation engine that is providing
deeper insight into MagLIF experiments

> Currently limited by simple assumptions in the physics model and computational complexity of
more physics-rich models

> We are expanding the data assimilation engine to other applications (x-ray output for RES,
power coupling to loads on Z, physics-based decision making)

A workshop was organized bringing people from all four sites (LLE, LANL, LLNL, SNL)
together to discuss what we are doing in the area of Bayesian methods

> There is a lot of overlap and there could be tremendous benefit to all from a more cooperative
approach

> There is a shared interest in developing a common tool to enable better transfer of information
and tools

- Management of and access to data is a key issue that needs to be addressed at all sites



