

Exceptional service in the national interest

Dual-Purpose Canister Direct Disposal – Introduction

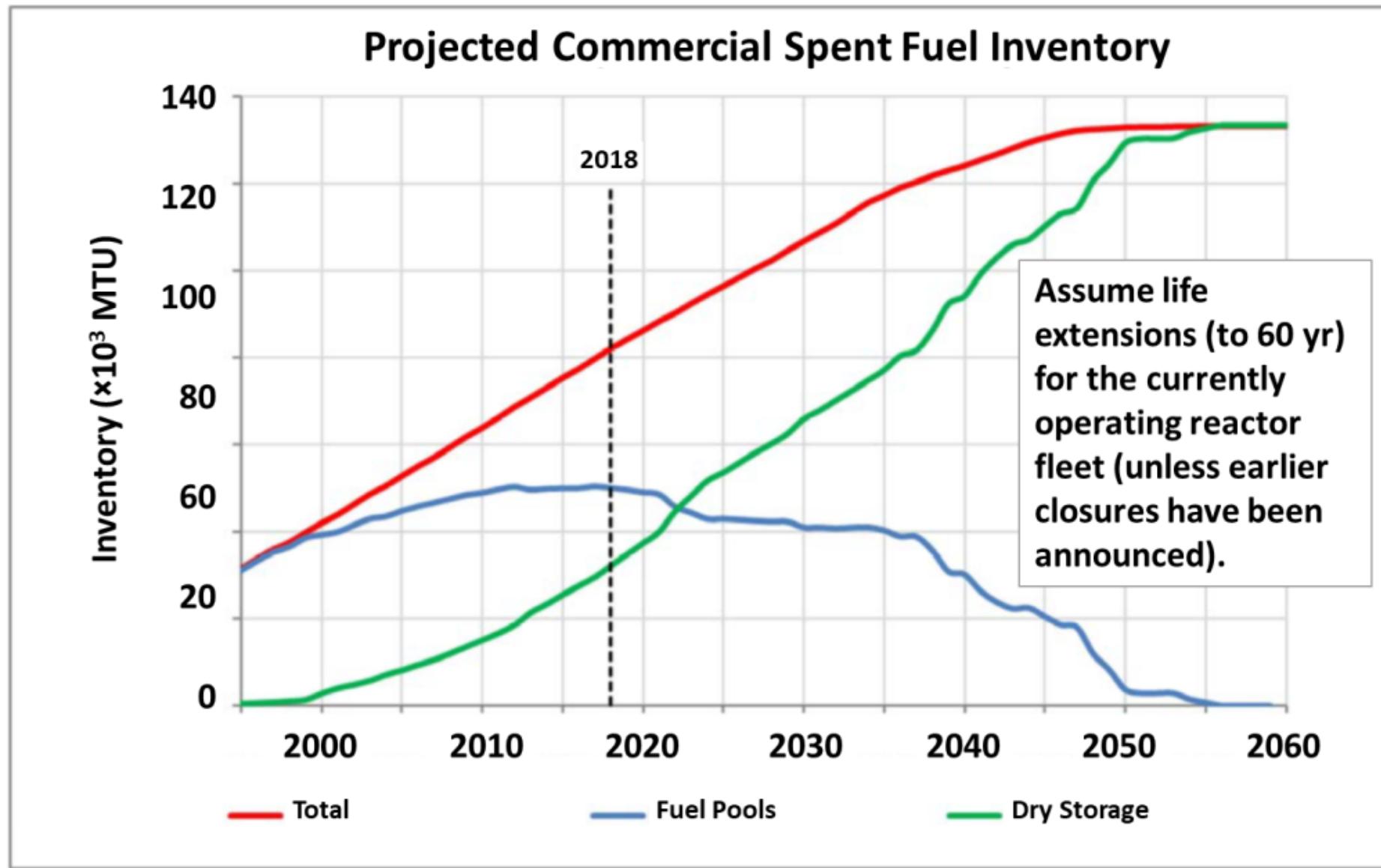
Ernest L. Hardin, Ph.D. (ehardin@sandia.gov)
 Applied Systems Analysis & Research/08843, Sandia National Laboratories

Independent Technical Review of Dual-Purpose Canister Direct Disposal R&D, July 15, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2021-*****. (Not Yet) Approved for Unclassified, Unlimited Release.

Disclaimer

This is a technical presentation that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, absent a mutually agreed to contract amendment.


To the extent discussions or recommendations in this presentation conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE. No inferences should be drawn from this presentation regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.

Additional Notice

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Projected Accumulation of SNF in Pools and Dry Storage (MTU)

Cost Avoidance Estimates for DPC Direct Disposal vs. Repackaging (ROM)

Cost Avoidance by Cost Element: All costs in \$B	Case 1 Dispose all DPCs with No Treatment or Modification	Case 2 Fillers for Existing DPCs + Zone Loading for Future DPCs	Case 3 Fillers for Existing DPCs + <u>BSS Plates</u> for Future DPCs	Case 4 Fillers for Existing DPCs + DCRAs/ Modified Blades for Future DPCs
No 21P/44B Canisters	-\$12.2	-\$12.2	-\$12.2	-\$12.2
Fewer Disposal Overpacks	-\$4.64	-\$4.64	-\$4.64	-\$4.64
No Repackaging Operations	-\$3.26	-\$3.26	-\$3.26	-\$3.26
No Disposal as LLW	-\$1.37	-\$1.37	-\$1.37	-\$1.37
Treat Existing DPCs	\$0.00	\$0.54	\$0.54	\$0.54
Modify Future DPCs	\$0.00	Note 1	\$1.31	\$1.91
Net Cost Avoidance	-\$21.4	-\$20.9	-\$19.6	-\$19.0

Notes: 1. The cost of zone loading (Case 2) is assumed to be minimal.
 2. Total inventory 109,300 MTU (YM TSLCC case); 2/3 of estimated 8,160 total DPCs are “future.”
3. Worker safety and dose effects not included.
 4. Source: A. Alsaed 2019. SAND2019-4070.

DPC Direct Disposal Approaches

- **Disposal Without Modification**
 - Reactivity margin (as loaded, existing DPCs, degraded)
 - Criticality consequence analysis (as loaded)
- **Injectable Fillers**
 - Cementitious or molten fillers that solidify
 - Solid particle fillers may also be considered
- **Fuel/Basket Modifications**
 - Zone loading
 - Corrosion-resistant neutron absorber materials
 - Other hardware (e.g., PWR disposal control rods)
- **Related Topics**
 - Modeling of Fuel/Basket Degradation

Agenda (4.5 hours)

1. Introduction (10 minutes, Hardin)
2. Reactivity Analysis (As Loaded) (30 minutes, Banerjee) *
3. Cementitious Fillers (25 minutes, Rigali) *
4. Molten Fillers Investigations (25 minutes, Banerjee) *
5. Criticality Consequence Analysis (30 minutes, Price) *
6. Fuel/Basket Modifications and Degradation Modeling (25 minutes, Hardin) *
7. Testing of Corrosion Resistant Absorber Materials (25 minutes, Lister) *
8. Reactivity Modeling for Modification Approaches (30 minutes, Banerjee) *

* 10 minutes scheduled after each presentation for Q&A

Title