
Performance-Portable Sparse Tensor Decomposition
Kernels on Emerging Parallel Architectures

S. Isaac Geronimo Anderson
University of Oregon

igeroni3@uoregon.edu

Keita Teranishi
Sandia National Laboratories

knteran@sandia.gov

Daniel M. Dunlavy
Sandia National Laboratories

dmdunla@sandia.gov

Jee Choi
University of Oregon
jeec@uoregon.edu

Abstract—We leverage the Kokkos library to study perfor-
mance portability of parallel sparse tensor decompositions on
CPU and GPU architectures. Our result shows that with a single
implementation Kokkos can deliver performance comparable to
hand-tuned code for simple array operations that make up tensor
decomposition kernels on a wide range of CPU and GPU systems,
and superior performance for the MTTKRP kernel on CPUs.

I. INTRODUCTION

Many real-world data analysis applications—e.g., in health-
care, cybersecurity, social networks, and more—give rise to
multi-way data that can be naturally represented by sparse ten-
sors. Tensors are the higher-order generalization of matrices,
and tensor decompositions (or factorizations) provide a useful
tool for analyzing latent relationships in multi-way data [1].

One of the key performance bottlenecks in tensor decom-
position is the matricized tensor times Khatri-Rao product
(MTTKRP) found in the CANDECOMP/PARAFAC Alter-
nating Least Squares (CP-ALS) algorithm for the canonical
polyadic decomposition (CPD) model, which approximates a
tensor as a sum of K rank-one tensors [1].

Here we explore the performance of parallel tensor decom-
position by implementing a set of proxy benchmark kernels
using the Kokkos C++ performance-portable library [2]. With
the emergence of drastically different parallel architectures,
performance portability is critical in achieving optimal pro-
ductivity on heterogeneous computing systems.

We start with simple operations from the STREAM bench-
mark [3] and then extend the evaluation to the full MTTKRP
kernel. We choose STREAM for two reasons: (i) MTTKRP
on sparse tensors is bandwidth-bound, as are the STREAM
operations, and (ii) STREAM operations can be used as
building blocks for MTTKRP, as described in §II.

Contributions: We make three key contributions towards
performance portable sparse MTTKRP:

1) Augmentation of existing STREAM and MTTKRP im-
plementations using Kokkos for portability.

2) Evaluation of Kokkos and manually-tuned benchmarks on
several CPU and GPU architectures.

3) Analysis of the performance portability of tensor decom-
position algorithms on multiple architectures.

II. METHODS

We first describe the methods we use in evaluating parallel
performance. Although generally applicable, we limit discus-
sion to tensors with three dimensions for simplicity.

A. CP-ALS and MTTKRP

Given a 3-way tensor X of size I1 × I2 × I3, the CP-ALS
algorithm computes a rank-K model tensor M, consisting of
factor matrices A ∈ RI1×K , B ∈ RI2×K , and C ∈ RI3×K ,
that approximates X . Using typical tensor notation, X ≈M =
JA,B,CK. In CP-ALS, MTTKRP is often the performance
bottleneck, consuming over 90% of the total compute time [1].

MTTKRP consists of a few simple operations. For a sparse
tensor stored in COO format and factors stored as dense
matrices, given a non-zero element in X with indices (i, j, k)
and value v, the following operations are required (with
temporary variable T ):

T (:)← B(j, :) ∗ C(k, :) element-wise product (1)
T (:)← v ∗ T (:) scale (2)

A(i, :)← A(i, :) + T (:) element-wise add (3)

where A(i, :), B(j, :) and C(k, :) correspond to the rows of the
factor matrices. This is repeated for every non-zero element.

B. Challenges

We can see from the above equations that MTTKRP exhibits
low arithmetic intensity (i.e., it is memory bandwidth-bound).
Additionally, the last step (Equation 3) introduces a race
condition when multi-threaded, making the kernel sensitive to
how work is distributed among threads on a parallel system.
For example, if two threads work on non-zero elements with
the same i index, the updates to A(i, :) need to be serialized.

However, we can also see that these operations are similar to
those found in the STREAM benchmark. Therefore, we use the
STREAM benchmark as a proxy for the MTTKRP kernel, and
the MTTKRP kernel—taken from the Parallel Sparse Tensor
Algorithm Benchmark Suite (PASTA) library [4]—as a proxy
for the full CP-ALS algorithm.

C. Implementation

Implementing Kokkos parallel constructs within an existing
code base is a straightforward process of refactoring only
targeted code regions to utilize the parallel code execution
and data management in the Kokkos programming model.

