
Low-Communication Asynchronous Distributed
Generalized Canonical Polyadic Tensor

Decomposition
1st Cannada Lewis

Sandia National Laboratories
Livermore, California
canlewi@sandia.gov

2nd Eric Phipps
Sandia National Laboratories
Albuquerque, New Mexico

etphipp@sandia.gov

Abstract—In this work, we show that reduced communication
algorithms for distributed stochastic gradient descent improve the
time per epoch and strong scaling for the Generalized Canonical
Polyadic (GCP) tensor decomposition, but with a cost, achieving
convergence becomes more difficult. The implementation, based
on MPI, shows that while one-sided algorithms offer a path to
asynchronous execution, the performance benefits of optimized
allreduce are difficult to best.

Index Terms—Tensor Decomposition, Canonical Polyadic,
Stochastic Gradient Descent, Asynchrony, Federated Learning

I. INTRODUCTION

We consider a tensor to be a multidimensional array of data
(dense, sparse, or scarce [1]) that is a natural representation
of many data sets [2]. Tensor decompositions are a group
of methods that seek to represent tensors via an ansatz that
provides one or more of the following: reduced storage,
interpretability of the data, dimensionality reduction, or a
separable approximation useful for further transformations.
The Canonical Polyadic (CPD) and Tucker decompositions
[2] are two decompositions that have been heavily investigated
and provide similar utility to the singular value decomposition
for matrices. One advantage of the CPD over the Tucker
decomposition is that the CPD decomposition does not suffer
from the curse of dimensionality. In this work, we focus on
solving the Generalized form of the Canonical Polyadic tensor
decomposition (GCP) [1]. GCP, cannot be solved with the
traditional CPD method alternating least squares, instead we
use stochastic gradient decent (SGD).

In the last decade, the machine learning community has
heavily invested in the scaling of distributed stochastic gradient
decent (dSGD) [3], we test two approaches for reducing the
communication in dSGD: Local SGD (LSGD) [4] and Elastic

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of Energy or
the United States Government. Sand Number: TODONEEDTOFINISHTHIS

Averaging (EA) [5] and compare them to a synchronous
distributed implementation of ADAM [6]. Other work in-
vestigates alternatives to SGD [7] and efficient distribution
and performance optimization [8], [9], but to our knowledge
reduced communication strategies for dSGD have not been
explored for GCP tensor decompositions.

II. ALGORITHMS

Algorithmic details for the parts of our algorithm that are
independent of multi-process distribution are covered in [10].
A major (maybe dominate) motivation of our distribution strat-
egy was to reuse as much of this single process implementation
as possible, this is one place where we differ from [11].

A. Anatomy of Our SGD algorithm

We follow the standard strategy for SGD popular in the ML
community, with a few caveats. We set large units of work,
called epochs, to use the number of non-zero (nnz) tensor
elements and an equal number of zeros, via semistratified
sampling [12]. To do this, we compute gradients using a
fixed number of samples, called a mini-batches, such that the
number of mini-batches times the size of the mini-batches
is approximately the number of non-zeros in the tensor. For
implementation purposes, we break from tradition in two main
ways: 1) we do sampling with replacement, 2) for the non-zero
sampling, each distributed worker, called a rank, will sample
the minimum of either the batch size divided by the number
of ranks or the number of local nnz. When the distribution
of the tensor nnz is not well balanced this could introduce
bias into our sampling, but it makes the implementation of
the distributed algorithm simpler.

For timing purposes our SGD algorithm can be broken into
three phases:

1) Gradient: the calculation where the local contributions
to the gradient are computed.

2) Communication: Measures any communication steps
used in the algorithm

3) Update: where the local factor matrices are updated
using the factor gradients, surprisingly to the authors
(but in hindsight obvious) this step can be expensive

SAND2021-10681CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Fig. 1. Stacked average times for each phase of dSGD (the difference between the sum of these three phases and the total epoch time was negligible). The
decomposition rank was 16 and the communication period was fixed at 128 mini-batches for the LSGD and EA methods.

depending on the amount of factor replication and thread
parallelism choices in the algorithm.

