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s | Hyperspectral Image (HSI) Target Detection

Hyperspectral Imagery Target Detection

Strong material discriminant : |dentification of one (or
captured in spectral bands . more) target material(s)

Class Imbalance - few

High dimensionality target pixels per image

High co-linearity between ¥ Low target abundance
spectral bands levels
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CNN-based detectors have been found to be robust predictors for HSI target detection
However, standard DL models produce point estimates at test time with no associated measure of uncertainty

Uncertainty quantification (UQ) is vital in national security problems - especially on sub-filled pixels in which target
abundance level is very little but we still need to be confident in its detection

Note that ‘probabilistic interpretation’ of output models is not a good measure of confidence due to adversarial
samples, wrong prediction with high p(detection), inability to detect trace materials, etc.

We build upon the success of CNNs for HSI target detection by incorporating them into a UQ framework

Image modified from https://www.researchgate.net/figure/Hyperspectral-image-cube-and-a-typical-SRC-of-a-pixel-1_fig1_261500739 I
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Use an ensemble of identical CNNs to generate a distribution of predictions - then, use this distribution to

characterize the (un)certainty associated with the model’s prediction

Train each detector using the same training data but with different random initializations - this creates diverse

models

« Also incorporate adversarial training to improve detection performance
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s 1| Uncertainty Quantification Using Deep Ensembles

Metrics of Interest
« The probability of detection: p(detection) = %Zf’:lpi(detection)

L]

Detection performance: area under the ROC curve (AUC)

Confidence interval (Cl): p(detection) + z, 5_%

s; - standard deviation of prediction over ensemble

Zg - (1 — g) guantile of Gaussian distribution

High confidence (HC) set

Setting a = 0.2, each sample for which (i) at least an 80% chance of containing the target, or (ii) at most a 20%
chance of containing the target, is added to the HC set

Probability of detection (PD) at a constant false alarm rate (CFAR)



Experiments - Dataset

Employed Dataset: Megascene
* HSI scenes from upstate New York
« Targets: Green paint (manually inserted)

with abundance varying between 0 -
100%

Three considered atmospheric scenes
1. Mid-latitude summer (MLS)
2. Sub-arctic summer (SAS)

3. Tropical (TROP)

Three considered times of day
1. 1200
2. 1430
3. 1545

Training scene: MLS 1200



¢ | Experiments - Implementation

Consideration of 2 architectures
« Each architecture operates on the 25 functional principal components of the data as input

1. Convolutional Neural Network Detector
Hidden layer 1 (convolutional ReLU): 64 x 4 x 1
Hidden layer 2 (convolutional ReLU): 32 x 3 x 1
Hidden layer 3 (Dense ReLU): 128

2. Fully Connected Neural Network Detector
Hidden layer 1 (dense sigmoid): 10

Hidden layer 2 (dense sigmoid): 10
Hidden layer 3 (dense sigmoid): 10

Comparison UQ model: Bayesian Neural Network (BNN) trained using MCMC
Same architecture as fully connected NN described above with N (0, 10) priors on all weights
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0 | EXperiments - Results

Scene BNN | DNN DE | CNN DE
MLS 1200 | 0.81 0.99 0.91
MLS 1430 | 0.79 0.99 0.90
MLS 1500 | 0.74 0.98 0.90
SAS 1200 0.66 0.99 0.90
SAS 1430 0.67 0.99 0.90
SAS 1545 0.88 0.99 0.89
TROP 1200 | 0.51 0.97 0.91
TROP 1430 | 0.50 0.96 0.91
TROP 1545 | 0.53 0.96 0.90

Proportion of samples captured in the HC set for each considered model |
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Probability of Detection
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> 1 Conclusion

« Deep learning-based HSI target detectors demonstrate robust performance, but
standard models lack measurements of uncertainty

* Qur deep ensemble framework successfully incorporates the robustness of DL
detectors while also providing UQ characteristics

« We showed that our framework serves as a robust detector and provides high
probabilities of detection on low CFARs - often desirable for national security
problems

Uncertainty quantification is critical in security sensitive deep learning applications



