
Hyperspectral Image Target Detection Using Deep
Ensembles for Robust Uncertainty Quantification

Rajeev Sahay1,2, Daniel Ries1, Joshua D. Zollweg1, Christopher G. Brinton2
1Sandia National Laboratories, New Mexico, USA

2School of Electrical and Computer Engineering, Purdue University, USA
{rsahay,dries,jdzollw}@sandia.gov, cgb@purdue.edu

Abstract—Deep learning (DL) has been widely proposed
for target detection in hyperspectral image (HSI) data. Yet,
standard DL models produce point estimates at inference time,
with no associated measure of uncertainty, which is vital in
high-consequence HSI applications. In this work, we develop
an uncertainty quantification (UQ) framework using deep
ensemble (DE) learning, which builds upon the successes of
DL-based HSI target detection, while simultaneously providing
UQ metrics. Specifically, we train an ensemble of convolutional
deep learning detection models using one spectral prototype at a
particular time of day and atmospheric condition. We find that
our proposed framework is capable of accurate target detection
in additional atmospheric conditions and times of day despite
not being exposed to them during training. Furthermore, in
comparison to Bayesian Neural Networks, another DL based
UQ approach, we find that DEs provide increased target
detection performance while achieving comparable probabilities
of detection at constant false alarm rates.

Index Terms—deep learning, hyperspectral image processing,
target detection, uncertainty quantification

I. INTRODUCTION

Target detection in hyperspectral images (HSI) consists of
identifying the presence of one (or more) particular material(s)
in an HSI’s spectral bands. This type of detection is generally
performed on a pixel-by-pixel basis, where all the spectral
bands of a particular pixel are jointly analyzed for target de-
tection. Prior work has employed likelihood based approaches
[1], [2] for HSI target detection such as spectral matched
filters, adaptive subspace detectors, and orthogonal subspace
projection [3]. However, in addition to being computationally
intensive at inference time, such methods typically assume
the background to have a multivariate Gaussian distribution,
which is often an inadequate representation of the underlying
distribution, leading to lower target detection performance [2].
Additionally, if background scenes change, the covariance
matrix obtained during training may not extrapolate well to
new unseen backgrounds, reducing the generalizeability of
such methods.

Recently, deep learning has been shown to achieve cut-
ting edge target detection performance in HSI data without
requiring an assumption on the background distribution of the
image [4], [5]. Furthermore, deep learning detectors generalize
better than likelihood based approaches in that deep learning
detectors can perform accurate target detection in multiple
atmospheric environments without being exposed to them dur-

ing training. Yet, despite its impressive performance, standard
deep learning models produce point estimates at inference
time, with no measurement of uncertainty associated with the
model’s prediction. Uncertainty quantification (UQ) is, how-
ever, pivotal in high-consequence HSI processing applications,
where the confidence of autonomous models, in detecting
trace materials, needs to be trustworthy. As a result, deploying
autonomous systems in high-consequence applications brings
into question the trustworthiness of the model’s output. Such
trustworthiness is especially important in target detection when
the abundance of a targeted material is very low, and the
confidence associated with its detection needs to be very high.

In this work, we develop a robust HSI target detection
framework, which incorporates UQ using deep ensembles
(DE). We compare the efficacy of our framework to Markov
Chain Monte Carlo (MCMC)-trained Bayesian Neural Net-
works (BNNs), which have also been used to incorporate UQ
into HSI-based deep learning. Through our analysis, we find
that both DEs and BNNs provide desirable characteristics in
different inference scenarios.

Our problem setup is as follows: given an HSI scene, we
would like to estimate the probability of each pixel containing
a specific target material along with the associated uncertainty
of that probability. We take a data-driven approach to this
problem with the caveat that, similar to a real-world envi-
ronment, we are required to learn from a limited number (as
few as one) of spectral prototypes of a target material, which
may vary between 0 - 100% in abundance per pixel. This
constraint prevents our ensemble detectors from learning on
different atmospheric environments and times of day; however,
at test time, we evaluate the efficacy of our model on multiple
atmospheres and times of day. The training and evaluation of
our framework is further discussed in Sec. III.