B. Tensor and Factor Distribution

To explain the distribution strategy it will be helpful to know
what our goals are. We are motivated by the following, not
universally true, assumptions:

1) The gradient calculation is the most expensive step of
each mini-batch

2) The implementation of MPI_Allreduce will be ef-
ficient, we assume that most HPC style clusters and
MPI implementations will provide a high performance
algorithm.

with these goals in mind we initially distribute the tensor as
follows. We will replicate any row of a factor matrix that
might be used in local gradient computations and we will
distribute the tensor in blocks that correspond to contiguous
regions of each mode. To do this, we create a MPI Cartesian
grid with the same dimensionality as the tensor that minimizes
factor storage. We then give the user the option (the approach
used in this work) of testing small perturbations to this grid
with actual MPI_Allreduce calls to factor matrices with
random data. Allowing users to trade faster communication
for increased storage, if storage reduction is a priority this
step can be skipped.

This distribution strategy will partially replicate the factor
matrices, but in a way that the storage required for factor
matrix replication grows more slowly than the total memory
for the system, under the assumption that adding another rank
always adds additional memory. Because factors are always
dense minimizing their storage does not take into account the
distribution of nonzero data in the tensor. For some tensors
this can become an issue when the non-zeros are clustered,
either naturally or by construction.

Finally, in the EA implementation we store a sharded center
variable in a MPI_Window distributed over the subgrid that
corresponds to those particular rows of the factor matrices. The
window is distributed such that each rank in the subgrid holds

an equal number of rows of the center. The sharded center
represents the consensus view of the factors, that is used to
gauge accuracy and convergence. The authors suggest thinking
of this MPI_Window as convenient way to implement a data
structure that functions as a parameter server in MPI.

C. dSGD Algorithms

We implemented three strategies for dSGD:
1) Synchronous allreduce with ADAM [6],
2) LSGD, in which the factors are averaged after

a predetermined number of mini-batches (τ ) using
MPI_Allreduce,

3) EA, with independent ranks that asynchronously read
and write a sharded center after a predetermined number
of mini-batches (τ ), using MPI one-sided communica-
tion.

In the algorithms 1, 2, and 3 the method
sampler.fusedGradient(F ), is an implementation detail
of Genten, that consumes the created element of the tensor
gradient immediately. This allows fusedGradient to avoid
the two step process of creating and storing a gradient tensor
and calling a separate Matricized tensor times Khatri-Rao
product routine.

Algorithm 1 ADAM SGD mini-batch iteration with AllRe-
duce

1: procedure ADAMSGDITERATION(F, sampler)
2: G = sampler.fusedGradient(F )
3: Allreduce(G) . Calls MPI_Allreduce on each

gradient block
4: F.update(G)
5: end procedure

In algorithm 1, we see that all that is required to distribute
ADAM SGD is to unconditionally allreduce the gradient
before the factors are updated. This ensures that the factors
on different ranks see the same gradients, but also requires
communication for every single mini-batch.



Algorithm 2 Local SGD mini-batch iteration
1: procedure LOCALSGDITERATION(F, sampler, e, τ )
2: if e%τ == 0 then . If τ divides the epoch iteration,
e, synchronize

3: Allreduce(F ). Calls MPI_Allreduce on each
replicated factor block

4: F = F/numMPIRanks
5: end if
6: G = sampler.fusedGradient(F )
7: F.update(G)
8: end procedure

In algorithm 2, instead of ensuring that all ranks receive
the same gradient we simply average the factor matrices with
a period of τ . So every τ iterations we ensure that all the
ranks have the same factor matrices. While communicating
less frequently than algorithm 1, this is still synchronous, since
all ranks must all reach the allreduce method before any rank
can proceed.

Algorithm 3 Elastic Averaging SGD mini-batch iteration
1: procedure LOCALSGDITERATION(F, sampler, e, τ, C)
2: if e%τ == 0 then . If τ divides the epoch iteration,
e, communicate

3: C = readCenter() . Calls
MPI_Get_accumulate

4: D = 0.9(F − C)
5: F = F −D
6: writeCenterUpdate(D) . Calls
MPI_Accumulate

7: end if
8: G = sampler.fusedGradient(F )
9: F.update(G)

10: end procedure

Finally, in algorithm 3, we see that Elastic Averaging
requires doing an asynchronous read of a center variable
(initially the center and all the factors are initialized to the
same values), then a local update based on the difference
between the local factors and the center, which is followed
by an asynchronous accumulation of that difference back to
the center. Importantly, none of these operations depend on ex-
plicit synchronization with any other ranks. The read and write
operation are implemented with MPI_Get_accumulate
and MPI_Accumulate allowing safe, but arbitrary interleav-
ing of reads and writes.

