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Abstract—Communication-assisted adaptive protection can
improve the speed and selectivity of the protection system.
However, in the event, that communication is disrupted to the
relays from the centralized adaptive protection system, predicting
the local relay protection settings is a viable alternative. This
work evaluates the potential for machine learning to overcome
these challenges by using the Prophet algorithm programmed
into each relay to individually predict the time-dial (TDS) and
pickup current (Irickup) settings. A modified IEEE 123 feeder was
used to generate the data needed to train and test the Prophet
algorithm to individually predict the TDS and Ipickup settings.
The models were evaluated using the mean average percentage
error (MAPE) and the root mean squared error (RMSE) as
metrics. The results show that the algorithms could accurately
predict Ieickur setting with an average MAPE accuracy of
99.961%, and the TDS setting with a average MAPE accuracy of
94.32% which is sufficient for protection parameter prediction.

Index Terms—prediction, prophet, adaptive protection, machine
learning, relays

L INTRODUCTION

The future power system demands for a nearly uninterrupted
power supply will put further strain on the protection system.
Future protection schemes will have to respond with greater
accuracy and precision for fault events, and system
reconfigurations. Machine learning (ML) can provide advanced
awareness of system conditions [1]. Relays can use a variety of
protection schemes, such as distance, differential, and time-
based methods to remove faults and maintain system stability
[2]. Furthermore, unique system designs such as microgrids can
introduce complicated protection schemes [3] that need to be
updated depending on load, generation variability, and the
system configuration.

As the penetration of inverter-based resources (IBRs) in the
distribution and microgrids systems continue to increase, the
protection scheme's selectivity, sensitivity, and reliability of the
protection setting will have to change [4]. Adaptive protection
has been purposed as a solution to handle the solar variability
of IBRs in the power system. Different forms of adaptive
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protection have been purposed to remedy the impacts that IBRs
can have on a system, as mentioned previously. In [5], using a
relay’s multiple groups setting to store different protection
parameters using a clustering algorithm is proposed. However,
not all relays have the same number of groups, limiting the
flexibility to have different types and costs of relays in a
protection scheme. Communication with a centralized adaptive
protection algorithm is a solution to the limited group settings
that a relay can handle [6]. Local current and voltage
measurements would be communicated, typically using
SCADA, to a centralized adaptive protection algorithm that
would use those measurements to calculate new protection
settings. In [7], a sensitivity analysis is proposed to work with
a centralized adaptive protection algorithm that would
communicate settings to relays on an event-driven basis.
However, communication-enabled protection systems can be
problematic for several reasons.

First, if a single relay’s line of communication in either
direction is interrupted either unintentionally (weather-related,
or equipment failure) or maliciously (cyber-attacks) for an
extended period, the protection scheme may not operate with
the speed and selectivity intended during that period. Secondly,
if the main communication path to the adaptive protection
algorithm is subjected to a loss of communication, then a
complete miscoordination of the protection scheme is possible
dependent upon the solar wvariability of the IBRs or
configuration of the grid. Therefore, it will be advantageous to
predict the protection settings locally for each relay if
communication is disrupted.

Recent literature examined how machine learning (ML)
algorithms could be used for forecasting and predicting loads
and IBR generation [8],[9]. Many have explored predicting the
present and future load demand [10],[11] on a system. System
operators currently use IBR generation and load predictions to
maintain system stability operations [12], with predictions on
the hourly and day-ahead time horizon. This gives the power
utility an idea about the future demand of consumers and an
ample amount of time to mitigate the difference between
generation capacity and load demand.
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Herein, we propose using adaptive protection settings that
are determined with [13] for the IEEE 123 feeder for year-long
settings and working with the Prophet ML algorithm [14] to
predict the time-overcurrent protection settings of individual
relays.

While forecasting loads and IBR generation are well
presented in the literature, predicting protection settings could
not be identified. This paper will add to the previous work that
used ML algorithms for power system forecasting by providing
an analysis focused on the following items:

e Predicting a relay’s local time dial setting (TDS)
settings using the Prophet algorithm.

e Predicting a relay’s local Ipickup settings using the
Prophet algorithm.

e A review of the individual relay’s predicted protection
setting overall coordination.

e Using the local predicted protection settings to
determine if settings communicated from the
centralized adaptive protection algorithm have been
compromised.

The IEEE 123 bus feeder was simulated in OpenDSS and
generated the data that was used by the optimizer [13] to
determine the time-over current directional setting used for
predicting the relay’s protection settings.