II. METHODOLOGY

Our proposed UQ framework for HSI target detection
data builds upon prior successes in deep learning [6], [7].
Specifically, we train an ensemble of B neural network models
with identical architectures, f : Rk → R2, using the N pixels
from the available HSI prototype as inputs and binary labels
(encoded in a one-hot representation) as targeted outputs,
where target labels of 0 and 1 correspond to zero abundance
and non-zero abundance of the target material, respectively, in
the corresponding pixel.
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HSI training data for target detection often has a large
class imbalance, where there are overwhelmingly more non-
target samples than target samples. As a result, detection
algorithms often bias towards predicting pixels with trace
amounts of target material as non-target samples at inference
time. Recent studies have proposed computationally costly
training algorithms for stronger detection performance on low-
abundance pixels (e.g., [8], [9]) at inference time. Although
such methods have been shown to be highly effective, we find
that a relatively simple pixel extraction technique is sufficient
to train a robust detector. Specifically, in an effort to restore
class balance and improve target detection on low-abundance
samples, while retaining enough samples for effective training,
we extract all pixels from our training scene containing a
non-zero target abundance and we randomly select twice the
number of non-target samples to comprise the training set.
As a result, 1/3 of the training samples contain the target
material and the remaining 2/3 of the samples do not contain
any amount of target material. This training method, as shown
in Sec. IV, is effective for training both considered target
detection model.

During training, we calculate the top k functional principal
components (fPCs) of the training data and project all testing
data onto it for our evaluations. We find that, not only
does using fPCs provide faster training times, but it also
results in stronger overall performance compared to using the
values from all the spectral bands of each pixel as input.
Furthermore, we incorporate adversarial training into each
detector to improve UQ performance by generating random
perturbations from a Gaussian distribution on each fPC and
augmenting these samples with the original unperturbed train-
ing data. Specifically, for each pixel’s fPC representation, xi,
we generate q corresponding noise vectors, ni ∈ Rk, where
ni ∼ N (0, σ2) (i.e., the distribution from which the Gaussian
noise was generated had a variance of σ2) such that the
training set is augmented with xi+ni for i = 1, 2, 3, . . . , q. In
this fashion, the final training set is comprised of Nq samples.

At inference time, we use the distribution of predicted
detection rates over the entire ensemble to determine the
probability of detection as well as the prediction’s associated
uncertainty. We begin by calculating each input pixel’s average
probability of containing the target material by propagating the
input through each detector in the deep ensemble. The mean
probability of the input pixel containing the target material
over the ensemble is given by

ŷi =
1

B

B∑
b=1

ŷbi , (1)

where ŷbi is the estimated probability of target, assigned by
the bth model, of the ith pixel. From this, we calculate the
confidence interval (CI) using the Normal approximation as
justified by the Central Limit Theorem. The upper and lower
bounds are given by

ŷi ± zα
si√
B
, (2)
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B−1 is the standard deviation of
the estimated probability that the ith pixel contains a target
material, and zα is the 1 − α/2 quantile of a Gaussian
distribution. Eqn. (2) then gives the (1 − α)% CI. Here, for
the purpose of UQ, we define a high confidence (HC) set,
which contains pixels for which the model is 80% confident
(α = 0.2) that the pixel has either (i) at least an 80% chance of
containing target, or (ii) at most a 20% chance of containing
target. Note that the size of the HC set produced as a result
of a particular model reflects that model’s confidence in its
predictions rather than its accuracy. For example, a model that
results in a small proportion of samples in the HC set does
not indicate the model is inaccurate and, similarly, a large
HC set does not necessarily mean the model is correct in its
predictions. We further analyze the proportion of HC sets in
Sec. IV. In addition to the CI calculation, we also determine the
area under the receiver operating characteristic (ROC) curve
(AUC score), which quantifies the baseline performance of the
DE, and the probability of detection (PD) at a constant false
alarm rate (CFAR), which provides a specific UQ metric in
addition to the CI.