III. IMPLEMENTATION

We extended the Genten [10] tensor decomposition package
to make use of distributed computing (see similar work at
Sandia [11]) using MPI. Genten employs the Kokkos [13]
library to provide on node parallelism and the flexibility of
MPI+X.

Hardware: All tests were run on the Sandia Blake cluster
with two Xeon Platinum Skylake 8160 CPUs per node (48
cores/node), 28 nodes, and a 100Gbs OmniPath network.

Software: The code for this project can be found
at https://gitlab.com/tensors/genten/ on the
mpi-sgd branch. The external dependencies used were Boost
(1.75), Open MPI (4.0.5), Kokkos (commit 1fb0c28, OpenMP
backend), all compiled with Intel 2021.2.0 compilers.

IV. RESULTS

The sparse tensor used was NELL-2 [14], [15] with dimen-
sions [12092, 9184, 28818] and 76879419 non-zeros (nnz).
The size of each epoch was chosen to sample all non-zeros
(76879419) and an equal number of zeros with replacement
using semistratified sampling [12]. We used a Poisson loss
function. Each epoch was divided into equal sized mini-
batches with three phases: 1) gradient computation, 2) factor
update, and 3) communication. Reported timings are an av-
erage of 50 epochs for the ADAM results and 8 epochs for
the others. EA and LSGD are sensitive to hyper parameter
selection, so convergence and time to solution comparisons
will be reported in a future work. The all results, except rank
scaling, used a decomposition rank of 16. Finally, we ran two
different configurations: one MPI rank per core (Core) and
one MPI rank per socket (Socket), the latter used 24 OpenMP
threads on each rank.

A. Strong Scaling and Batch Size Effects

In Figure 1, we see communication dominate ADAM times
at smaller mini-batch sizes and large node counts, this confirms
that our method is very effective at meeting its goal of strong
scaling the gradient computation. As expected, communication
as a percentage of the epoch time is larger when the mini-batch
size is small due to more communication events. The commu-
nication avoiding methods—especially LSGD, which exploits
optimized MPI_Allreduce routines—show the effects of
reduced communication overhead when the synchronization
period is 128 mini-batches. We also see that the batch size
has a large effect on the epoch times for all methods, the main
reason for this is that larger batches reduce both the number of
update and communication steps per epoch, while the work for
the gradient calculations stays approximately constant (once
the mini-batch is large enough to effectively hide the work
required to set up and tear down a mini-batch). The effect is
most pronounced when analyzing the ADAM(Core) method
on a single node, with a batch size of 16000 communication
and update steps dominate, while with a batch size of 256000
they are much more closely balanced.

Here we also can see that the time spent in the update
step can become significant, especially when distributing by
core. The reason for this is that each rank must apply gradient
updates to it’s local copy of the factors. When the amount of
replication is high this leads to significant redundant work, in
the 21 node case there are 1008 MPI ranks for example, each
which must do some amount of redundant work.

While for many cases the jobs distributed by socket are
slightly to significantly faster than the jobs distributed by
cores, there are times when that is not the case. So even though



distributing by socket may be a good default recommendation,
there are configurations where by core will be better.

Finally, we can see that for this tensor on this system, it
is very hard for the MPI one-sided communication used in
Elastic Averaging to match the performance of LSGD, when
the frequency of communication is the same, we believe this
is partly due to the fact that MPI_Allreduce is a highly
optimized routine and NELL-2’s non-zeros are distributed in a
way that leads to acceptable load balance in the configurations
we tested. That is not to say that LSGD is a more efficient
method than EA with respect to time to solution or conver-
gence accuracy, we simply didn’t compute those outcomes,
but intend to do so in future work.

Fig. 2. Test, on four nodes, of the impact of communication period on dSGD
phases. The decomposition rank was 16 and the mini-batch size was 64000

B. Frequency of Communication

Figure 2, shows the average epoch time decreases as the
frequency of communication decreases. This is expected and
without convergence results it is hard to make any deep
insights or recommendations. This plot does make it clear
that the EA method is bottlenecked by communication for
this configuration with NELL-2, suggesting that the benefits
of asynchrony may be hard to realize on HPC systems, with
fast reliable networks.