II.  SIMULATION DATA

A. System of Study

The IEEE 123 feeder shown in Fig.1 was modeled in
OpenDSS. A year-long, hourly simulation with varying
residential and commercial loads and varying photovoltaic
(PV) profiles were used. The feeder includes 10 relays. Four of
them are used as tie lines for circuit reconfiguration. The
methodology presented in Reimer et al [15] determined the
relay locations based on the locations of the IBR. For the
experiment, relay tie line one is open, and the other three tie
lines are closed. Table I gives the IBR ratings and locations.
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Figure 1. Modified IEEE 123 Feeder With DER and Relays.

TABLE L IBR LOCATION AND RATING

Bus # 8 18 28 48 61 79 95 100 | 108
Inverter
ACKVA | 500 [ 700 | 500 | 1000 | 500 | 500 | 1000 | 500 | 500
Rating

B. Procedure To Generate the Protection Data Set

The optimal protection coordination algorithm [13]
generates relay settings by formulating the relay coordination
problem as an MINLP problem which is solved and optimized
using a genetic algorithm (GA) based solver. The optimal
protection coordination algorithm works in conjunction with
OpenDSS to obtain the network data to generate protection
coordination pairs. Coordination pairs are determined by path
tracing from source buses to load busses, identifying relays in
the path to determine the relays that need to be coordinated.
Fault analysis is then performed using OpenDSS to identify the
fault currents observed by each protective device in the fault
path. The fault currents along with the coordination pairs are
used to write protection coordination constraints used as the
constraint function for the solver. The protection coordination
constraints ensure that there exist settings for the protection
devices such that the primary device trips before its backup. The
sum of the primary relay operating times is used as the objective
function being minimized by the genetic algorithm. The
objective function and the constraint function are used with the
GA solver to find and optimize the relay settings. The final
output of the optimizer would be Table II for each relay. The
variables in Table II will be explained in Sec II-A.

TABLE IL EXAMPLE PROTECTION SETTING DATA
Date TDS | Ieickve | OT
1/1/17
0:00 0.84 23.82 0.15
1/1/17
1:00 0.68 21.21 0.12

III.  PREDICTING AT SCALE

A. The Prophet Algorithm

The Prophet algorithm, created by Taylor and Letham [14],
models time series as a generalized additive model (GAM)
represented by Eq 1.

y(®) = g(t) +s(t)+h(t)+e(t) (1)

g(t) represents the trend function that models the non-
periodic changes in the value of the times, s(t) represents
periodic changes, such as daily, weekly, and year seasonality,
h(t) represents the effects of holidays which occur potentially at
irregular schedules. &(t), is an error term for any changes not
accommodated by the model. Note that this model is inherently
different from time series forecasting models, such as
autoregressive forecasting, that predict the value at time 7 using
measurements from #-1. Instead this formulation is essentially
a curve-fitting exercise that provides advantages of not needing
regularly spaced data, ability to handle missing data and
outliers, and the ability to capture long seasonality trends. Each
training point is a separate sample, where time is used as one of
the regressors. The Prophet algorithm has several tunable
hyperparameters. For a more in-depth discussion of the Prophet
algorithm, the reader is referred to [14].



B. Parameters to Predict

Eq 2 is the time overcurrent equation that the relays in this
experiment will use. For this paper, we are interested in
predicting the TDS and Ipickupr from Eq 2 for each relay. The
variables 4, B, and p relate to the curve type, which for each
relay is set to an inverse (U2) type, and the variable [ is the
measured 7ms current on the secondary side of the relay. The
variable OT is the final operating time of the relay. The TDS
value can range from 0.25 to 15, while the Ipickup values range
in the hundreds of amperes. In Table II, the columns in green
indicate settings and operating time that the SNL Optimizer
calculated from the local rms current and voltage relay
measurements.
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C. Model Calibration and Selection

All relays for this experiment had the same range of
hyperparameters, user tunable parameters, that were explored
to predict TDS and Ipickup. The mean average percentage error
(MAPE) metric was used to evaluate and select each model for
predicting the TDS and Ipickup settings and will be discussed in
the next section. Figure 2 shows the data sets split between
training and testing for relay 3 TDS. The training set contains
data to the left of the vertical purple line. The test set is from
the right of the vertical purple line. It is assumed that
communications is lost at 11-23, so all model traing must be
performed before that point.
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Figure 2. Relay 3 TDS Training and Test Splits

TABLE III. SELECTED MODEL PARAMETERS FOR TDS AND Ipickup.
EAcCH RELAY NOTED IN FIGURE 1 IS A SEPARATE MODEL AS SHOWN BY
EACH COLUMN.

