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Abstract—Communication-assisted adaptive protection can 

improve the speed and selectivity of the protection system. 

However, in the event, that communication is disrupted to the 

relays from the centralized adaptive protection system, predicting 

the local relay protection settings is a viable alternative. This 

work evaluates the potential for machine learning to overcome 

these challenges by using the Prophet algorithm programmed 

into each relay to individually predict the time-dial (TDS) and 

pickup current (IPICKUP) settings. A modified IEEE 123 feeder was 

used to generate the data needed to train and test the Prophet 

algorithm to individually predict the TDS and IPICKUP settings. 

The models were evaluated using the mean average percentage 

error (MAPE) and the root mean squared error (RMSE) as 

metrics. The results show that the algorithms could accurately 

predict IPICKUP setting with an average MAPE accuracy of 

99.961%, and the TDS setting with a average MAPE  accuracy of 

94.32% which is sufficient for protection parameter prediction. 

Index Terms—prediction, prophet, adaptive protection, machine 

learning, relays  

I. INTRODUCTION  

The future power system demands for a nearly uninterrupted 
power supply will put further strain on the protection system. 
Future protection schemes will have to respond with greater 
accuracy and precision for fault events, and system 
reconfigurations. Machine learning (ML) can provide advanced 
awareness of system conditions [1]. Relays can use a variety of 
protection schemes, such as distance, differential, and time-
based methods to remove faults and maintain system stability 
[2]. Furthermore, unique system designs such as microgrids can 
introduce complicated protection schemes [3] that need to be 
updated depending on load, generation variability, and the 
system configuration. 

As the penetration of inverter-based resources (IBRs) in the 
distribution and microgrids systems continue to increase, the 
protection scheme's selectivity, sensitivity, and reliability of the 
protection setting will have to change [4]. Adaptive protection 
has been purposed as a solution to handle the solar variability 
of IBRs in the power system. Different forms of adaptive 

protection have been purposed to remedy the impacts that IBRs 
can have on a system, as mentioned previously. In [5], using a 
relay’s multiple groups setting to store different protection 
parameters using a clustering algorithm is proposed. However, 
not all relays have the same number of groups, limiting the 
flexibility to have different types and costs of relays in a 
protection scheme. Communication with a centralized adaptive 
protection algorithm is a solution to the limited group settings 
that a relay can handle [6]. Local current and voltage 
measurements would be communicated, typically using 
SCADA, to a centralized adaptive protection algorithm that 
would use those measurements to calculate new protection 
settings. In [7], a sensitivity analysis is proposed to work with 
a centralized adaptive protection algorithm that would 
communicate settings to relays on an event-driven basis.  
However, communication-enabled protection systems can be 
problematic for several reasons. 

First, if a single relay’s line of communication in either 
direction is interrupted either unintentionally (weather-related, 
or equipment failure) or maliciously (cyber-attacks) for an 
extended period, the protection scheme may not operate with 
the speed and selectivity intended during that period. Secondly, 
if the main communication path to the adaptive protection 
algorithm is subjected to a loss of communication, then a 
complete miscoordination of the protection scheme is possible 
dependent upon the solar variability of the IBRs or 
configuration of the grid. Therefore, it will be advantageous to 
predict the protection settings locally for each relay if 
communication is disrupted. 

Recent literature examined how machine learning (ML) 
algorithms could be used for forecasting and predicting loads 
and IBR generation [8],[9]. Many have explored predicting the 
present and future load demand [10],[11] on a system. System 
operators currently use IBR generation and load predictions to 
maintain system stability operations [12], with predictions on 
the hourly and day-ahead time horizon. This gives the power 
utility an idea about the future demand of consumers and an 
ample amount of time to mitigate the difference between 
generation capacity and load demand.  
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Herein, we propose using adaptive protection settings that 
are determined with [13] for the IEEE 123 feeder for year-long 
settings and working with the Prophet ML algorithm [14] to 
predict the time-overcurrent protection settings of individual 
relays.  

While forecasting loads and IBR generation are well 
presented in the literature, predicting protection settings could 
not be identified. This paper will add to the previous work that 
used ML algorithms for power system forecasting by providing 
an analysis focused on the following items: 

• Predicting a relay’s local time dial setting (TDS) 
settings using the Prophet algorithm. 

• Predicting a relay’s local IPICKUP settings using the 
Prophet algorithm. 

• A review of the individual relay’s predicted protection 
setting overall coordination. 

• Using the local predicted protection settings to 
determine if settings communicated from the 
centralized adaptive protection algorithm have been 
compromised. 

The IEEE 123 bus feeder was simulated in OpenDSS and 
generated the data that was used by the optimizer [13] to 
determine the time-over current directional setting used for 
predicting the relay’s protection settings.  