C. Effect of Decomposition Rank

As expected we see that time per epoch increases with
increasing rank. The 128 rank jobs also highlight a trend that
the jobs distributed by cores have an advantage over the jobs
distributed by socket, with regards to computing the gradients.
This is due to the fact that the single core jobs do not need
to do any synchronization for writing the gradient elements,
while the socket based jobs need to use atomics (or other
methods) to avoid race conditions. There don’t seem to be

Fig. 3. Test, on four nodes, of the impact of decomposition rank with respect
to epoch times. The communication period was every 128 mini-batches and
the mini-batch size was 256000

any obvious take aways except that as expected all phases of
computation increase in cost as the rank of the decomposition
increases and the relative performance of distributing by cores
or sockets may depend on the rank of the decomposition.

V. CONCLUSIONS

A. Insights

We showed that communication avoiding dSGD algorithms
lead to faster epoch times and improved strong scaling relative
to synchronous ADAM. The best scaling is obtained when the
gradient is the dominant cost of each epoch, favoring large
mini-batch sizes and infrequent communication. The trade-
offs between different configurations (Core versus Socket)
were mixed, warranting more investigation. These results are
promising, but challenges remain: namely to prove that low
communication algorithms can match synchronous ones in
time to solution and accuracy.

B. Questions Left Unanswered and Future Avenues of Inves-
tigation

The big questions that we didn’t address in this work is
which method achieves a certain quality of solution in the
fastest time. LSGD and EA both were very sensitive to the
annealing schedule (a detail, not discussed in this work) and
the learning rate, making it difficult to compare convergence
and time to solution. Future work will be to find strategies to
make their convergence more robust so a true comparison to
synchronous ADAM can be made.

While the choice to use a distribution that minimizes factor
replication/communication in this work may not be obvious
when using a HPC cluster with ample memory and fast
networks, this decision was made with GPUs in mind. One



of our next goals is to port this work to GPU clusters with
few nodes and multiple GPUs per node. We chose to minimize
factor matrix replication with the idea that we would want to
fit our factors and tensors on 10s of GPUs as oppose to 1000s
of cores. Allreduce based methods will also be valuable when
porting to GPUs because of the existence of optimized routines
and the fact that asynchronous MPI operations are not well
supported at this point in time.

Finally, we need to investigate more tensors and different
loss functions. Some of the trends seen in this work may
not hold for tensors of different dimensions, sparsity, sparsity
patterns, or size.

REFERENCES

[1] D. Hong, T. G. Kolda, and J. A. Duersch, “Generalized canonical
polyadic tensor decomposition,” SIAM Review, vol. 62, no. 1, pp. 133–
163, 2020.

[2] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
pp. 1223–1231, 2012.

[4] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv
preprint arXiv:1805.09767, 2018.

[5] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging sgd,” in Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, p. 685–693.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[7] T. M. Ranadive and M. M. Baskaran, “Large-scale sparse tensor decom-
position using a damped gauss-newton method,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2020,
pp. 1–8.

[8] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 61–70.

[9] M. Baskaran, T. Henretty, and J. Ezick, “Fast and scalable distributed
tensor decompositions,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC), 2019, pp. 1–7.

[10] E. T. Phipps and T. G. Kolda, “Software for sparse tensor decomposition
on emerging computing architectures,” SIAM Journal on Scientific
Computing, vol. 41, no. 3, pp. C269–C290, 2019.

[11] K. D. Devine and G. Ballard, “Gentenmpi: Distributed memory sparse
tensor decomposition.” Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), Tech. Rep., 2020.

[12] T. G. Kolda and D. Hong, “Stochastic gradients for large-scale tensor
decomposition,” SIAM Journal on Mathematics of Data Science, vol. 2,
no. 4, pp. 1066–1095, 2020.

[13] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of parallel and distributed computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[14] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
(2017) FROSTT: The formidable repository of open sparse tensors and
tools. [Online]. Available: http://frostt.io/

[15] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr.,
and T. M. Mitchell, “Toward an architecture for never-ending language
learning.” in AAAI, vol. 5, 2010, p. 3.