R1 R2 R3 R4 RS
Changepoint_prior_sca TDS 0.4 0.5 0.3 0.3 0.5
le Ipickup 0.5 0.3 0.3 0.2 0.1
Holidays_prior_ TDS 0.1 0.4 0.4 0.1 0.1
scale Ipickup 0.5 0.2 0.2 0.4 0.3
n_changepoints TDS 200 100 100 100 100
Tpickup 100 100 100 100 100
Seasonality_mode TDS M A A A
Ipickup A A A M M
RTL RTL RTL
IR0 2 3 4
Changepoint_prior_sca TDS 0.1 0.1 0.1 0.2
le Ipickup 0.3 0.4 0.3 0.4
Holidays_prior_ TDS 0.5 0.5 0.3 0.4
scale Tpickup 0.2 0.5 0.5 0.5
n_changepoints TDS 100 100 100 150
Tpickup 100 150 100 150
Seasonality_mode TDS A A A M
Ipickup A A M A

Using the protection settings calculated and communicated to
the individual relays from the optimizer [13], Sec II-B, and

local measurements, the TDS and Ipickup settings were
predicted. Table III gives the final individual model parameters
that were selected for predicting the TDS and the Ipickup
protection parameter settings. The model with the lowest
MAPE score was selected as the final model and will be
discussed in Sec IV-B.

IV. PREDICTION ANALYSIS

The predicting of the protection setting TDS and Ipickup
focused on the potential of the Prophet algorithm’s accuracy
and precision. This prediction method considered the time-
series dependencies of the data. Since the adaptive protection
settings are dependant on the load in the feeder and the PV
power output, the prediction method must incorporate the
diurnal PV power shape as well as the seasonal and weekly load
variations. This assessment used the data generated in Sec. II-
B and the selected model in Sec. III to evaluate the individual
relay models for predicting accuracy and precision. The
simulation generated 8,360 data points for each relay. The first
step involved splitting the dataset into a training set that
contained 7,824 data points and a testing set that contained 936
data points. The final analysis used the testing data.

A. Added Regressors

While the Prophet algorithm allows the direct forecasting of
a variable of interest, it is often beneficial to include other
features, known as regressors in the Prophet algorithm [14], to
help build a prediction model. To determine which other
regressors to include for predicting the TDS and Ipickup settings,
individual correlation matrices for each relay were created from
the generated data sets in Sec II-B. The regressors that were
selected to add to the Prophet algorithm for the TDS relay
models were: OT, and RMS phase-voltages. The regressors that
were selected to add to the Prophet algorithm for the Ipickup
relay models were the RMS phase-currents.

B. Evaluation Metrics

The accuracy of the prediction was determined by how a
model performed on new data (testing) that was not used when
training the model. The TDS and Ipickup models with the lowest
MAPE score were selected from Sec V. After the selected
models were trained, the testing data was provided to the final
model. The mean average percentage error (MAPE) and the
root mean absolute error (RMSE) error metrics were used to
evaluate the final models. MAPE is one of the most widely used
metrics to check a prediction’s accuracy. The RMSE is another
widely used metric for assessing a predicting model's accuracy.
Using these evaluation metrics provides a thorough review of
each Prophet model’s predicting abilities.

V. RESULTS

Two different prediction models were made for each relay.
The model that was designed to predict the TDS setting of each
relay used the regressors OT, and the rms phase voltages, and
the model that was designed to predict the Ipickup setting of each
relay used the regressors rms phase currents. The added
regressors were used to predict the same timestep for the TDS
and Ipickup settings. The training set included the first 7,824
points of data indicated by values to the left of the purple
vertical line in Fig 2. For the last part of the year, it is assumed
that communication is lost, and the settings are predicted for



each time point using the trained Prophet algorithm with the
time and other regressors (e.g. 7ms phase voltages) as inputs. In
this scenario, it is assumed that each relay still has access to its
local measurements like voltage and current to use as inputs to
estimate the correct settings locally for that relay. Each model
was evaluated on predicting the remaining 936 data points, the
test set length, and compared to the actual values of that set.
Table IV presents the final models MAPE and RMSE metric
results for predicting and comparing to the testing data. The
results only considered the prediction metrics for the test data
set.