II. SIMULATION  DATA 

A.  System of Study 
The IEEE 123 feeder shown in Fig.1 was modeled in 

OpenDSS. A year-long, hourly simulation with varying 
residential and commercial loads and varying photovoltaic 
(PV) profiles were used.  The feeder includes 10 relays. Four of 
them are used as tie lines for circuit reconfiguration. The 
methodology presented in Reimer et al [15] determined the 
relay locations based on the locations of the IBR. For the 
experiment, relay tie line one is open, and the other three tie 
lines are closed. Table I gives the IBR ratings and locations. 

Figure 1.  Modified IEEE 123 Feeder With DER and Relays. 

 

 

TABLE I.  IBR LOCATION AND RATING 

Bus # 8 18 28 48 61 79 95 100 108 

Inverter 
AC kVA 
Rating 

500 700 500 1000 500 500 1000 500 500 

 

B. Procedure To Generate the Protection Data Set 
The optimal protection coordination algorithm [13] 

generates relay settings by formulating the relay coordination 
problem as an MINLP problem which is solved and optimized 
using a genetic algorithm (GA) based solver. The optimal 
protection coordination algorithm works in conjunction with 
OpenDSS to obtain the network data to generate protection 
coordination pairs. Coordination pairs are determined by path 
tracing from source buses to load busses, identifying relays in 
the path to determine the relays that need to be coordinated. 
Fault analysis is then performed using OpenDSS to identify the 
fault currents observed by each protective device in the fault 
path. The fault currents along with the coordination pairs are 
used to write protection coordination constraints used as the 
constraint function for the solver. The protection coordination 
constraints ensure that there exist settings for the protection 
devices such that the primary device trips before its backup. The 
sum of the primary relay operating times is used as the objective 
function being minimized by the genetic algorithm. The 
objective function and the constraint function are used with the 
GA solver to find and optimize the relay settings. The final 
output of the optimizer would be Table II for each relay. The 
variables in Table II will be explained in Sec II-A. 

TABLE II.  EXAMPLE PROTECTION SETTING DATA  

Date TDS IPICKUP OT 

1/1/17 
0:00 

0.84 23.82 0.15 

1/1/17 

1:00 
0.68 21.21 0.12 

 

III. PREDICTING AT SCALE 

A. The Prophet Algorithm 

The Prophet algorithm, created by Taylor and Letham [14], 

models time series as a generalized additive model (GAM) 

represented by Eq 1.   

 y(t) = g(t) +s(t)+h(t)+(t)  () 

g(t) represents the trend function that models the non-
periodic changes in the value of the times, s(t) represents 
periodic changes, such as daily, weekly, and year seasonality, 
h(t) represents the effects of holidays which occur potentially at 
irregular schedules. ε(t), is an error term for any changes not 
accommodated by the model. Note that this model is inherently 
different from time series forecasting models, such as 
autoregressive forecasting, that predict the value at time t using 
measurements from t-1.  Instead this formulation is essentially 
a curve-fitting exercise that provides advantages of  not needing 
regularly spaced data, ability to handle missing data and 
outliers, and the ability to capture long seasonality trends.  Each 
training point is a separate sample, where time is used as one of 
the regressors. The Prophet algorithm has several tunable 
hyperparameters. For a more in-depth discussion of the Prophet 
algorithm,  the reader is referred to  [14]. 

 



B. Parameters to Predict 
Eq 2 is the time overcurrent equation that the relays in this 

experiment will use. For this paper, we are interested in 
predicting the TDS and IPICKUP from Eq 2 for each relay. The 
variables A, B, and p relate to the curve type, which for each 
relay is set to an inverse (U2) type, and the variable I is the 
measured rms current on the secondary side of the relay. The 
variable OT is the final operating time of the relay. The TDS 
value can range from 0.25 to 15, while the IPICKUP values range 
in the hundreds of amperes. In Table II, the columns in green 
indicate settings and operating time that the SNL Optimizer 
calculated from the local rms current and voltage relay 
measurements. 

𝑂𝑇 = 𝑇𝐷𝑆 ∗
𝐴

(
𝐼

𝐼𝑃𝐼𝐶𝐾𝑈𝑃
)
𝑃
−1

+ B  () 

C. Model Calibration and Selection 
All relays for this experiment had the same range of 
hyperparameters, user tunable parameters, that were explored 
to predict TDS and IPICKUP. The mean average percentage error 
(MAPE) metric was used to evaluate and select each model for 
predicting the TDS and IPICKUP settings and will be discussed in 
the next section. Figure 2 shows the data sets split between 
training and testing for relay 3 TDS. The training set contains 
data to the left of the vertical purple line. The test set is from 
the right of the vertical purple line. It is assumed that 
communications is lost at 11-23, so all model traing must be 
performed before that point.  