We first identify parallel regions in the code, such as those
within existing OpenMP #pragma statements, and replace
them with Kokkos parallel_for dispatch while incorpo-
rating the loop body into a C++ lambda expression. (Note that
OpenMP 4.5+ supports offloading to GPU devices [5], but

SAND2021-10690CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



we use Kokkos for performance portability due to its ability
to efficiently handle data layout for both dense and sparse
operations.) The next step is to refactor nested parallel regions
and to store data in abstractions called Views, after which
the code is completely portable to any back-end supported
by the Kokkos library. Nested parallel regions map to SIMD
instructions when compiling with Kokkos for CPU and to
thread blocks for GPU targets.

III. EXPERIMENTAL RESULTS

We demonstrate the performance portability of our Kokkos-
enhanced STREAM and MTTKRP benchmarks by comparing
their performance against (i) hand-tuned benchmarks written
in their native languages (e.g., CUDA), and (ii) peak system
memory bandwidth on a range of different systems, using both
synthetic and real-world data.

A. Test Systems and Data

We evaluate our kernels on the nine systems shown in the
left table below. For the kernels in the STREAM benchmark,
we use up to 500M elements per array. For the MTTKRP
kernel, we use the real-world tensors from the FROSTT [6]
website shown in the right table below.

Type Name # cores
CPU IBM POWER9 20
CPU Intel Xeon Gold 6140 2 × 18
CPU AMD EPYC 7401 2 × 24
CPU AMD EPYC 7452 2 × 32
CPU Fujitsu A64FX 48
GPU AMD Vega MI25 4096
GPU AMD Vega MI50 3840
GPU Nvidia V100 5120
GPU Nvidia A100 6912

Test Systems

Tensor Dimensions NNZ
Chicago- 6.2K × 24 × 5.3M
crime 77 × 32
NELL-2 12.1K × 9.2K × 76.9M

28.8K
NIPS 2.5K × 2.9K × 3.1M

14.0K × 17
Uber 183 × 24 × 3.3M

1.1K × 1.7K
Test Data

B. Analysis

Figure 1 shows the achieved bandwidth (bars) from various
STREAM operations and the speedup (line) over hand-tuned
benchmarks (i.e., STREAM for CPUs and GPU-STREAM for
GPUs). We achieve performance comparable to hand-tuned
code (0.64×–1.66× speedup) for all STREAM operations,
demonstrating that for simple kernels, Kokkos offers a good
portability on different architectures.

Figure 2 shows the same for the MTTKRP benchmark. For
MTTKRP, we achieve superior performance on CPUs. For
GPUs, our Kokkos enhanced kernel achieves lower (0.76×–
0.91× speedup) but comparable performance on Nvidia GPUs.
Speedup numbers on AMD GPUs are missing due to PASTA
supporting only Nvidia GPUs, which further illustrates the
advantage of using Kokkos–there is no need to implement yet
another kernel for a different system. The lower performance
for AMD GPUs likely comes from lack of hardware atomic
operations for double-precision data.

IV. DISCUSSION AND FUTURE WORK

Our efforts in this study demonstrate the feasibility of
writing performance portable tensor decomposition algorithms
using the Kokkos Core library that can achieve hand-tuned per-
formance on a range of systems using a single implementation.
We achieve comparable performance on CPUs and GPUs for

Fig. 1: Performance results on the STREAM benchmarks.

Fig. 2: Performance results on the MTTKRP benchmark.

simple array operations and superior performance on CPUs for
the MTTKRP kernel. However, additional tuning is required
on GPUs for the more complicated MTTKRP kernel due to
the large number of threads required to saturate performance
and the use of expensive atomic operations.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525.

REFERENCES

[1] E. T. Phipps and T. G. Kolda, “Software for sparse tensor decomposi-
tion on emerging computing architectures,” SIAM Journal on Scientific
Computing, vol. 41, no. 3, pp. C269–C290, 2019.

[2] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portabil-
ity across manycore architectures,” in Proc. Extreme Scaling Workshop,
2013, pp. 18–24.

[3] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “GPU-
STREAM v2.0: Benchmarking the achievable memory bandwidth of
many-core processors across diverse parallel programming models,” in
Proc. ISC High Performance, 2016, pp. 489–507.

[4] J. Li, Y. Ma, X. Wu, A. Li, and K. Barker, “Pasta: A parallel sparse tensor
algorithm benchmark suite,” arXiv:1902.03317, 2019.

[5] J. M. Diaz, S. Pophale, K. Friedline, O. Hernandez, D. E. Bernholdt, and
S. Chandrasekaran, “Evaluating support for openmp offload features,” in
International Conference on Parallel Processing Companion, 2018.

[6] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
(2017) FROSTT: The formidable repository of open sparse tensors and
tools. [Online]. Available: http://frostt.io/