TABLE IV. MODEL EVALUATION METRICS RESULTS FOR EACH RELAY
MAPE % RMSE
TDS Ipickur TDS Ipickur
R1 3216 0.041 0.320 0.127
R2 8.038 0.004 0.721 0.013
R3 0.427 0.040 0.007 0.019
R4 0.469 0.021 0.005 0.005
R5 16.810 0.033 0.150 0.049
R6 12.459 0.034 0.505 0.064
RTL2 3.647 0.049 0.347 0.141
RTL3 5.290 0.031 0.410 0.057
RTL4 0.702 0.094 0.026 0.052

A. Predicting Results For TDS Settings

The MAPE metric for all but three relays were less than 5%.
Relay’s 2, 5, and 6 had the least good predictions for the TDS
setting in Table IV. For example, relay 6 has a MAPE metric of
12.46% that signifies the average deviation from the actual TDS
value that the optimizer [13] calculated over the testing period,
from 2017-11-22 00:00:00 to 2017-12-31 23:00:00, that
included 936-time points, was 84.54% accurate. However, the
best prediction when using the MAPE metric was relay 3,
which was 99.57 % accurate over the same period. Note that
the MAPE for the TDS predictions was higher than the MAPE
for the Ipickup. This is partially due to the fact that the TDS are
generally smaller numbers (less than 15), so the percent error
metrics are higher than for Ipickup.

The RMSE metric provides a different evaluation of the
TDS prediction. Relay’s 2, 6, and tie line 3 had the highest
RMSE values. For example, relay 2 with the highest RMSE
value of 0.721, means that on average the prediction values
were 0.721 values away from the actual value. Fig 3 shows the
predicted values plotted against the actual TDS setting for relay
2. The implication in the TDS predicted settings will be
explored in the next section.
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Figure 3. Relay 2 Comparison Between Predicted and Actual TDS Values.

B. Prediction Results For Ipickup Settings

The MAPE metric for predicting the Ipickup is significantly
better than the prediction for TDS as shown in Table IV. For
example, all relays have a MAPE metric well below 1%. This
means that the prediction of Ipickup for each relay was ~99.9%
accurate with this metric. Figure 4 shows the prediction results
for the Ipickup setting for relay 6.
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Figure 4. Relay 6 Comparison Between Predicted and Actual Ipickup
Values.

The RMSE metric provides a similar positive evaluation of
the Ipickup prediction. The Ipickup setting for each relay is
generally in the hundreds of amperes and the RMSE values for
each prediction is in the tenths of amperes. Which for the Ipickup
setting in a relay would not affect the response of the relay.

C. A Review of The Coordination of Predicted Settings

If one or more relay’s communication to the centralized
adaptive  protection algorithm is interrupted either
unintentionally (weather-related, or equipment failure) or
maliciously (cyber-attacks) for an extended period, the
protection scheme may not operate with the speed and
selectivity intended during that period. It is assumed that
communication has been lost in Figure 5 and the predicted
TDS values for relays 1, 2, 3, and tie line 2 are plotted.
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Figure 5. Relay Miscoordination Events

The wvertical purple line represents events of TDS
miscoordination for these relays. In Figure 5, there were 5 TDS
miscoordination  events.  Overall there were 186
miscoordination events with the test set, which means
coordination achieved an 80% accuracy for the TDS prediction.

D. Checking Adaptive Protection Algorithm Setting

The purposed Prophet algorithm can be used during a loss
of communication as shown previously, and it could also be
used to verify protection parameters that are communicated to



the relays. The Prophet algorithm produces an upper and lower
prediction range. Figure 6 shows an example of using this upper
and lower prediction range to detect and alert for an erroneous
settings, such as the green star in the Figure 6 TDS value being
sent to relay 2.
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Figure 6. Relay 2 Using Upper and Lower Prediction Bounds To Detect An
Erroneous TDS value.
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The experiment found that using the Prophet algorithm to
predict the TDS values, could achieve an average accuracy of
94.32% using the MAPE metric on the test data. The Ipickup
prediction for each relay was able to achieve an average
99.961% accuracy on the test data. This proposed method can
be extended to system reconfigurations and as new settings are
determined by the optimizer the algorithm could be updated.
This work provides a basis for future adaptive protection
parameter prediction for individual relays either for the event of
loss of communication or to verify settings communicated to
the relays. This analysis could also be used to determine which
relays have a substandard prediction and use that domain
knowledge to add redundant communication paths to those
relays.

CONCLUSIONS
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