Figure 2.  Relay 3 TDS Training and Test Splits 

TABLE III.  SELECTED MODEL PARAMETERS FOR TDS AND IPICKUP. 
EACH RELAY NOTED IN FIGURE 1 IS A SEPARATE MODEL AS SHOWN BY 

EACH COLUMN. 

  R1 R2 R3 R4 R5 

Changepoint_prior_sca

le 
TDS 0.4 0.5 0.3 0.3 0.5 

IPICKUP 0.5 0.3 0.3 0.2 0.1 

Holidays_prior_ 

scale 
TDS 0.1 0.4 0.4 0.1 0.1 

IPICKUP 0.5 0.2 0.2 0.4 0.3 

n_changepoints TDS 200 100 100 100 100 

IPICKUP 100 100 100 100 100 

Seasonality_mode TDS  M A A A 

IPICKUP A A A M M 

  
R6 

RT L 

2 

RTL

3 

RTL

4 
 

Changepoint_prior_sca

le 
TDS 0.1 0.1 0.1 0.2  

IPICKUP 0.3 0.4 0.3 0.4 

Holidays_prior_ 

scale 
TDS 0.5 0.5 0.3 0.4  

IPICKUP 0.2 0.5 0.5 0.5 

n_changepoints TDS 100 100 100 150  

IPICKUP 100 150 100 150 

Seasonality_mode TDS A A A M  

IPICKUP A A M A 

 

Using the protection settings calculated and communicated to 
the individual relays from the optimizer [13], Sec II-B, and 

local measurements, the TDS and IPICKUP settings were 
predicted. Table III gives the final individual model parameters 
that were selected for predicting the TDS and the IPICKUP 

protection parameter settings. The model with the lowest 
MAPE score was selected as the final model and will be 
discussed in Sec IV-B.  

IV. PREDICTION ANALYSIS 

The predicting of the protection setting TDS and IPICKUP 
focused on the potential of the Prophet algorithm’s accuracy 
and precision. This prediction method considered the time-
series dependencies of the data. Since the adaptive protection 
settings are dependant on the load in the feeder and the PV 
power output, the prediction method must incorporate the 
diurnal PV power shape as well as the seasonal and weekly load 
variations.  This assessment used the data generated in Sec. II-
B and the selected model in Sec. III to evaluate the individual 
relay models for predicting accuracy and precision. The 
simulation generated 8,360 data points for each relay. The first 
step involved splitting the dataset into a training set that 
contained 7,824 data points and a testing set that contained 936 
data points. The final analysis used the testing data. 

A. Added Regressors 
While the Prophet algorithm allows the direct forecasting of 

a variable of interest, it is often beneficial to include other 
features, known as regressors in the Prophet algorithm [14], to 
help build a prediction model. To determine which other 
regressors to include for predicting the TDS and IPICKUP settings, 
individual correlation matrices for each relay were created from 
the generated data sets in Sec II-B. The regressors that were 
selected to add to the Prophet algorithm for the TDS relay 
models were: OT, and RMS phase-voltages. The regressors that 
were selected to add to the Prophet algorithm for the IPICKUP 
relay models were the RMS phase-currents. 

B. Evaluation Metrics 
The accuracy of the prediction was determined by how a 

model performed on new data (testing) that was not used when 
training the model. The TDS and IPICKUP models with the lowest 
MAPE score were selected from Sec V. After the selected 
models were trained, the testing data was provided to the final 
model. The mean average percentage error (MAPE) and the 
root mean absolute error (RMSE) error metrics were used to 
evaluate the final models. MAPE is one of the most widely used 
metrics to check a prediction’s accuracy.  The RMSE is another 
widely used metric for assessing a predicting model's accuracy. 
Using these evaluation metrics provides a thorough review of 
each Prophet model’s predicting abilities.  

V. RESULTS 

Two different prediction models were made for each relay. 
The model that was designed to predict the TDS setting of each 
relay used the regressors OT, and the rms phase voltages, and 
the model that was designed to predict the IPICKUP setting of each 
relay used the regressors rms phase currents. The added 
regressors were used to predict the same timestep for the TDS 
and IPICKUP settings. The training set included the first 7,824 
points of data indicated by values to the left of the purple 
vertical line in Fig 2. For the last part of the year, it is assumed 
that communication is lost, and the settings are predicted for 
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each time point using the trained Prophet algorithm with the 
time and other regressors (e.g. rms phase voltages) as inputs.  In 
this scenario, it is assumed that each relay still has access to its 
local measurements like voltage and current to use as inputs to 
estimate the correct settings locally for that relay.  Each model 
was evaluated on predicting the remaining 936 data points, the 
test set length, and compared to the actual values of that set. 
Table IV presents the final models MAPE and RMSE metric 
results for predicting and comparing to the testing data. The 
results only considered the prediction metrics for the test data 
set.  