III. IMPLEMENTATION

Dataset: Our analysis is conducted on a synthetic dataset
based on DIRSIG Megascene, from which we simulated
nine different HSI scenes using combinations of three dif-
ferent MODTRAN-based atmospheres (Mid-Latitude Summer
(MLS), Sub-Arctic Summer (SAS), and Tropical (TROP)) and
three different times of day (1200, 1430, and 1545). Further
details regarding the dataset generation and processing can
be found in [10]. To serve as targets, we manually inserted
green discs randomly through each scene such that some
targets filled multiple pixels while others filled a small fraction
of a pixel. In this fashion, the abundance level the target
material (green paint) varied between 0 – 100% per pixel.
Note that we are interested in detecting and quantifying the
associated uncertainty of the presence of target in a pixel,
regardless of abundance level. However, we present our results
by abundance level to evaluate the performance of our method
at varying target abundance levels. For example, the probabil-
ity of detection (at a particular CFAR) is more interesting
to consider on low target abundance levels, where higher
confidence associated with the DE’s prediction is desired. Fig.
1 shows a pseudo color rendering for the MLS atmosphere at
1200, which was the scene we used for training.

Training Details: For training, the top k = 25 fPCs of a
subset of pixels from the left half of MLS 1200 were used
for training the DE, and the fPCs of all pixels from the right
half of all nine scenes were used as test sets. Note that the
top k = 25 fPCs accounted for 99.999% of the variability of
spectral reflectance in the training dataset. We implemented
adversarial training using q = 30 and σ = 0.001. Note that
our adversarial training method relies on random Gaussian
perturbations as opposed to gradient-based adversarial training
(as in [6]), which relies on the gradient of the trained model to
generate adversarial samples for re-training. Furthermore, by



Fig. 1: Pseudo color render of Megascene MLS 1200.

TABLE I: Proportion of pixels captured in HC set on each scene for
each model.

Scene BNN DNN DE CNN DE
MLS 1200 0.81 0.99 0.91
MLS 1430 0.79 0.99 0.90
MLS 1500 0.74 0.98 0.90
SAS 1200 0.66 0.99 0.90
SAS 1430 0.67 0.99 0.90
SAS 1545 0.88 0.99 0.89

TROP 1200 0.51 0.97 0.91
TROP 1430 0.50 0.96 0.91
TROP 1545 0.53 0.96 0.90

only training on one scene at a particular time and atmosphere,
we are able to understand the model’s ability to detect targets
in scenes it has never seen before. This is particularly impor-
tant for our application, since we cannot realistically expect
to have training data in all atmospheres and times of day in
practice.

Model Architectures: We considered two different deep
learning architectures to constitute the DE: (i) a fully con-
nected dense neural network (DNN DE) consisting of three
layers with 10 sigmoid units each (note that this architecture
was also used for the BNN) and (ii) a convolutional neural
network (CNN DE) with two convolutional ReLU layers,
consisting of 64 feature maps and a 4×1 kernel and 32 feature
maps and a 3× 1 kernel, respectively, followed by a 128-unit
dense ReLU layer. Each DE used B = 10 models. The BNN
had N (0, 10) priors on all weights and used MCMC to train.
Standard metrics (e.g., training and validation loss) indicated
model convergence of predictions during training.

IV. RESULTS AND EVALUATION

We begin by evaluating the detection performance of our
considered models. Fig 2 shows the ROC curves and AUC
scores for target detection using both DEs and BNNs on the

SAS 1430 scene at different target abundance levels. Note that
this scene contains a different atmosphere and is captured at
a different time of day compared to the training scene, but
the target material (green paint) is the same. Here, we see
that DEs outperform BNNs for target detection overall, and
especially for low target abundance levels. In particular, when
the target abundance is less than or equal to 1%, the DNN
DE and CNN DE obtain improvements in AUC of 0.09 and
0.11, respectively, over the BNN. At higher abundance levels,
the performance of each model is roughly equivalent, which
is expected since higher abundance targets are more easily
detected.

