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Quantum Bits Live in a Sphere ©
State space
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How to describe a Generic distribution of
qubits?
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' : [ P(A; = +1)
Generic quantum state: C P[(A A= (41)] 1 \ MA: B
pE c2"x2" P[(Ay, ..., Ay) = (#1771, =1)] :
is Hermitian P{(Ar, -, An) = (F177%, 41, =1)] [ vs: Py = +1)
P : P(4; = +1,4; = +1)
Tr(p) =1 P[(Ay, . A,) = (-1")] | :
p =0 — P(4; = +1,..., 4, = +1)]

=[o x=[ o= Glz=lp 5

Fact- {y; ® v2 ...® vn:v: € {I,X,Y,Z}} is an operator basis for Pauli matrices

n-..
Notation- Let g; for o € {X, Y. Z} be Pauli ¢ on qubiti,i.e. Z, = IQRZQI ...
7,73 = ZQIRQZRI...

Tr(pXy) \ Local Statistics determined by low-order moments

I'r(pY:)
Tr(pZy) Ex
Tr(pX2) [+Tr(p X)X+ Tr(p Y)Y + Tr(p Z)Z l

P1 = >

Tr(pZy - Zy)
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» Redundant Description of Quantum State
» Must be PSD since vIM v =Tr(STSp) =0
» Equivalent to Density matrix description




>’ “Quantumizing” Max Cut

» Assign {1} to vertices of a graph,
maximizing edges “cut”
-1

1 f(i )
MaXg.py{+1) z Wi f;l)f(})

=1/2( :——)C/
-

xl-,xj=+1,+1 0 0
xox=+1,-1[0 4 0 0
xi,xj:—1,+1 0 0 1 0
xi,xj=—1,—1 0 0 0 0
max T'r(p @)

p diagonal

~—h singlet
/ ij
ho=1/4(—_ - = )
“How close” to the singlet on
each edge?
[0 0 0 0
o 1/2 -1/2 0
0 —-1/2 1/2 0 /
0 0 0 0

maxTr(p Xijerhij)

AmaxQijeehij)= J
p generic




. | Motivation

Problem

Find max-energy state ofE(I - XiX; —YY, — Zl-Zj)

(= Find min-energy state of Z(Xin + VY + Z,;Zj),
but different from approximation point of view)

Motivation

The Heisenberg model is fundamental for describing quantum magnetism,
superconductivity, and charge density waves. Beyond 1 dimension, the properties
of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

Anti-ferromagnetic Heisenberg model: roughly
neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian
for so-called Mott insulators.

[Image: Sachdev, arxiv:1203.4565]




.1 Moment Matrix Picture

In the Moment matrix picture, define C:
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Quantum Max Cut
maxC - M
s.t.M is a valid moment matri

){

Different representations of the same problem!!

» QMA-hard, so we seek approximations

VS.

p generic

max Y;ieg TT(p hij)
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" Approximation Algorithms and Ansatze

()

Alg(G {w--}) Runs in poly time in n,
Y provable guarantee independent of instance
’lmax (H)

» Unlike classical Max-cut not clear what kind of description is best
» Ansatz- “kind” of quantum state the algorithm outputs.

Product State Ansatz Singlets+Product States

Classical Description
Of Quantum state
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Reference Approximation Factor
Achieved

Bansal, Bravyi, Terhal, 07’
Gharibian, Kempe, 12’
Brandao, Harrow, ‘16
Harrow, Montanaro, ‘17

Bravyi, Gosset, Koenig,
Temme, ‘18

Gharibian, Parekh, ‘19

Parekh, Thompson, ‘20
Anshu, Gosset, Morenz, ‘20

This work

Previous Work

PTAS (for planar instances)
PTAS (for dense instances)
PTAS (for dense instances)

Graph Dependent constant

Q(1/log(n)) |

0.498

0.467
0.531

>

Constant factor algorithms for
QMC (without additional
assumptions) is an active area
of research

» All except AGM20 produce

>

product states
Performance is limited
because generic states (i.e.
maximal e-vectors of QMA-
complete) are highly “non-
product”




Relaxing the Moment Matrix

Lasserreq 2

Lj... Zn__l Zn 1 2 3 'y 1___

X, X, 1

Z 17 1
X, X, Xz 1

Z1Z .. 2 1.

Can optimize over a (polynomial large) submatrix
» Still guaranteed PSD
» Satisfies all equality constraints the matrix intersects with

» Relaxation because submatrix likely not embeddable
[Lasserre ‘01]

[Pironio, Navascués, Acin, ‘10]




Relaxation Quality
» Higher levels are tighter relaxations on quantum states (<Moment matrices)

» Key observation in our analysis is that Lasserre, captures monogamy of
entanglement inequalities
» Entanglement- “Quantum” correlation between subsystems.

» Monogamy of entanglement- can’t enforce inconsistent quantum marginals |
3
=
K ]
{11, 00} {11, 00} ‘
{01, 10}
[Lieb, Mattis, ’62] h
Star Bound  [anshy, Gosset, Morenz, “20]

m % » Lasserre; getsg- I
Z Tr(p hop) % > Lasserress gets ~ 2q/3 |
-~ » Lasserre, gets (q+1)/2

Lasserre,(Dlihgi) 4
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Rounding Algorithm

Employing Singlets+Product state Ansatz

-M(X:X;,1) — M(Y;Y;, 1) — M(Z;Z;,1)
Uij — 3
—2 << 1, if v ~ 1then Lasserre, “thinks” that
edge should be a singlet.

Choose edges to be singlets with “guidance” from Lasserre,.

Fix d to be some integer > 1, and let a(d) = ;;,31)

Algorithm
. Solve Lasserre, to get M.
Initialize L = { }
For all ij calculate v;;. If v;; > cz(di add ij to L.
Find Maximum matching on L}
Consider two states

1. Singlets on MM, product state on rest
2. PS rounding from [GP 19’]

6. Take whichever has better objective.

O h WKN =




[Goemans, Williamson, ‘94]

"7 Analysis

» Standard approach: try to bound objective loss from rounding
» What if most edges have large value and L has high degree?

» Star bound implies L has low degree

d=1 - d=2 = d=3

» Most edges have large value = MM has good performance
» Most edges have small value = Don’t need entanglement to get good obj.

» Tradeoff in d:
» dis too small = product state rounding bad
» dis too large = matching is bad

» Additional proof techniques
» Symmeterization over transformations
» “Sum of Squares” proofs

d=2 for our results




14 . .
Implications

» Demonstrated that Lasserre, satisfies physically motivated constraints,
possibly opening the door to additional approximation algorithms.
» “low-order” quasi-description of a state can look “entangled”

» Demonstrate explicit gap in “representational power” of different

levels of Lasserre

» Classical approximation algorithms follow a standard “meta” algorithm,
1. Solve SDP
2. Use solution to round to feasible point
» Only other known algorithm which produces entangled ansatz [Anshu,
Gosset, Morenz ‘20] does not follow this format
» By bringing in the meta algorithm we have opened the door to using
the rich background of classical techniques for combinatorial opt.




s1 Open Questions

Y

‘;?

No known hardness results for approximation (say under unique games)

Likely only scratching the surface of the power of Lasserre,
» What other kinds of graphs is Lasserre, exact on?
» Are moments subject to other monogamy inequalities?
» Can these be used to further improve approx. factor?

More generally, what kind of physical constraints are present in Lasserre;, for
k=0(1)?

Singlets + product state still locally entangled. Can we get more entangled
ansatz? i.e. tensor network states?

Genuinely quantum Approximation algorithms? i.e. alg requires quantum
computer and produces quantum state