TABLE IV.  MODEL EVALUATION METRICS RESULTS FOR EACH RELAY 

  MAPE % RMSE 

  TDS  IPICKUP TDS  IPICKUP 

R1 3.216 0.041 0.320 0.127 

R2 8.038 0.004 0.721 0.013 

R3 0.427 0.040 0.007 0.019 

R4 0.469 0.021 0.005 0.005 

R5 16.810 0.033 0.150 0.049 

R6 12.459 0.034 0.505 0.064 

RTL2 3.647 0.049 0.347 0.141 

RTL3 5.290 0.031 0.410 0.057 

RTL4 0.702 0.094 0.026 0.052 

A. Predicting Results For TDS Settings 

The MAPE metric for all but three relays were less than 5%.  
Relay’s 2, 5, and 6 had the least good predictions for the TDS 
setting in Table IV. For example, relay 6 has a MAPE metric of 
12.46% that signifies the average deviation from the actual TDS 
value that the  optimizer [13] calculated over the testing period, 
from 2017-11-22 00:00:00 to 2017-12-31 23:00:00, that 
included 936-time points, was 84.54% accurate. However, the 
best prediction when using the MAPE metric was relay 3, 
which was 99.57 % accurate over the same period.  Note that 
the MAPE for the TDS predictions was higher than the MAPE 
for the IPICKUP.  This is partially due to the fact that the TDS are 
generally smaller numbers (less than 15), so the percent error 
metrics are higher than for IPICKUP. 

The RMSE metric provides a different evaluation of the 
TDS prediction. Relay’s 2, 6, and tie line 3 had the highest 
RMSE values. For example, relay 2 with the highest RMSE 
value of 0.721, means that on average the prediction values 
were 0.721 values away from the actual value. Fig 3 shows the 
predicted values plotted against the actual TDS setting for relay 
2. The implication in the TDS predicted settings will be 
explored in the next section. 

Figure 3.  Relay 2 Comparison Between Predicted and Actual TDS Values. 

B. Prediction Results For IPICKUP Settings 
The MAPE metric for predicting the IPICKUP is significantly 

better than the prediction for TDS as shown in Table IV. For 
example, all relays have a MAPE metric well below 1%. This 
means that the prediction of IPICKUP for each relay was ~99.9% 
accurate with this metric.  Figure 4 shows the prediction results 
for the IPICKUP setting for relay 6. 

 

Figure 4.  Relay 6 Comparison Between Predicted and Actual IPICKUP 

Values. 

The RMSE metric provides a similar positive evaluation of 
the IPICKUP prediction. The IPICKUP setting for each relay is 
generally in the hundreds of amperes and the RMSE values for 
each prediction is in the tenths of amperes. Which for the IPICKUP 

setting in a relay would not affect the response of the relay. 

C. A Review of The Coordination of Predicted Settings 
If one or more relay’s communication to the centralized 

adaptive protection algorithm is interrupted either 
unintentionally (weather-related, or equipment failure) or 
maliciously (cyber-attacks) for an extended period, the 
protection scheme may not operate with the speed and 
selectivity intended during that period. It is assumed that 
communication has been lost in Figure 5 and  the  predicted  
TDS values for relays 1, 2, 3, and tie line 2 are plotted. 

  

Figure 5.  Relay Miscoordination Events 

The vertical purple line represents events of TDS 
miscoordination for these relays. In Figure 5, there were 5 TDS 
miscoordination events. Overall there were 186 
miscoordination events  with the test set, which means 
coordination achieved an 80% accuracy for the TDS prediction. 

D. Checking Adaptive Protection Algorithm Setting 
The purposed Prophet algorithm can be used during a loss 

of communication as shown previously, and it could also be 
used to verify protection parameters that are communicated to 

 

 

 

 

 

 

 

 



the relays. The Prophet algorithm produces an upper and lower 
prediction range. Figure 6 shows an example of using this upper 
and lower prediction range to detect and alert for an erroneous 
settings, such as the green star in the Figure 6 TDS value being 
sent to relay 2.   

 

Figure 6.  Relay 2 Using Upper and Lower Prediction Bounds To Detect An 

Erroneous TDS value. 

VI. CONCLUSIONS 

The experiment found that using the Prophet algorithm to 
predict the TDS values, could achieve an average accuracy of  
94.32% using the MAPE metric on the test data. The IPICKUP 
prediction for each relay was able to achieve an average 
99.961% accuracy on the test data. This proposed method can 
be extended to system reconfigurations and as new settings are 
determined by the optimizer the algorithm could be updated. 
This work provides a basis for future adaptive protection 
parameter prediction for individual relays either for the event of 
loss of communication or to verify settings communicated to 
the relays. This analysis could also be used to determine which 
relays have a substandard prediction and use that domain 
knowledge to add redundant communication paths to those 
relays. 
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