We now evaluate the UQ performance of each considered
model. In Table I, we show the proportion of samples captured
in the HC set of each model. We see that the BNN attains a
relatively smaller HC set on scenes with different atmospheres
and times of day compared to the training scene. In contrast,
we see that the DNN DE captures almost every sample in
nearly every scene in its HC set. Although a high portion
of samples are captured in the HC set of the DNN DE, we
believe that this may indicate that it is overconfident in its
predictions. We find a model that produces a narrow interval
about its predicted distribution is often not much different
from a standard deep learning detector that produces point
estimates at its output. In this regard, a model producing a
large HC set, such as the DNN DE, fails to provide strong
UQ characteristics. On the other hand, the CNN DE provides
a reasonable HC set while also attaining robust detection
performance.

The aforementioned trends and insights are further validated
in Figs. 3 - 6, where we show the PD at a CFAR of 1%
and 0.1% averaged across all nine scenes, in which the DNN
DE does not outperform the BNN, in terms of PD, across all
abundance levels despite having a larger HC set. Furthermore,
we find that the probability of detection across all target
abundance levels are nearly equivalent between the CNN DE
and the BNN, as shown in Figs. 4 and 6, despite the CNN
DE capturing significantly more samples in its HC set. As
shown in Figs. 3 and 5, the PD at low CFAR levels does not
outperform the baseline BNN in either the full testing sets or
the HC sets. This reinforces our finding that, despite having a
large HC set (as shown in Table I), the DNN DE does provide
strong UQ metrics. Thus, we find the CNN DE to be the most
desirable detection framework due to its baseline performance
and UQ performance.

V. CONCLUSION

Deep learning models have achieved cutting edge target
detection performance in hyperspectral images. Yet, standard
deep learning models produce point estimates at test time, with
no measure of uncertainty associated with the model’s predic-
tion. In this work, we presented a deep ensemble detection
framework, which leveraged the robustness of standard deep
learning models, while simultaneously providing uncertainty
quantification metrics. In this capacity, we found that, in com-
parison to Bayesian neural networks, deep ensembles attain



Fig. 2: ROC curves for different target abundance levels on BNN (left), DNN DE (middle), and CNN DE (right). Each DE achieves a higher
AUC than the BNN on lower abundance levels, while the performance of all three models is roughly equivalent at higher abundance levels.

Fig. 3: Comparison between BNN and DNN DE of PD at CFAR =
0.01 (averaged across all nine scenes). The BNN delivers a higher
PD on the HC set, while the PD on the full set is somewhat more
equivalent between the BNN and the DNN DE.

Fig. 4: comparison between BNN and CNN DE of PD at CFAR =
0.01 (averaged across all nine scenes). At lower abundance levels,
the BNN obtains a higher averaged PD than the CNN DE, but the
PD becomes roughly equivalent at higher abundance levels.

Fig. 5: Comparison between BNN and DNN DE of PD at CFAR =
0.001 (averaged across all nine scenes). The BNN achieves a higher
PD on both the HC and full set at all target abundance levels, with
a greater PD at lower abundance levels.

Fig. 6: Comparison between BNN and CNN DE of PD at CFAR
= 0.001 (averaged across all nine scenes). The higher PD, on both
the HC and full set, between the BNN and CNN DE depends on the
abundance level of the target material.



higher detection performance while delivering higher degrees
of confidence with its predictions. Furthermore, we found that
the deep learning architecture used for constructing the DE de-
tectors is pivotal in attaining useful uncertainty quantification
metrics. For example, a deep ensemble constructed of an en-
tirely dense architecture provides overly confident predictions,
making their uncertainty quantification performance equivalent
to employing a single detection model. On the other hand,
convolutional architectures provide a better balance between
detection performance and uncertainty quantification. Finally,
we found that at low target abundance levels, the Bayesian
neural network achieves only slightly higher probabilities
of detection on its high confidence samples despite having
significantly smaller high-confidence sets in comparison to the
CNN deep ensemble. Thus, we find that the convolutional deep
ensemble provides the most desirable characteristics in terms
of both detection performance and uncertainty quantification
metrics.
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