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Electron Sheaths - Sheaths that are Electron Rich

• Surround boundaries in a
plasma biased above the
plasma potential

• Electron-rich

• Global current balance
requires that for a monotonic
electron sheath
AE/Aw <
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[1] S. D. Baalrud, N. Hershkowitz, and B. Longmier Physics
of Plasmas 14, 042109 (2007)



Electron Sheaths are Accompanied by Fast Electron Flows

• Electron sheaths are important for

• Langmuir probes collecting the electron saturation current
• tethered space probes and plasma contactors
• near electrodes used to induce circulation in dusty plasmas
• sheath prior to the formation of anode spots

• In this work we find that

• Electron sheaths are accompanied by a presheath
• The presheath flow velocities approach vTe

• Velocity distributions for electrons have a flow shift along with
a loss-cone like truncation



Conventional Picture: Electron Sheaths Collect a Random
Flux of Electrons

• Flux collected by an electron sheath is the random flux [2,3]
• The electron velocity distribution function (EVDF) is a truncated

Maxwellian at the sheath edge [4]
• The electron sheath equivalent of the Bohm criterion is trivially

satisfied =⇒ no need for presheath [5,6]
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Particle-In-Cell Simulations

• Electrostatic PIC code
Aleph

• Helium plasma was
generated at 108cm−3 µs−1

within the volume

• ∆t = 0.5 ns, 0.02 cm mesh
scale, λDe

= 0.059 cm,
ω−1pe

= 0.63ns

• No collisions with neutrals
were included

• Simulations ran for 40µs of
physical time

• Will study EVDFs at
different locations in front
of the electrode
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Electron Velocity Distribution Functions Have a Flow Shift
and Truncation
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•  Unexpected because the conventional 
picture only has a truncation


•  Flow moment composed of  comparable 
contributions from the flow shift and loss-
cone




Pressure Tensor Gradients Dominates the Presheath
Electron Flow

Ion Sheath
 Electron Sheath


meneVe · ∇Ve︸ ︷︷ ︸
flow term

= −neE︸ ︷︷ ︸
field term

−∇ · Pe︸ ︷︷ ︸
pressure term

− Re︸︷︷︸
friction



Why Does the Electron Flow Approach the Electron
Thermal Speed?

• Sheath Criterion: At the sheath edge ρ ≈ 0 and
∣∣dρ/dφ|φ=φ0

∣∣ > 0 [7]

• This can be rewritten as ∑
s

qs
dns
dz
≤ 0

• Using the continuity equation (no source)

∑
s

qs
ns
Vs

dVs
dz
≤ 0

• The electron presheath has a minimum velocity determined by the
momentum equation, approximating this as

meneVe · ∇Ve = −neE−∇peẑ

the flow velocity is

Ve ≥
√
Te + Ti
me

≈ vTe

• Stress moments due to the loss cone will slightly modify this value

[7] K.-U. Riemann, Journal of Physics D Applied Physics 24, 493 (1991)



Pressure Gradient Plays a Larger Role than the Electric
Field

• Assume a Boltzmann ion density profile, then quasineutrality implies

dne
dz

=
dni
dz

= −eniE
Ti

• Using Pe = peI + Πe, with pe = neTe the z component of the
momentum equation shows the pressure term is Te/Ti larger than
the electric field term

Ve
dVe
dz

= − e

me
E − Te

mene

(
−

eniE

Ti

)
︸ ︷︷ ︸

1
mene

∇pe

−(stress, friction, other terms)

In the electron presheath the electric field causes a density
(pressure) gradient. The acceleration of the flow velocity is

dominated by the pressure gradient.

Significantly different from ion presheaths



Flow Moment Means Thicker Electron Sheath

• Combining the momentum and
continuity equations, ignoring
stress and friction terms, and
integrating(
Ve
vTe

)2

−2 log

(
Ve
vTe

)
=

2eφ

Te
+1

• Integrating Poisson’s equation
twice within the sheath:

z

λDe

= 0.79

(
e∆φ

Te

)3/4

• The numerical constant is
typically assumed to be 0.32
based on the random flux
assumption.

This compares well with previous
simulations [8]
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[8] B. Scheiner, S. D. Baalrud, B. T. Yee, M. M. Hopkins,
and E. V. Barnat Physics of Plasmas 22, 123520 (2015)



Instabilities

• The dielectric response for a plasma where the electrons are Maxwellian
with flow Ve and stationary Maxwellian ions is

ε(k, ω) = 1−
ω2
pe

k2v2Te

Z′(ξe)−
ω2
pi

k2v2Ti

Z′(ξi) (1)

where ξe =
ω−k·Ve
kvTe

and ξi =
ω

kvTi

[8] B. Scheiner, S. D. Baalrud, B. T. Yee, M. M. Hopkins, and E. V. Barnat Physics of Plasmas 22, 123520 (2015)



Summary: Electron Flow in the Electron Presheath is
Caused by a Loss-Cone Type Truncation and a Flow Shift

• Electrons flow with a velocity comparable with vTe

• The flow velocity is composed of two kinetic effects, 1) a loss-cone
type truncation and 2) a shift in the maximum value of the EVDF

• The loss-cone truncation is a geometric effect

• This flow is accelerated in a presheath characterized by pressure
gradients

• Sheath models with a flow are in better agreement with simulations
than the conventional picture


